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Abstract: 
 
This work presents a hardware implementation of a Genetic Algorithm. Hardware 
Genetic Operators are implemented in FPGA. Fitness evaluation, which is problem 
dependent, is left for implementation as S/W module or problem specific hardware 
design. This allowed a re-configurable general-purpose design, which is customized by 
application specific population generation and fitness evaluation solution. A 16 site 
Random Number Generator module is implemented in VHDL based on Hybrid Cellular 
Automata (CA). Selection, Crossover, and Mutation Operators are implemented as 
systolic architecture. For preserving locality & modularity of systolic arrays we separate 
selection array implementation from the crossover and mutation operators. The 
chromosomes are fed serially to allow variable length chromosomes. The Genetic 
Engine is targeted a Xilinx Vertex XC2V2000-5 device using Xilinx Foundation 
Environment. The simulation is carried out using ModelSim.   
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1. Introduction: 
 
A genetic algorithm (GA) is a stochastic search and optimization technique based on the 
mechanics of natural selection. A population of candidate solutions (Chromosomes) is 
held and interacts over a number of iterations (Generations) to produce better solutions. 
In canonical GA, the chromosomes are encoded as binary strings. Driving the process is 
the fitness of the chromosomes, which relates the quality of a candidate in quantitative 
terms. The fitness function encapsulates the problem- specific knowledge. The fitness is 
used in a stochastic selection of pairs of chromosomes which are ‘reproduced’ to 
generate new solution strings. Reproduction involves Crossover, which generates new 
children by combining chromosomes in a process which swaps portions of each others 
genes. The other reproduction operator is called Mutation. Mutation randomly changes 
genes and is used to introduce new information into the search. Both crossover and 
mutation make heavy use of random numbers. In case of H/W GA, this random number 
needs to be generated by the device itself. There are aspects of GA approach attract 
H/W implementation. The operation of selection and reproduction are basically problem 
independent and involve basic string manipulation tasks. These can be achieved by 
logical circuits. The fitness evaluation task, which is problem dependent, however 
proves a major difficulty in H/W implementation. Another difficulty comes from that 
designs can only be used for the individual problem their fitness function represents. 
Therefore, in this work the genetic operators are implemented in H/W, while the fitness 
evaluation module is treated separately. It can be implemented as a S/W model. This 
allows a mixed hardware/software approach to address both generality and acceleration. 
In some cases the fitness evaluation can be simplified implemented in H/W.  
The Genetic H/W Engine itself is composed of three modules as shown in Fig.1. FPGA 
is used for implementing these modules. Design and simulation results of these modules 
are presented. A random number generation module based on Cellular Automata CA is 
also designed and implemented to provide the other three modules with H/W generated 
random numbers. Simple fitness evaluation and population generation module is 
presented. 
The RNG supplies pseudo-random bit strings to the selection module for scaling down 
the sum of fitness. The pseudo-random bit strings to the crossover and mutation 
modules to choose crossover and mutation points 
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Figure (1): Genetic Algorithm

 
2. Random Number Generator : 
 
The 1st module to be considered is a Random Number Generator (RNG). Hybrid 
Cellular Automata (CA) [1] is used due to its maximal length binary sequence 
production from each site. CA based generators compare favorably with the other types 
such as Linear Feedback Shift Registers (LFSR) and mixed congruential RNG in terms 
of quality of randomness and silicon area used. They use less silicon area in their 
implementation [1,2]. Four sites and 16 sites are implemented. Good results are 
obtained by forcing the neighbor to the last site to one. The boundary condition is not 
cyclic. 1st cell seeding, which can be all zeros, are applied only once. The output of the 
cell is passed out to provide the seed for next cell. Ref [1] applied random number tests 
of Kunth  for CA RNG . It proved the good Randomness of this type of RNG.  
Fig.2 shows the VHDL code of 4 site RNG using Xilinx Foundation 5.2i. 
 

 
 

Figure (2): VHDL code for 4 sites Hybrid CA RNG 
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A 16 site RNG is implemented in VHDL. Fig.3 shows the simulation results of this 
RNG. 
 

