
Chapter 11

INHERITANCE

AND

POLYMORPHISM

1

Object Oriented programming

Instructors:

Dr. Rasha Orban

Dr. Mustafa Abdul Salam

INHERITANCE AND POLYMORPHISM

2

Object oriented programming allows you to derive new

classes from existing classes. This is called inheritance.

Inheritance is an important and powerful feature in Java for

reusing software.

Suppose you are to define classes to model circles, rectangles,

and triangles. These classes have many common features.

What is the best way to design these classes so to avoid

redundancy and make the system easy to comprehend and

easy to maintain? The answer is to use inheritance.

Superclasses and Subclasses

3

You use a class to model objects of the same type.

Different classes may have some common properties

and behaviors, which can be generalized in a class

that can be shared by other classes. Inheritance

enables you to define a general class and later extend

it to more specialized classes. The specialized classes

inherit the properties and methods from the general

class.

In Java terminology, a class C1 extended from another

class C2 is called a subclass, and C2 is called a

superclass

A superclass is also referred to as a parent class, or a

base class, and a subclass as a child class, an

extended class, or a derived class. A subclass inherits

accessible data fields and methods from its superclass

and may also add new data fields and methods.

4

The Circle class extends the GeometricObject class

(Listing 11.2) using the following syntax:

public class Circle extends GeometricObject

5

LISTING 11.1 GeometricObject1.java
1 public class GeometricObject1 {
2 private String color = "white";
3 private boolean filled;
4 private java.util.Date dateCreated;
20 public String getColor() {
25 public void setColor(String color) {

LISTING 11.2 Circle4.java
1 public class Circle4 extends GeometricObject1 {
2 private double radius;
11 public Circle4(double radius, String color, boolean filled)
{
12 this.radius = radius;
13 setColor(color);
14 setFilled(filled);
15 }

The keyword
extends (line
1) tells the
compiler that
the Circle
class extends
the
GeometricOb
ject class,
thus
inheriting
the methods
getColor,
setColor,
isFilled,
setFilled, and
toString.

6

7

8

public Circle4(double radius, String

color, boolean filled) {

this.radius = radius;

this.color = color; // Illegal

this.filled = filled; // Illegal

}

because the private data fields

color and filled in the Geometric-

Object class cannot be accessed

in any class other than in the

GeometricObject class itself. The

only way to read and modify

color and filled is through their

get and set methods.

9

The following points regarding inheritance are worthwhile

to note:

• a subclass is not a subset of its superclass (more in

subclass),

• Private data fields in a superclass are not accessible

outside the class,

• Some programming languages allow you to derive a

subclass from several classes. This capability is known as

multiple inheritance. Java, however, does not allow

multiple inheritance. A Java class may inherit directly

from only one superclass. This restriction is known as

single inheritance.

10

Using the super Keyword

11

A subclass inherits accessible data fields and methods from its

superclass. Does it inherit constructors?

Can superclass constructors be invoked from subclasses?

The this Reference, the use of the keyword this to reference the calling

object. The keyword super refers to the superclass of the class in which

super appears. It can be used in two ways:

■ To call a superclass constructor.

■ To call a superclass method.

•The syntax to call a superclass’s constructor is:

super(), or super(parameters);

•The statement super() invokes the no-arg constructor of its superclass,

and the statement super(arguments) invokes the superclass constructor

that matches the arguments.

•The statement super() or super(arguments) must appear in the first line

of the subclass constructor; this is the only way to explicitly invoke a

superclass constructor.

12

Constructor Chaining

When constructing an object of a subclass, the subclass constructor first

invokes its superclass constructor before performing its own tasks. If the

superclass is derived from another class, the superclass constructor invokes its

parent-class constructor before performing its own tasks. This process

continues until the last constructor along the inheritance hierarchy is called.

This is constructor chaining.

13

Calling Superclass Methods

The keyword super can also be used to reference a method

other than the constructor in the superclass. The syntax is like

this:

super.method(parameters);

public void printCircle() {

System.out.println("The circle is created " +

super. getDateCreated() + " and the radius is " +

radius);

}

14

Overriding Methods

•A subclass inherits methods from a superclass. Sometimes it is

necessary for the subclass to modify the implementation of a

method defined in the superclass. This is referred to as method

overriding.

