Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -1

6™ International Conference
on Electrical Engineering
ICEENG 2008

Military Technical College
Kobry El-Kobbah,
Cairo, Egypt

Implementation of Hardware Genetic Algorithm
By
Imbaby I. Mahmoud * May Salama** Asmaa Abdel Tawab*
Abstract:

This work presents a hardware implementation of a Genetic Algorithm. Hardware
Genetic Operators are implemented in FPGA. Fitness evaluation, which is problem
dependent, is left for implementation as S/W module or problem specific hardware
design. This allowed a re-configurable general-purpose design, which is customized by
application specific population generation and fitness evaluation solution. A 16 site
Random Number Generator module is implemented in VHDL based on Hybrid Cellular
Automata (CA). Selection, Crossover, and Mutation Operators are implemented as
systolic architecture. For preserving locality & modularity of systolic arrays we separate
selection array implementation from the crossover and mutation operators. The
chromosomes are fed serially to allow variable length chromosomes. The Genetic
Engine is targeted a Xilinx Vertex XC2V2000-5 device using Xilinx Foundation
Environment. The simulation is carried out using ModelSim.

Keywords:

Genetic algorithms, FPGA and VLSI design

* Atomic Energy Auority, Cairo
** Shobra Faculty of Engineering, Benha Univ. Cairo

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -2 |

1. Introduction:

A genetic algorithm (GA) is a stochastic search and optimization technique based on the
mechanics of natural selection. A population of candidate solutions (Chromosomes) is
held and interacts over a number of iterations (Generations) to produce better solutions.
In canonical GA, the chromosomes are encoded as binary strings. Driving the process is
the fitness of the chromosomes, which relates the quality of a candidate in quantitative
terms. The fitness function encapsulates the problem- specific knowledge. The fitness is
used in a stochastic selection of pairs of chromosomes which are ‘reproduced’ to
generate new solution strings. Reproduction involves Crossover, which generates new
children by combining chromosomes in a process which swaps portions of each others
genes. The other reproduction operator is called Mutation. Mutation randomly changes
genes and is used to introduce new information into the search. Both crossover and
mutation make heavy use of random numbers. In case of H/W GA, this random number
needs to be generated by the device itself. There are aspects of GA approach attract
H/W implementation. The operation of selection and reproduction are basically problem
independent and involve basic string manipulation tasks. These can be achieved by
logical circuits. The fitness evaluation task, which is problem dependent, however
proves a major difficulty in H/W implementation. Another difficulty comes from that
designs can only be used for the individual problem their fitness function represents.
Therefore, in this work the genetic operators are implemented in H/W, while the fitness
evaluation module is treated separately. It can be implemented as a S/W model. This
allows a mixed hardware/software approach to address both generality and acceleration.
In some cases the fitness evaluation can be simplified implemented in H/W.

The Genetic H/W Engine itself is composed of three modules as shown in Fig.1. FPGA
is used for implementing these modules. Design and simulation results of these modules
are presented. A random number generation module based on Cellular Automata CA is
also designed and implemented to provide the other three modules with H/W generated
random numbers. Simple fitness evaluation and population generation module is
presented.

The RNG supplies pseudo-random bit strings to the selection module for scaling down
the sum of fitness. The pseudo-random bit strings to the crossover and mutation
modules to choose crossover and mutation points

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008

Random Number

Selection

| EE014 -3

Crossowver

Genrarator

\—. Mutation

Figure (1): Genetic Algorithm

2. Random Number Generator :

Fitness evaluaton
S of problem
specific FLAAT

desigen

The 1% module to be considered is a Random Number Generator (RNG). Hybrid
Cellular Automata (CA) [1] is used due to its maximal length binary sequence
production from each site. CA based generators compare favorably with the other types
such as Linear Feedback Shift Registers (LFSR) and mixed congruential RNG in terms
of quality of randomness and silicon area used. They use less silicon area in their
implementation [1,2]. Four sites and 16 sites are implemented. Good results are
obtained by forcing the neighbor to the last site to one. The boundary condition is not
cyclic. 1* cell seeding, which can be all zeros, are applied only once. The output of the
cell is passed out to provide the seed for next cell. Ref [1] applied random number tests
of Kunth for CA RNG . It proved the good Randomness of this type of RNG.

