
Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

1

Military Technical College

Kobry El-Kobbah,
Cairo, Egypt

6th International Conference

on Electrical Engineering
ICEENG 2008

Implementation of Hardware Genetic Algorithm

By

Imbaby I. Mahmoud * May Salama** Asmaa Abdel Tawab*

Abstract:

This work presents a hardware implementation of a Genetic Algorithm. Hardware
Genetic Operators are implemented in FPGA. Fitness evaluation, which is problem
dependent, is left for implementation as S/W module or problem specific hardware
design. This allowed a re-configurable general-purpose design, which is customized by
application specific population generation and fitness evaluation solution. A 16 site
Random Number Generator module is implemented in VHDL based on Hybrid Cellular
Automata (CA). Selection, Crossover, and Mutation Operators are implemented as
systolic architecture. For preserving locality & modularity of systolic arrays we separate
selection array implementation from the crossover and mutation operators. The
chromosomes are fed serially to allow variable length chromosomes. The Genetic
Engine is targeted a Xilinx Vertex XC2V2000-5 device using Xilinx Foundation
Environment. The simulation is carried out using ModelSim.

Keywords:

Genetic algorithms, FPGA and VLSI design

ـــ
* Atomic Energy Auority, Cairo

** Shobra Faculty of Engineering, Benha Univ. Cairo

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

2

1. Introduction:

A genetic algorithm (GA) is a stochastic search and optimization technique based on the
mechanics of natural selection. A population of candidate solutions (Chromosomes) is
held and interacts over a number of iterations (Generations) to produce better solutions.
In canonical GA, the chromosomes are encoded as binary strings. Driving the process is
the fitness of the chromosomes, which relates the quality of a candidate in quantitative
terms. The fitness function encapsulates the problem- specific knowledge. The fitness is
used in a stochastic selection of pairs of chromosomes which are ‘reproduced’ to
generate new solution strings. Reproduction involves Crossover, which generates new
children by combining chromosomes in a process which swaps portions of each others
genes. The other reproduction operator is called Mutation. Mutation randomly changes
genes and is used to introduce new information into the search. Both crossover and
mutation make heavy use of random numbers. In case of H/W GA, this random number
needs to be generated by the device itself. There are aspects of GA approach attract
H/W implementation. The operation of selection and reproduction are basically problem
independent and involve basic string manipulation tasks. These can be achieved by
logical circuits. The fitness evaluation task, which is problem dependent, however
proves a major difficulty in H/W implementation. Another difficulty comes from that
designs can only be used for the individual problem their fitness function represents.
Therefore, in this work the genetic operators are implemented in H/W, while the fitness
evaluation module is treated separately. It can be implemented as a S/W model. This
allows a mixed hardware/software approach to address both generality and acceleration.
In some cases the fitness evaluation can be simplified implemented in H/W.
The Genetic H/W Engine itself is composed of three modules as shown in Fig.1. FPGA
is used for implementing these modules. Design and simulation results of these modules
are presented. A random number generation module based on Cellular Automata CA is
also designed and implemented to provide the other three modules with H/W generated
random numbers. Simple fitness evaluation and population generation module is
presented.
The RNG supplies pseudo-random bit strings to the selection module for scaling down
the sum of fitness. The pseudo-random bit strings to the crossover and mutation
modules to choose crossover and mutation points

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

3

Figure (1): Genetic Algorithm

2. Random Number Generator :

The 1st module to be considered is a Random Number Generator (RNG). Hybrid
Cellular Automata (CA) [1] is used due to its maximal length binary sequence
production from each site. CA based generators compare favorably with the other types
such as Linear Feedback Shift Registers (LFSR) and mixed congruential RNG in terms
of quality of randomness and silicon area used. They use less silicon area in their
implementation [1,2]. Four sites and 16 sites are implemented. Good results are
obtained by forcing the neighbor to the last site to one. The boundary condition is not
cyclic. 1st cell seeding, which can be all zeros, are applied only once. The output of the
cell is passed out to provide the seed for next cell. Ref [1] applied random number tests
of Kunth for CA RNG . It proved the good Randomness of this type of RNG.
Fig.2 shows the VHDL code of 4 site RNG using Xilinx Foundation 5.2i.

Figure (2): VHDL code for 4 sites Hybrid CA RNG

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

4

A 16 site RNG is implemented in VHDL. Fig.3 shows the simulation results of this
RNG.

