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ABSTRACT

In this paper, we employ the exp(−φ(ξ))-expansion method to find the exact traveling wave solutions
involving parameters of nonlinear evolution equations. When these parameters are taken to be
special values, the solitary wave solutions are derived from the exact traveling wave solutions. It
is shown that the proposed method provides a more powerful mathematical tool for constructing
exact traveling wave solutions for many other nonlinear evolution equations.

Keywords: The exp(−φ(ξ))-expansion method; nonlinear evolution equations; traveling wave
solutions; solitary wave solutions; kink-anti kink shaped .

1 Introduction

Many models in mathematics and physics are described by nonlinear differential equations. Nowadays,
research in physics devotes much attention to nonlinear partial differential evolution model equations,
appearing in various fields of science, especially fluid mechanics, solid-state physics, plasma physics,
and nonlinear optics. Large varieties of physical, chemical, and biological phenomena are governed
by nonlinear partial differential equations. One of the most exciting advances of nonlinear science
and theoretical physics has been the development of methods to look for exact solutions of nonlinear
partial differential equations. Exact solutions to nonlinear partial differential equations play an
important role in nonlinear science, especially in nonlinear physical science since they can provide
much physical information and more insight into the physical aspects of the problem and thus lead
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to further applications. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction
and convection are very important in nonlinear wave equations. In recent years, quite a few methods
for obtaining explicit traveling and solitary wave solutions of nonlinear evolution equations have
been proposed. Such methods are tanh - sech method [1]-[3], extended tanh - method [4]-[6],
sine - cosine method [7]-[9], homogeneous balance method [10, 11],F-expansion method [12]-[14],

exp-function method [15, 16], trigonometric function series method [17], (G
′

G
)− expansion method

[18]-[21], Jacobi elliptic function method [22]-[25], The exp(−φ(ξ))-expansion method[26]-[28] and
so on.

The objective of this article is to apply The exp(−φ(ξ))-expansion method for finding the exact
traveling wave solution of Nonlinear dynamics of microtubules- A new model and The Kundu-
Eckhaus equation which play an important role in biology and mathematical physics.

The rest of this paper is organized as follows: In Section 2, we give the description of The
exp(−φ(ξ))-expansion method In Section 3, we use this method to find the exact solutions of
the nonlinear evolution equations pointed out above. In Section 5, conclusions are given.

2 Description of Method

Consider the following nonlinear evolution equation

F (u, ut, ux, utt, uxx, ....) = 0, (2.1)

where F is a polynomial in u(x, t) and its partial derivatives in which the highest order derivatives
and nonlinear terms are involved. In the following,we give the main steps of this method

Step 1. We use the wave transformation

u(x, t) = u(ξ), ξ = x− ct, (2.2)

where c is a positive constant, to reduce Eq.(2.1)to the following ODE:

P (u, u′, u′′, u′′′, .....) = 0, (2.3)

where P is a polynomial in u(ξ) and its total derivatives,while ′ = d
dξ

′
.

Step 2. Suppose that the solution of ODE (2.3) can be expressed by a polynomial in exp(−φ(ξ))
as follows

u(ξ) =

n∑
i=0

am (exp (−φ (ξ)))m , (2.4)

Since am (0 ≤ m ≤ n) are constants to be determined, such that am ̸= 0.. the positive integer m
can be determined by considering the homogenous balance between the highest order derivatives
and nonlinear terms appearing in Eq.(2.3). Moreover precisely, we define the degree of u (ξ) as
D (u (ξ)) = m, which gives rise to degree of other expression as follows:

D

(
dqu

dξq

)
= n+ q, D

(
up

(
dqu

dξq

)s)
= np+ s (n+ q) .