Fig.2 shows the VHDL code of 4 site RNG using Xilinx Foundation 5.2i.

Xilinx - Project Navigator - C:\Xilimx\ISEexamplesiimb\imb.npl - [ring2]

|4/ Fle Edit view Project Source Process Window Help

O da =5 =l = P |2 E R 7 N Bz B

] x|
Sources in Project: |
B imb
=1 £3 xcv50-6bg256 - XST VHOL
[ring?2 fring2.vhd)

L -1 4%

EBX]

>

T W wodute View] A Snapenot Wiew | L) Lisrary View]

=] !
Processes for Current Source -

[View Syrthesis Report
Bl View RTL Schematic
S Analyze Hisrarchy
e Check Syntax

—-¥3% Implement Design =

ETe}
=1

=2
23
za
=25

<| - | S

T W rcess view

end ring2;

architecture Behavioral cof ring2 is

begin

end Behavioral:

~

ing2 Bl nng2sr | [A sng2vhi (R

x|
|

Launching Application for process “Launch ModelSim Simulator™.

<
[“1*1F I Console £ FndmFies 7

For Help, press F1

Ln 138 Col 21

Figure (2): VHDL code for 4 sites Hybrid CA RNG

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008

A 16 site RNG is implemented in VHDL. Fig.3 shows the simulation results of this

| EE014 -4

Figure (3): Simulation of 16 sites Hybrid CA RNG

Table (1): Implementation results for 16 bit RNG based on CA A=0 Z=1

RNG.

5

B

L)

L4

=

E

3

-

E

Lo

L

=
Seed Q= 0 1 265 E&535
1 32768 3278 33065 3650
2 16354 16358 17131 10923
3 a192 5202 G738 0072
4 51440 B14E7 B4795 35500
5 47104 47152 44702 23208
5 1024 1112 10121 4797
7 35328 35476 B5119 44585
a 2329 23266 43418 B405
9 4430 4531 12147 E1761
10 435840 44538 58236 47591
11 10528 9213 38254 tataFil
12 E1168 2637 24541 34162
13 325824 45859 20643 18559
14 16452 725 2484 15554
15 g352 43711 40722 53003
16 B18E7 2478 31663 E23E0

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -5 |

Our implementation of CA RNG set the bit 17 (the neighbor to the last site 16) to 1 so
zeros can be used as initial value without producing zeros in the next cycles. Now the
RNG will produce numbers in range from 0 to 2'°- 1 if it is given a number initially in
that range. Also every number in that range will be visited every 2. If the initial value
is zero or small value the next few numbers produced will not be ascending numbers.
Table.1 demonstrates the implementation results of the implemented CA RNG with an
initial value (0000000000000000) binary. It is noticed here that for a small seed, the
generated numbers are freely randomized.

The synthesis summary of the 16 sites RNG is given in the following:
Device utilization summary:

Selected Device : v50bg256-6

Number of Slices: 18 outof 768 2%
Number of Slice Flip Flops: 32 outof 1536 2%
Number of 4 input LUTSs: 17 outof 1536 1%
Number of bonded I10Bs: 36 outof 184 19%
Number of GCLKSs: 1 outof 4 25%

TIMING REPORT

Note: these timing numbers are only a synthesis estimate
For accurate timing information, refer to the trace report.
Generated after PLACE-and-ROUTE.