•The toString() method is defined in the GeometricObject class and

modified in the Circle class.

•Both methods can be used in the Circle class. To invoke the toString

method defined in the GeometricObject class from the Circle class,

use super.toString()

•Can a subclass of Circle access the toString method defined in

the GeometricObject class using syntax such as

super.super.toString()? No. This is a syntax error.

15

Several points are worth noting:

An instance method can be overridden only if it is accessible.

Thus

■ a private method cannot be overridden, because it is not

accessible outside its own class. If a method defined in a

subclass is private in its superclass, the two methods are

completely unrelated.

■ Like an instance method, a static method can be inherited.

However, a static method cannot be overridden. If a static

method defined in the superclass is redefined in a subclass,

the method defined in the superclass is hidden. The hidden

static methods can be invoked using the syntax

SuperClassName.staticMethodName.

16

Overriding vs. Overloading

• You have learned about overloading methods in

§5.8. Overloading means to define multiple methods

with the same name but different signatures.

• Overriding means to provide a new implementation

for a method in the subclass. The method is already

defined in the superclass.

• To override a method, the method must be defined in

the subclass using the same signature and the same

return type.

17

In (a) below, the method p(double i) in class A overrides the same

method defined in class B. In (b), however, the class B has two

overloaded methods p(double i) and p(int i). The method p(double i) is

inherited from B.

18

Note that
• Overridden methods are in different classes

related by inheritance;

• overloaded methods can be either in the same
class or different classes related by inheritance.

• Overridden methods have the same signature
and return type;

• overloaded methods have the same name but a
different parameter list.

19

The Object Class and Its toString()

Method

20

Every class in Java is descended from the

java.lang.Object class. If no inheritance is specified

when a class is defined, the superclass of the class is

Object by default. For example,

the following two class definitions are the same:

Usually you should override the toString method so

that it returns a descriptive string representation of

the object. For example, the toString method in the

Object class was overridden in the GeometricObject

class.

public String toString() {

return "created on " + dateCreated + "\ncolor: " +

color + " and filled: " + filled;

}

21

Polymorphism

22

First let us define two useful terms: subtype and

supertype. A class defines a type. A type defined by a

subclass is called a subtype and a type defined by its

superclass is called a supertype.

So, you can say that Circle is a subtype of

GeometricObject and GeometricObject is a supertype

for Circle.

• The inheritance relationship enables a subclass to

inherit features from its superclass with additional

new features.

• A subclass is a specialization of its superclass; every

instance of a subclass is also an instance of its

superclass, but not vice versa. For example, every

circle is a geometric object, but not every geometric

object is a circle.

• Therefore, you can always pass an instance of a

subclass to a parameter of its superclass type.

Consider the code

23

LISTING 11.5 PolymorphismDemo.java

1 public class PolymorphismDemo {
2 /** Main method */
3 public static void main(String[] args) {
4 // Display circle and rectangle properties
5 displayObject(new Circle4(1, "red", false));
6 displayObject(new Rectangle1(1, 1, "black", true));
7 }
8
9 /** Display geometric object properties */
10 public static void displayObject(GeometricObject1 object) {
11 System.out.println("Created on " + object.getDateCreated()
+
12 ". Color is " + object.getColor());
13 }
14 }

24

Method displayObject (line 10) takes a parameter of

the GeometricObject type. You can invoke

displayObject by passing any instance of

GeometricObject (e.g., new Circle4(1, "red", false)

and new Rectangle1(1, 1, "black", false) in lines 5–6).

An object of a subclass can be used wherever its

superclass object is used. This is commonly known as

polymorphism (from a Greek word meaning “many

forms”). In simple terms, polymorphism means

that a variable of a supertype can refer to a subtype

object.

25

Dynamic Binding

26

A method may be defined in a superclass and

overridden in its subclass. For example, the

toString() method is defined in the Object class and

overridden in GeometricObject. Consider the

following code:

Object o = new GeometricObject();

System.out.println(o.toString());

Which toString() method is invoked by o?