Therefore, we can find the value of m in Eq.(2.3), where φ = φ(ξ) satisfies the ODE in the form
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φ′(ξ) = exp (−φ (ξ)) + µexp (φ (ξ)) + λ, (2.5)

the solutions of ODE (2.3) are
when λ2 − 4µ > 0, µ ̸= 0,

φ(ξ) = ln

−
√

λ2 − 4µ tanh

(√
λ2−4µ

2
(ξ + C1)

)
− λ

2µ

 , (2.6)

and

φ(ξ) = ln

−
√

λ2 − 4µ coth

(√
λ2−4µ

2
(ξ + C1)

)
− λ

2µ

 , (2.7)

when λ2 − 4µ > 0, µ = 0,

φ(ξ) = −ln

(
λ

exp (λ (ξ + C1))− 1

)
, (2.8)

when λ2 − 4µ = 0, µ ̸= 0, λ ̸= 0,

φ(ξ) = ln

(
−2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)

)
, (2.9)

when λ2 − 4µ = 0, µ = 0, λ = 0,

φ(ξ) = ln (ξ + C1) , (2.10)

when λ2 − 4µ < 0,

φ(ξ) = ln


√

4µ− λ2 tan

(√
4µ−λ2

2
(ξ + C1)

)
− λ

2µ

 , (2.11)

and

φ(ξ) = ln


√

4µ− λ2 cot

(√
4µ−λ2

2
(ξ + C1)

)
− λ

2µ

 , (2.12)

where am, . . . . . . , λ, µ are constants to be determined later,

Step 3. After we determine the index parameter m, we substitute Eq.(2.4) along Eq.(2.5) into
Eq.(2.3) and collecting all the terms of the same power exp (−mφ(ξ)), m = 0, 1, 2, 3, .... and
equating them to zero, we obtain a system of algebraic equations, which can be solved by Maple or
Mathematica to get the values of ai.

Step 4. substituting these values and the solutions of Eq.(2.5) into Eq.(2.3) we obtain the exact
solutions of Eq.(2.3).

It is to be noted here that the construction of the exp (−φ (ξ)) is similar to the construction of the(
G′

G

)
-expansion. For better understanding of the duality of both methods we cite [29], [30] and

[31].
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3 Application

Here, we will apply the exp(−φ(ξ))-expansion method described in sec.2 to find the exact traveling
wave solutions and then the solitary wave solutions for the following nonlinear systems of evolution
equations.

3.1 Example 1: Nonlinear Dynamics of Microtubules- A NewModel
[32]

The starting point of the present modelling is the fact that the bonds between dimers within the same
PF are significantly stronger than the soft bonds between neighbouring (parallel protofilaments)PFs
. This implies that the longitudinal displacements of pertaining dimers in a single PF should cause
the longitudinal wave propagating along PF. The averaged impact of soft bonds with collateral PFs
is taken to be described by the nonlinear double-well potential.

The present model assumes only one degree of freedom per dimer. This is zn, a longitudinal
displacement of a dimer at a position n.

The Hamiltonian for one PF is represented as

H =
∑
n

[
m

2
ż2n +

k

2
(zn+1 − z2)

2 + V (zn)

]
, (3.1)

where dot means the first derivative with respect to time, is a mass of the dimer and is a harmonic
constant describing the nearestneighbour interaction between the dimers belonging to the same PF.
The first term represents a kinetic energy of the dimer, the second one, which we call harmonic
energy, is a potential energy of the chemical interaction between the neighbouring dimers belonging
to the same PF and the last term is the combined potential

V (zn) = −Czn − 1

2
Az2n +

1

4
Bz4n, C = qE, (3.2)

where E is the magnitude of the intrinsic electric field and q represents the excess charge within
the dipole. It is assumed that q > 0 and E > 0. One can recognize an energy of the dimer in
the intrinsic electric field E at the site n and the well known double-well potential with positive
parameters A and B that should be estimated The Hamiltonian given by before equations is rather
common in physics. The first attempt to use it in nonlinear dynamics of (microtubules) MTs was
done almost 20 years ago. To be more precise, the Hamiltonian in [33] would be obtained from
before equations if zn were replaced by un Hence, we refer to these two models as u-model and
z-model. However, the meanings of un in [33] and in the present paper are completely different.
The u-model assumes an angular degree of freedom, while the coordinate un is a projection of the
top of the dimer on the direction of PF. On the other hand, the coordinate zn is a real displacement
of the dimer along x axis. This will be further elaborated later.