Clock Information:

S —— S u—— +
Clock Signal | Clock buffer(FF name) | Load |
S — N R +
c | BUFGP |32 |
S — R SR +

Timing Summary:
Speed Grade: -6
Minimum period: 3.672ns (Maximum Frequency: 272.331MHz)
Minimum input arrival time before clock: 7.207ns
Maximum output required time after clock: 7.292ns
Maximum combinational path delay: No path found
This summary shows how small the amount of resources occupied by the RNG module.
However to host the whole genetic operators, a larger chip will be used.

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -6 |

3. Selection:

The chromosomes emerge from the fitness evaluation and populations generation
module enter the left of the select array [3,4]. A random number in the range of 0 to 1
(ball value) is input into the top of each column to be compared with the fitness values
of the chromosomes. As the ball value descents, the fitness values are subtracted and the
result is tested for zero crossing. Such an occurrence indicates selection. In the
implemented design of selection module, the output selection is overwritten with the
actual chromosome and passed to the next cell. Test is performed to ensure the selection
is done only once for each column of selection array. Fig. 4 shows the simulation results
of selection cell. Pseudo code of Selection cell can be written as follows:

If (ball_in <fit_in)
{
ball_out = Max;
select_out = Chromo.gene_in;
}

else {
ball_out = ball_in - fit_in;
select_out = select_in;
}
Chromo.gene_out = Chromo.gene_in;
fit_out = fit_in;

vt EEK

I RN AN

||| T T 1 R ERHAN
ICTAIT] ERRRAN

R (T T N T
dpipgEeEp g g Sy iy ARy Sy Ay Ay

19037 ps to 100892 ps

Figure (4): Simulation of VHDL implementation of a Selection cell

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -7 |

The implementation of 4 cell selection array is shown in fig. 5 while fig. 6 shows how
the stagger is preserved between consecutive chromosomes.

—bll s
F e
'y

Figure (5): Implemented Schematic of Selection Array

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -8

[0 L O 5
{uju nininjulnin}
L O O v e W iy A O Y 2 S D A)
M 111111 i
{ b iEEREEENEEN IEEEE] {0000 o1 101 10071 00 i
[EEEEEEENENRRENEE] (00007 07 10017 1000 i
[EEiRERENENR NN R I RERRIY
aa } @00 _f80 Y96 yaC JCZ JCO JE= fo0
00 HE %9% c c
00 ENERET C JCZ2 JCD JE3 J00
(1] B0 o4 Z A5 a4 JEZ T CERR X
[iENENEEEN RERENE] TO0T 111107 00000 00101 0100100111
iENN) NN NRNEA] O T AT 1T T
010007 0711¢ 10000 SO0 1011107 000001 b
RNl KRR ERREE] 10000071 00111110 i
fEERNNREREE REEN] T oooooi 1001107 00 I
[DOTOT 00T 0111701 EiENERBRE NN
T T T OT000T 100111011
EEEEEEEEERRENEE] CI000T 110717 0007 1
[EEiEEENNENRRNIEN I T T T AT
00111 1000000001 1
OO0 1 1 QO000000T 1
500 1ns 1500

Figure (6): Simulation of VHDL implementation of Selection Array

3. Crossover:

Pseudo code of Uniform Crossover can be written as follows:
Ifrand=1 {
Chromo[l].gene[j] = Chromo[l+1].gene[j];
Chromo[l+1].gene[j] = Chromo[l].genel[j];
}
else {
Chromo[l].gene[j] = Chromo[l].gene[j];
Chromo[l+1].gene[j] = Chromo[l+1].genel[j];
}
Fig7 shows the VHDL implementation of 16 bit uniform crossover cell while the output
is available in parallel.