Figure (3): Simulation of 16 sites Hybrid CA RNG

Table (1): Implementation results for 16 bit RNG based on CA A=0 Z=1

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

5

Our implementation of CA RNG set the bit 17 (the neighbor to the last site 16) to 1 so
zeros can be used as initial value without producing zeros in the next cycles. Now the
RNG will produce numbers in range from 0 to 216- 1 if it is given a number initially in
that range. Also every number in that range will be visited every 216. If the initial value
is zero or small value the next few numbers produced will not be ascending numbers.
Table.1 demonstrates the implementation results of the implemented CA RNG with an
initial value (0000000000000000) binary. It is noticed here that for a small seed, the
generated numbers are freely randomized.

The synthesis summary of the 16 sites RNG is given in the following:
Device utilization summary:

Selected Device : v50bg256-6
 Number of Slices: 18 out of 768 2%
 Number of Slice Flip Flops: 32 out of 1536 2%
 Number of 4 input LUTs: 17 out of 1536 1%
 Number of bonded IOBs: 36 out of 184 19%
 Number of GCLKs: 1 out of 4 25%

TIMING REPORT
Note: these timing numbers are only a synthesis estimate
For accurate timing information, refer to the trace report.
Generated after PLACE-and-ROUTE.

Clock Information:
-----------------------------------+------------------------+-------+
Clock Signal | Clock buffer(FF name) | Load |
-----------------------------------+------------------------+-------+
c | BUFGP | 32 |
-----------------------------------+------------------------+-------+
Timing Summary:
Speed Grade: -6
 Minimum period: 3.672ns (Maximum Frequency: 272.331MHz)
 Minimum input arrival time before clock: 7.207ns
 Maximum output required time after clock: 7.292ns
 Maximum combinational path delay: No path found
This summary shows how small the amount of resources occupied by the RNG module.
However to host the whole genetic operators, a larger chip will be used.

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

6

The chromosomes emerge from the fitness evaluation and populations generation
module enter the left of the select array [3,4]. A random number in the range of 0 to 1
(ball value) is input into the top of each column to be compared with the fitness values
of the chromosomes. As the ball value descents, the fitness values are subtracted and the
result is tested for zero crossing. Such an occurrence indicates selection. In the
implemented design of selection module, the output selection is overwritten with the
actual chromosome and passed to the next cell. Test is performed to ensure the selection
is done only once for each column of selection array. Fig. 4 shows the simulation results
of selection cell. Pseudo code of Selection cell can be written as follows:

If (ball_in < fit_in)

 {
 ball_out = Max;
 select_out = Chromo.gene_in;
 }
else {

ball_out = ball_in – fit_in;
select_out = select_in;
}

 Chromo.gene_out = Chromo.gene_in;
fit_out = fit_in;

Figure (4): Simulation of VHDL implementation of a Selection cell

3. Selection:

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

7

The implementation of 4 cell selection array is shown in fig. 5 while fig. 6 shows how
the stagger is preserved between consecutive chromosomes.

Figure (5): Implemented Schematic of Selection Array

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

8

Figure (6): Simulation of VHDL implementation of Selection Array

3. Crossover:

Pseudo code of Uniform Crossover can be written as follows:
If rand = 1 {
 Chromo[I].gene[j] = Chromo[I+1].gene[j];
 Chromo[I+1].gene[j] = Chromo[I].gene[j];
 }
else {

Chromo[I].gene[j] = Chromo[I].gene[j];
 Chromo[I+1].gene[j] = Chromo[I+1].gene[j];
 }
Fig7 shows the VHDL implementation of 16 bit uniform crossover cell while the output
is available in parallel.

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

9

Figure (7): VHDL implementation of 16 bit uniform crossover cell

The simulation of 16 bit uniform crossover cell is shown in fig 8.

Figure (8): Simulation of 16 bit uniform crossover cell.

Since the process is to pump the chromosomes sequentially, a serialized version is
implemented. Fig.9 shows the simulation of 16 bit uniform crossover cell while the

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

10

input and output are available in series.

Figure (9): Simulation of serial 16 bit uniform crossover cell

Fig. 10 shows the schematic of crossover module which is composed from two cells.

Figure (10): Schematic of Crossover Module

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

11

4. Mutation:

Once the random number has been generated, it is passed out to the mutation logic of
Fig.11. The random number is compared with mutation probability Pmut using 16-bit
magnitude comparator. The output of the comparator goes high if the random number is
less than Pmut and this, together with the incoming gene, are fed into an XOR gate. If the
comparator output is high the gene is inverted. Each mutation cell is written in VHDL.
The simulation of mutation module is shown in Fig.12.