Using generalized coordinates zn and mżn and assuming a continuum approximation zn (t) →
z (x, t), we straightforwardly obtain the following nonlinear dynamical equation of motion

m
∂2z

∂t2
− kl2

∂2z

∂x2
− qE −Az +Bz3 + γ

∂z

∂t
= 0 (3.3)

The last term represents a viscosity force with γ being a viscosity coefficient. It is well known that,
for a given wave equation, a traveling wave z (ξ) is a solution which depends upon x and t only
through a unified variable x = κx− ωt, where κ and ω are constants. This allows us to obtain the
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final dimensionless ordinary differential equation

αu′′ − ρu′ − u+ u3 − σ = 0, (3.4)

where

u′ =
du

dξ
, α =

mω2 − kl2κ2

A
, z =

√
A

B
u , ρ =

γω

A
andσ =

qE

A
√

A
B

.

Balancing between u′′ and u3, we get (n+ 2 = 2n) ⇒ (n = 1).So that, we assume the solution of
Eq.(3.4) by using (2.4), we get:

u = a0 + a1exp (−φ (ξ)) . (3.5)

Substituting Eq.(3.4) and its derivative into Eq.(3.4) and collecting the coefficients of
exp (−Nφ (ξ)), where N = 0, 1, 2, . . . and set it to zero we obtain the system

2αa1 + a1
3 = 0, (3.6)

3αa1λ+ ρ a1 + 3 a0a1
2 = 0, (3.7)

α
(
2 a1µ+ a1λ

2)+ ρ a1λ− a1 + 3 a0
2a1 = 0, (3.8)

αa1λµ+ ρ a1µ− a0 + a0
3 − σ = 0. (3.9)

Solving above system by using maple 16, we get:

ρ =
1

2

√
12 a1

2µ− 3 a1
2λ2 + 12, α =

−1

2
a1

2,

σ =
1

9

(
4 a1

2µ+ 1− a1
2λ2)√12 a1

2µ− 3 a1
2λ2 + 12, a1 = a1

a0 =
1

2
a1λ− 1

6

√
12 a1

2µ− 3 a1
2λ2 + 12

Thus the solution is

u (ξ) =
1

2
a1λ− 1

6

√
12 a1

2µ− 3 a1
2λ2 + 12 + a1 exp (−φ (ξ)) . (3.10)

Let us now discuss the following cases:

When λ2 − 4µ > 0, µ ̸= 0,

u1 =
1

2
a1λ− 1

6

√
12 a1

2µ− 3 a1
2λ2 + 12 + a1

2µ

−
√

λ2 − 4µ tanh

(√
λ2−4µ

2
(ξ + C1)

)
− λ

, (3.11)
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and

u2 =
1

2
a1λ− 1

6

√
12 a1

2µ− 3 a1
2λ2 + 12 + a1

2µ

−
√

λ2 − 4µ coth

(√
λ2−4µ

2
(ξ + C1)

)
− λ

. (3.12)

When λ2 − 4µ > 0, µ = 0,

u3 =
1

2
a1λ− 1

6

√
12 a1

2µ− 3 a1
2λ2 + 12 + a1

λ

exp (λ (ξ + C1))− 1
. (3.13)

When λ2 − 4µ = 0, µ ̸= 0, λ ̸= 0,

u4 =
1

2
a1λ− 1

6

√
12 a1

2µ− 3 a1
2λ2 + 12− a1

2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)
. (3.14)

When λ2 − 4µ = 0, µ = 0, λ = 0,

u5 =
1

2
a1λ− 1

6

√
12 a1

2µ− 3 a1
2λ2 + 12 + a1

1

ξ + C1
. (3.15)

When λ2 − 4µ < 0,

u6 =
1

2
a1λ− 1

6

√
12 a1

2µ− 3 a1
2λ2 + 12 + a1

2µ√
4µ− λ2 tan

(√
4µ−λ2

2
(ξ + C1)

)
− λ

. (3.16)

and

u7 =
1

2
a1λ− 1

6

√
12 a1

2µ− 3 a1
2λ2 + 12 + a1

2µ√
4µ− λ2 cot

(√
4µ−λ2

2
(ξ + C1)

)
− λ

. (3.17)

3.2 Example 2: The Kundu- Eckhaus Equation

Let us consider the Kundu- Eckhaus equation [34]

iQt +Qxx − 2σ |Q|2 Q+ δ2 |Q|4 Q+ 2iδ
(
|Q|2

)
x
Q = 0. (3.18)

We may choose the following traveling wave transformation:

Q (x, t) = ei(αx+βt)u (ξ) , ξ = ik (x− 2αt) ,

where k, α and β are constants to be determined later.