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -9

Xilinx - Project Navigator - C:\Xilinx\ISEexamples\imb\imb.npl - [cross16.vhd] ['_7||E”§|
4% File Edit view Project Source Process Window Help > | - &l x
DEEH@ = E | S E | mE 78 | o oo m =%
=] =
= = 24 architecture Behavioral of crosslé is ~
Sources in Project: | B
A imb e kegin
= £ xcw50-6bg256 - XST VHDL =7 X
[cross (cross.vhd) == process {C, CLR) begin
[¥] cross16 {cross16.vhd) =223 if (CLR = "1') then
=[] mutator {mutator.sch) 30 chro_pl <= "00000000000000007;
[#] ring2 {ring2.vhd} 21 chro o2 <= "00000000000000007;
=[] mutator16 {mutator]6.sch) S C* event and C = "1") then
[¥] ring16 {ing16.vhd) E= =.*1%) then

e, = loop
26 rn i in 0 ©e 15 leop
i=
zz72] =7 if (rand{i) = '1") then
Moduie Snapsho Libe
i]u | Dy torary] a2 chro eol{i) <= chro i2{i}:
= 28 chro o2{i) <= chro il{i}:
= 40 else
Processes for Cumrent Source: e 41 chro ol{i} <= chro il{i):
] Assign Package Pins 42 chro_o2({i} <= chro_iz(i}:
] Creste Area Constraints | 42 end 1f:
= Edit Constraints (Text) He
o G BRI I[| [z ens 1o0m =
B @ View Syrthesis Repart :‘j . end gesie“Fdon
Bl View RTL Schematic i e”;‘ 1£s
3@ Analyze Hierarchy T e
=2 end process:
e Check Syrtax o
SR "_Tp'er"_‘?_”‘ DS'Q” o 51 cnd Behavioral: o,
Y rAnslate
| BN | v 1= 2
B Procecs View [A] cross16.vhd
x| Sesesesooososoeeesesosoeososesosesosesees s ss s st et e s esseses s
[| Console n F
Process "Synthesize” is up to date. Ln 24 Col 35 .

Figure (7): VHDL implementation of 16 bit uniform crossover cell

The simulation of 16 bit uniform crossover cell is shown in fig 8.

. wave - default
ile Edit Cursor Foom

QA
11
1100771000071 7111
0110077117 00000
110110700071111
0007 01 10001 0000
| |

W,
iy

TULTET TS

Figure (8): Simulation of 16 bit uniform crossover cell.

Since the process is to pump the chromosomes sequentially, a serialized version is
implemented. Fig.9 shows the simulation of 16 bit uniform crossover cell while the

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -10 |

input and output are available in series.

r

m-defml! g

Figure (9): Simulation of serial 16 bit uniform crossover cell

Fig. 10 shows the schematic of crossover module which is composed from two cells.

ingS
— . ting
E——p IBLIFS
b T

i E

E_-@

=

-]
=]

dno_2| " M)
no_2| ")
a)

Jona_1'|r A

Crossgen
Crossgen

SuooZ|FA) ana|r

Figure (10): Schematic of Crossover Module

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -11 |

4. Mutation:

Once the random number has been generated, it is passed out to the mutation logic of
Fig.11. The random number is compared with mutation probability P, using 16-bit
magnitude comparator. The output of the comparator goes high if the random number is
less than Py, and this, together with the incoming gene, are fed into an XOR gate. If the
comparator output is high the gene is inverted. Each mutation cell is written in VHDL.
The simulation of mutation module is shown in Fig.12.

[F%= Xilinx ECS - [mutator16]
% Fle Edit View Add Tools Window Help -8 x

Dedd S W B @ G BEdo®AM

w | ke pter D e R [A | v

.o . BBUFE

@ .

— FDCE
e

o L '
T mutatorts
Ready [1463,1278]

Figure (11): Schematic of Mutation Module

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -12 |

== wrave - defaul
File Edi EaUEGE Zoom Format Window

eSS rPHEB L

001100] 1001100
I 1)

R

Figure (12): Simulation of Mutation Module.

5. Control and Storage module :

I. Memory Configuration

In our design, a memory module is used to store the chromosome which consists of 6
genes, every gene is 8bits in addition to its fitness value.