To answer this question, we first introduce two terms:

declared type and actual type. A variable must be

declared a type. The type of a variable is called its

declared type. Here o’s declared type is Object. A

variable of a reference type can hold a null value or a

reference to an instance of the declared type.

27

The actual type of the variable is the actual class for the

object referenced by the variable. Here o’s actual type is

GeometricObject, since o references to an object

created using new GeometricObject(). Which toString()

method is invoked by o is determined by o’s actual type.

This is known as dynamic binding.

28

Dynamic binding works as follows: Suppose an object

o is an instance of classes C1, C2, Cn-1, and Cn, where

C1 is a subclass of C2, C2 is a subclass of C3, and Cn-1 is

a subclass of Cn. That is, Cn is the most general class,

and C1 is the most specific class. In Java, Cn is the

Object class. If o invokes a method p, the JVM

searches the implementation for the method p in C1,

C2, Cn-1, and Cn, in this order, until it is found. Once

an implementation is found, the search stops and the

first-found implementation is invoked.

29

1 public class DynamicBindingDemo {
2 public static void main(String[] args) {
3 m(new GraduateStudent());
4 m(new Student());
5 m(new Person());
6 m(new Object());
7 }
8
9 public static void m(Object x) {
10 System.out.println(x.toString());
11 }
12 }
13
14 class GraduateStudent extends Student {
15 }
16
17 class Student extends Person {
18 public String toString() {
19 return "Student";
20 }
21 }
22
23 class Person extends Object {
24 public String toString() {
25 return "Person";
26 }
27 }

Student
Student
Person
java.lang.Object@130c19b

30

The statement Object o = new Student(), known as

implicit casting, is legal because an instance of Student

is automatically an instance of Object. Suppose you

want to assign the object reference o to a variable of the

Student type using the following statement:

Student b = o;

In this case a compile error would occur. Why does the

statement Object o = new Student() work but Student b

= o doesn’t?

Casting Objects and the instanceof
operator

31

The reason is that a Student object is always an

instance of Object, but an Object is not necessarily

an instance of Student. Even though you can see

that o is really a Student object, the compiler is not

clever enough to know it. To tell the compiler that o

is a Student object, use an explicit casting.

Student b = (Student)o; // Explicit casting

32

To ensure that the object is an instance of another

object before attempting a casting. This can be

accomplished by using the instanceof operator.

Consider the following code:

... // Some lines of code

Object myObject = new Circle();

/** Perform casting if myObject is an instance of
Circle */
if (myObject instanceof Circle) {
System.out.println("The circle diameter is " +
((Circle)myObject).getDiameter());
...
}

33

You may be wondering why casting is necessary. Variable

myObject is declared Object. The declared type decides which method

to match at compile time. Using myObject.getDiameter() would

cause a compile error, because the Object class does not have the

getDiameter method. The compiler cannot find a match for

myObject.getDiameter(). It is necessary to cast myObject into

the Circle type to tell the compiler that myObject is also an instance

of Circle.

Why not define myObject as a Circle type in the first place? To

enable generic programming, it is a good practice to define a variable

with a supertype, which can accept a value of any subtype.

34

The protected Data and Methods

35

• So far you have used the private and public keywords to specify

whether data fields and methods can be accessed from the

outside of the class.

• Private members can be accessed only from the inside of the

class, and public members can be accessed from any other

classes.

• Often it is desirable to allow subclasses to access data fields or

methods defined in the superclass, but not allow nonsubclasses

to access these data fields and methods. To do so, you can use

the protected keyword. A protected data field or method in a

superclass can be accessed in its subclasses.

The modifiers private, protected, and public are

known as visibility or accessibility modifiers

because they specify how class and class members

are accessed. The visibility of

these modifiers increases in this order:

36

37

Preventing Extending and Overriding

38

• You may occasionally want to prevent classes from being

extended. In such cases, use the final modifier to indicate that

a class is final and cannot be a parent class.

• The Math class is a final class. The String, StringBuilder, and

StringBuffer classes are also final classes. For example, the

following class is final and cannot be extended:

public final class C {

// Data fields, constructors, and methods omitted

}

You also can define a method to be final; a final

method cannot be overridden by its subclasses.