 
Figure (3): Simulation of 16 sites Hybrid CA RNG 

 
Table (1): Implementation results for 16 bit RNG based on CA A=0  Z=1
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Our implementation of CA RNG set the bit 17 (the neighbor to the last site 16) to 1 so 
zeros can be used as initial value without producing zeros in the next cycles. Now the 
RNG will produce numbers in range from 0 to 216- 1 if it is given a number initially in 
that range. Also every number in that range will be visited every 216. If the initial value 
is zero or small value the next few numbers produced will not be ascending numbers. 
Table.1 demonstrates the implementation results of the implemented CA RNG with an 
initial value (0000000000000000) binary. It is noticed here that for a small seed, the 
generated numbers are freely randomized. 
 
The synthesis summary of the 16 sites RNG is given in the following: 
Device utilization summary: 
--------------------------- 
Selected Device : v50bg256-6  
 Number of Slices:                      18  out of    768     2%   
 Number of Slice Flip Flops:            32  out of   1536     2%   
 Number of 4 input LUTs:                17  out of   1536     1%   
 Number of bonded IOBs:                 36  out of    184    19%   
 Number of GCLKs:                        1  out of      4    25%   
 
TIMING REPORT 
Note: these timing numbers are only a synthesis estimate 
For accurate timing information, refer to the trace report. 
Generated after PLACE-and-ROUTE. 
 
 
Clock Information: 
-----------------------------------+------------------------+-------+ 
Clock Signal                       | Clock buffer(FF name)  | Load  | 
-----------------------------------+------------------------+-------+ 
c                                  | BUFGP                  | 32    | 
-----------------------------------+------------------------+-------+ 
Timing Summary: 
Speed Grade: -6 
   Minimum period: 3.672ns (Maximum Frequency: 272.331MHz) 
   Minimum input arrival time before clock: 7.207ns 
   Maximum output required time after clock: 7.292ns 
   Maximum combinational path delay: No path found 
This summary shows how small the amount of resources occupied by the RNG module. 
However to host the whole genetic operators, a larger chip will be used.     
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The chromosomes emerge from the fitness evaluation and populations generation 
module enter the left of the select array [3,4]. A random number in the range of 0 to 1 
(ball value) is input into the top of each column to be compared with the fitness values 
of the chromosomes. As the ball value descents, the fitness values are subtracted and the 
result is tested for zero crossing. Such an occurrence indicates selection. In the 
implemented design of selection module, the output selection is overwritten with the 
actual chromosome and passed to the next cell. Test is performed to ensure the selection 
is done only once for each column of selection array. Fig. 4 shows the simulation results 
of selection cell. Pseudo code of Selection cell can be written as follows: 
 
If (ball_in < fit_in ) 

 { 
  ball_out = Max; 
  select_out = Chromo.gene_in; 
  } 
else  { 

ball_out = ball_in – fit_in; 
select_out = select_in; 
} 

  Chromo.gene_out = Chromo.gene_in; 
fit_out = fit_in; 

 

 
Figure (4): Simulation of VHDL implementation of a Selection cell 

3. Selection: 



Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 - 
 

7 

 
The implementation of 4 cell selection array is shown in fig. 5 while fig. 6 shows how 
the stagger is preserved between consecutive chromosomes. 
 

 
Figure (5): Implemented Schematic of Selection Array 

 



Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 - 
 

8 

 
Figure (6): Simulation of VHDL implementation of Selection Array 

  
3. Crossover: 
 
Pseudo code of Uniform Crossover can be written as follows: 
If rand = 1  { 
  Chromo[I].gene[j] = Chromo[I+1].gene[j]; 
  Chromo[I+1].gene[j] = Chromo[I].gene[j]; 
  } 
else  { 

Chromo[I].gene[j] = Chromo[I].gene[j]; 
  Chromo[I+1].gene[j] = Chromo[I+1].gene[j]; 
  } 
Fig7 shows the VHDL implementation of 16 bit uniform crossover cell while the output 
is available in parallel. 
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Figure (7): VHDL implementation of 16 bit uniform crossover cell 

 
The simulation of 16 bit uniform crossover cell is shown in fig 8. 
 

 
Figure (8): Simulation of 16 bit uniform crossover cell. 