The memory consists of 4 blocks. Each block is accessed using a counter which is used
as a pointer to read from and write to a specified location

II. Chromosome delivery control

This section generates master clock which is fed to each RNG module to keep the
random number unchanged for the whole selection period (chromosome six gene). The
control unit is responsible also for storing initial values

6. Implementation Results:

Since the Fitness evaluation module is a problem dependent, the total speed of the
algorithm can not be determined. However, the speed measure for H/W Genetic
Operators shows a significant improvement. Our implementation achieved 13.4 ns as
maximum time consumed to traverse a single gene (processing). So, the implemented
engine can process 74.6 million genes per second using Xilinx XC2V2000 with speed
grade 5. Comparing with reference [5], 100% speed improvement is achieved.

The Device utilization summary for implementing both: Selection array and Crossover —

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -13 |

mutation arrays is reported.
- Device utilization summary:
Selected Device : 2v2000ff896-5

Number of Slices: 180 out of 10752 1%
Number of Slice Flip Flops: 218 outof 21504 1%
Number of 4 input LUTSs: 257 outof 21504 1%
Number of bonded 10Bs: 236 outof 624 37%
Number of GCLKSs: 2 outof 16 12%
-Device utilization summary

Input File Name : selection .prj

Number of Slices: 644 out of 10752 5%
Number of Slice Flip Flops: 637 outof 21504 2%
Number of 4 input LUTSs: 1028 out of 21504 4%
Number of bonded 10Bs: 167 outof 624 26%
Number of TBUFs: 32 outof 5376 0%
Number of BRAMS: 3 outof 56 5%
Number of GCLKS: 1 outof 16 6%

The routs consume 37% and 26% for Selection array and crossover —mutation arrays
respectively. This means that they can be hosted in a single partially configured chip.
Since placement and routing in FPGA from VHDL designs are not preserving locality,
there is a major problem for implementation of systolic arrays in FPGA. For preserving
locality and modularity of systolic arrays, we separate selection array implementation
from the crossover and mutation operators. Partial configuration of recent FPGA allows
this separation. Xillinx constraint editor allows for a careful placement and routing of
each module.

7. Conclusions:

In this work a Hardware Implementation of a Genetic Algorithm is considered.
Hardware Genetic Operators are implemented in FPGA. Fitness evaluation, which is
problem dependent, is implemented as separate module. This allowed a re-configurable
general-purpose design, which is customized by application specific population
generation and fitness evaluation module. A 16 site Random Number Generator module
based on hybrid Cellular Automata (CA) is implemented in VHDL. Selection,
Crossover, and Mutation Operators are implemented and their simulation results are
presented. The Genetic Engine is implemented in a Xilinx Vertex Xc2v2000-5 device
using Xilinx Foundation Environment. H/W implementation of fitness evaluation
module will be studied in future work.

Proceedings of the 6™ ICEENG Conference, 27-29 May, 2008 | EE014 -14 |

References:

[1]

[2]
[3]
[4]

[5]

P. Hortensius, R McLeod, and H. Card, “Parallel Random Number Generation for
VLSI System Using Cellular Automata”, IEEE Trans. On Computers, Vol.38,
No.10, Oct. 1989.

I. Bland and G. Megson, “ Systolic Random Number Generation for Genetic
Algorithms”, Electronic Letters, Vol.32(12):1069, 1996.

G. Megson and 1. Bland, “ Synthesis of a Systolic Array Genetic Algorithms”
Proc. 12" Int. Parallel Processing Symp., 1998

Hemmat Emam, “Genetic Algorithm Implementation using Hardware Tools”, M.
Sc. Thesis, Ain Shams University, 2001.

I. M. Bland and G.M. Megson* The Synthesis Array Genetic Algorithm, An
Example of Systolic Arrays as Reconfigurable Design Methodology” .IEEE
Computer Society .In K.J. Pocek and J. M. Arnold, editor proc. of the IEEE
Symposium on FPGAs for Custom Computing Machines ,pp.260-261, Los
Alamitos, CA, USA, August 1998