For example, the following method is final and cannot

be overridden:

public class Test {

// Data fields, constructors, and methods omitted

public final void m() {

// Do something

}

}

39

40

Important Links:

http://www3.ntu.edu.sg/home/ehchua/programming/jav
a/J3b_OOPInheritancePolymorphism.html

http://education-
portal.com/academy/topic/introduction-to-
programming.html

http://examples.javacodegeeks.com/

http://www.javaworld.com/

http://www.javatpoint.com/

http://www3.ntu.edu.sg/home/ehchua/programming/java/J3b_OOPInheritancePolymorphism.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J3b_OOPInheritancePolymorphism.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J3b_OOPInheritancePolymorphism.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J3b_OOPInheritancePolymorphism.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J3b_OOPInheritancePolymorphism.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J3b_OOPInheritancePolymorphism.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J3b_OOPInheritancePolymorphism.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J3b_OOPInheritancePolymorphism.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/J3b_OOPInheritancePolymorphism.html
http://education-portal.com/academy/topic/introduction-to-programming.html
http://education-portal.com/academy/topic/introduction-to-programming.html
http://education-portal.com/academy/topic/introduction-to-programming.html
http://education-portal.com/academy/topic/introduction-to-programming.html
http://education-portal.com/academy/topic/introduction-to-programming.html
http://education-portal.com/academy/topic/introduction-to-programming.html
http://education-portal.com/academy/topic/introduction-to-programming.html
http://examples.javacodegeeks.com/
http://www.javaworld.com/
http://www.javatpoint.com/

41

Assignment (5) Programming Exercises:

11.1

11.2

42
Quiz

11.1 What is the printout of running the class C in (a)? What problem

arises in compiling the program in (b)?

A’s no-arg constructor is invoked
The default constructor of B
attempts to invoke the default of
constructor of A, but class A's
default constructor is not defined.

43

Quiz

11.2 True or false?

1. A subclass is a subset of a superclass.

2. When invoking a constructor from a subclass, its

superclass’s no-arg constructor is always invoked.

3. You can override a private method defined in a

superclass.

4. You can override a static method defined in a

superclass.

44

Quiz

All false.

(1) A subclass is an extension of a superclass and normally

contains more details information than its superclass.

(2) If a subclass’s constructor explicitly invoke a

superclass’s constructor, the superclass’s no-arg

constructor is not invoked.

(3) You can only override accessible instance methods.

(4) You can only override accessible instance methods.

45

Quiz
11.11 Show the output of following program:

1 public class Test {

2 public static void main(String[] args) {

3 A a = new A(3);

4 }

5 }

6

7 class A extends B {

8 public A(int t) {

9 System.out.println("A's constructor is invoked");

10 }

11 }

12

13 class B {

14 public B() {

15 System.out.println("B's constructor is invoked");

16 }

17 }

Is the no-arg constructor of Object invoked when new A(3) is
invoked?

46

Quiz

 B’s constructor is invoked

 A’s constructor is invoked

The default constructor of Object is invoked, when new

A(3) is invoked. The Object’s constructor is invoked

before any statements in B’s constructor are executed.

47 Quiz
11.3 Identify the problems in the
following classes:

1 public class Circle {
2 private double radius;
3
4 public Circle(double radius) {
5 radius = radius;
6 }
7
8 public double getRadius() {
9 return radius;
10 }
11
12 public double getArea() {
13 return radius * radius * Math.PI;
14 }

15 }

16

17 class B extends Circle {

18 private double length;

19

20 B(double radius, double

length) {

21 Circle(radius);

22 length = length;

23 }

24

25 /** Override getArea() */

26 public double getArea() {

27 return getArea() * length;

28 }

29 }

48

Quiz

49

Quiz

The following lines are erroneous:
{

Line 5: radius = radius; // Must use this.radius = radius

}

class B extends Circle (missing extends)

{

Line 21: Circle(radius); // Must use super(radius)
Line 22: length = length; // Must use this.length =

length

}

public double getArea()

{

Line 27: return getArea()*length; // super.getArea()

}

Thanks for Attention