 
Since the process is to pump the chromosomes sequentially, a serialized version is 
implemented. Fig.9 shows the simulation of 16 bit uniform crossover cell while the 
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input and output are available in series. 
 

 
Figure (9): Simulation of serial 16 bit uniform crossover cell 

 
Fig. 10 shows the schematic of crossover module which is composed from two cells. 
 
 

 
Figure (10): Schematic of Crossover Module 
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4. Mutation: 
 
Once the random number has been generated, it is passed out to the mutation logic of 
Fig.11. The random number is compared with mutation probability Pmut using 16-bit 
magnitude comparator. The output of the comparator goes high if the random number is 
less than Pmut and this, together with the incoming gene, are fed into an XOR gate. If the 
comparator output is high the gene is inverted. Each mutation cell is written in VHDL. 
The simulation of mutation module is shown in Fig.12. 
 

 
 

Figure (11): Schematic of Mutation Module 
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Figure (12): Simulation of Mutation Module. 

 
 
5. Control and Storage module  : 
 
I. Memory Configuration 
In our design, a memory module is used to store the  chromosome  which  consists of 6 
genes, every gene is 8bits in addition to its fitness value. 
The memory consists of 4 blocks. Each block is accessed using a counter which is used 
as a pointer to read from and write to a specified location   
 
II. Chromosome delivery control 
This section generates master clock which is fed to each RNG module to keep the 
random number unchanged for the whole selection period (chromosome  six gene ). The 
control unit is responsible also for storing initial values 
 
6. Implementation Results: 
 
Since the Fitness evaluation module is a problem dependent, the total speed of the 
algorithm can not be determined. However, the speed measure for H/W Genetic 
Operators shows a significant improvement. Our implementation achieved 13.4 ns as 
maximum time consumed to traverse a single gene (processing). So, the implemented 
engine can process 74.6 million genes per second using Xilinx XC2V2000 with speed 
grade 5. Comparing with reference [5], 100% speed improvement is achieved.  
The Device utilization summary for implementing both: Selection array and Crossover –
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mutation arrays is reported.  
- Device utilization summary: 
Selected Device : 2v2000ff896-5  
 Number of Slices:                     180  out of  10752     1%   
 Number of Slice Flip Flops:           218  out of  21504     1%   
 Number of 4 input LUTs:               257  out of  21504     1%   
 Number of bonded IOBs:                236  out of    624    37%   
 Number of GCLKs:                        2  out of     16    12%   
 
-Device utilization summary 
 Input File Name                    : selection .prj 
 Number of Slices:                     644  out of  10752     5%   
 Number of Slice Flip Flops:           637  out of  21504     2%   
 Number of 4 input LUTs:              1028  out of  21504     4%   
 Number of bonded IOBs:                167  out of    624    26%   
 Number of TBUFs:                       32  out of   5376     0%   
 Number of BRAMs:                        3  out of     56     5%   
 Number of GCLKs:                        1  out of     16     6%   
 
The routs consume 37% and 26% for Selection array and crossover –mutation arrays 
respectively. This means that they can be hosted in a single partially configured chip. 
Since placement and routing in FPGA from VHDL designs are not preserving locality, 
there is a major problem for implementation of systolic arrays in FPGA. For preserving 
locality and modularity of systolic arrays, we separate selection array implementation 
from the crossover and mutation operators. Partial configuration of recent FPGA allows 
this separation. Xillinx constraint editor allows for a careful placement and routing of 
each module.       
 
7. Conclusions: 
 
In this work a Hardware Implementation of a Genetic Algorithm is considered. 
Hardware Genetic Operators are implemented in FPGA. Fitness evaluation, which is 
problem dependent, is implemented as separate module. This allowed a re-configurable 
general-purpose design, which is customized by application specific population 
generation and fitness evaluation module. A 16 site Random Number Generator module 
based on hybrid Cellular Automata (CA) is implemented in VHDL. Selection, 
Crossover, and Mutation Operators are implemented and their simulation results are 
presented. The Genetic Engine is implemented in a Xilinx Vertex Xc2v2000-5 device 
using Xilinx Foundation Environment. H/W implementation of fitness evaluation 
module  will be studied in future work. 
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