Figure (11): Schematic of Mutation Module

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

12

Figure (12): Simulation of Mutation Module.

5. Control and Storage module :

I. Memory Configuration
In our design, a memory module is used to store the chromosome which consists of 6
genes, every gene is 8bits in addition to its fitness value.
The memory consists of 4 blocks. Each block is accessed using a counter which is used
as a pointer to read from and write to a specified location

II. Chromosome delivery control
This section generates master clock which is fed to each RNG module to keep the
random number unchanged for the whole selection period (chromosome six gene). The
control unit is responsible also for storing initial values

6. Implementation Results:

Since the Fitness evaluation module is a problem dependent, the total speed of the
algorithm can not be determined. However, the speed measure for H/W Genetic
Operators shows a significant improvement. Our implementation achieved 13.4 ns as
maximum time consumed to traverse a single gene (processing). So, the implemented
engine can process 74.6 million genes per second using Xilinx XC2V2000 with speed
grade 5. Comparing with reference [5], 100% speed improvement is achieved.
The Device utilization summary for implementing both: Selection array and Crossover –

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

13

mutation arrays is reported.
- Device utilization summary:
Selected Device : 2v2000ff896-5
 Number of Slices: 180 out of 10752 1%
 Number of Slice Flip Flops: 218 out of 21504 1%
 Number of 4 input LUTs: 257 out of 21504 1%
 Number of bonded IOBs: 236 out of 624 37%
 Number of GCLKs: 2 out of 16 12%

-Device utilization summary
 Input File Name : selection .prj
 Number of Slices: 644 out of 10752 5%
 Number of Slice Flip Flops: 637 out of 21504 2%
 Number of 4 input LUTs: 1028 out of 21504 4%
 Number of bonded IOBs: 167 out of 624 26%
 Number of TBUFs: 32 out of 5376 0%
 Number of BRAMs: 3 out of 56 5%
 Number of GCLKs: 1 out of 16 6%

The routs consume 37% and 26% for Selection array and crossover –mutation arrays
respectively. This means that they can be hosted in a single partially configured chip.
Since placement and routing in FPGA from VHDL designs are not preserving locality,
there is a major problem for implementation of systolic arrays in FPGA. For preserving
locality and modularity of systolic arrays, we separate selection array implementation
from the crossover and mutation operators. Partial configuration of recent FPGA allows
this separation. Xillinx constraint editor allows for a careful placement and routing of
each module.

7. Conclusions:

In this work a Hardware Implementation of a Genetic Algorithm is considered.
Hardware Genetic Operators are implemented in FPGA. Fitness evaluation, which is
problem dependent, is implemented as separate module. This allowed a re-configurable
general-purpose design, which is customized by application specific population
generation and fitness evaluation module. A 16 site Random Number Generator module
based on hybrid Cellular Automata (CA) is implemented in VHDL. Selection,
Crossover, and Mutation Operators are implemented and their simulation results are
presented. The Genetic Engine is implemented in a Xilinx Vertex Xc2v2000-5 device
using Xilinx Foundation Environment. H/W implementation of fitness evaluation
module will be studied in future work.

Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE014 -

14

References:

[1] P. Hortensius, R McLeod, and H. Card, “Parallel Random Number Generation for

VLSI System Using Cellular Automata”, IEEE Trans. On Computers, Vol.38,
No.10, Oct. 1989.

[2] I. Bland and G. Megson, “ Systolic Random Number Generation for Genetic
Algorithms”, Electronic Letters, Vol.32(12):1069, 1996.

[3] G. Megson and I. Bland, “ Synthesis of a Systolic Array Genetic Algorithms”
Proc. 12th Int. Parallel Processing Symp., 1998

[4] Hemmat Emam, “Genetic Algorithm Implementation using Hardware Tools”, M.
Sc. Thesis, Ain Shams University, 2001.

[5] I. M. Bland and G.M. Megson“ The Synthesis Array Genetic Algorithm, An
Example of Systolic Arrays as Reconfigurable Design Methodology” .IEEE
Computer Society .In K.J. Pocek and J. M. Arnold, editor proc. of the IEEE
Symposium on FPGAs for Custom Computing Machines ,pp.260-261, Los
Alamitos, CA, USA, August 1998