Substituting these into Eq.(3.18) we have

−
(
β + α2)u− k2u′′ − 2σu3 + δ2u5 − 4kδu2u′ = 0. (3.19)

balancing between u′′ and u5 ⇒ N + 2 = 5N ⇒ N = 1
2
.

using the transformation

u (ξ) = (v (ξ))
1
2 , (3.20)
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into (3.19) we get

− 4
(
β + α2) v2 + k2 (v′)2 − 2k2vv′′ − 8σv3 + 4δ2v4 − 8kδv2v′ = 0. (3.21)

balancing between vv′′ with v4 ⇒ N +N + 2 = 4N ⇒ N = 1.

So that we have the same formal solution of Eq.(3.4).

Substituting Eq.(3.5) and its derivative into Eq.(3.21) and collecting the coefficients of
exp (−Nφ (ξ)), where N = 0, 1, 2, . . . and set it to zero we obtain the system

− 3 k2a1
2 + 4 δ2a1

4 + 8 kδ a1
3 = 0, (3.22)

2 k2a1
2λ− 2 k2 (2 a0a1 + 3 a1

2λ
)
− 8σ a1

3 + 16 δ2a0a1
3 − 8 kδ

(
−2 a0a1

2 − a1
3λ

)
= 0, (3.23)

−4
(
β + α2

)
a1

2 + k2
(
2 a1

2µ+ a1
2λ2

)
− 2 k2

(
3 a0a1λ+ 2 a1

2µ+ a1
2λ2

)
−24σ a0a1

2 + 24 δ2a0
2a1

2 − 8 kδ
(
−a0

2a1 − 2 a0a1
2λ− a1

3µ
)
= 0,

(3.24)

−2
(
4β + 4α2

)
a0a1 + 2 k2a1

2µλ− 2 k2
(
2 a0a1µ+ a0a1λ

2 + a1
2µλ

)
− 24σ a0

2a1

+16 δ2a0
3a1 − 8 kδ

(
−a0

2a1λ− 2 a0a1
2µ

)
= 0,

(3.25)

− 4
(
β + α2) a0

2 + k2a1
2µ2 − 2 k2a0a1λµ− 8σ a0

3 + 4 δ2a0
4 + 8 kδ a0

2a1µ = 0. (3.26)

Solving above system by using maple 16, we get:

k = k, α = α, β = −α2 + k2µ− 1

4
k2λ2, δ =

k
(
−2±

√
2
)

2a1
,

σ =
−k2

2a1

(
−3±

√
7
)(

±
√

λ2 − 4µ
)
, a1 = a1,

a0 =
a1

2

(
λ±

√
λ2 − 4µ

)
.

Thus the solution is

u (ξ) =
a1

2

(
λ±

√
λ2 − 4µ

)
+ a1 exp (−φ (ξ)) . (3.27)

Let us now discuss the following cases:

When λ2 − 4µ > 0, µ ̸= 0,

v1 =
a1

2

(
λ±

√
λ2 − 4µ

)
+ a1

2µ

−
√

λ2 − 4µ tanh

(√
λ2−4µ

2
(ξ + C1)

)
− λ

. (3.28)

So that

u1 = (v1)
( 1
2 ) . (3.29)

201



Zahran et al.; 4(4): 195-207, 2015

and

v2 =
a1

2

(
λ±

√
λ2 − 4µ

)
+ a1

2µ

−
√

λ2 − 4µ coth

(√
λ2−4µ

2
(ξ + C1)

)
− λ

. (3.30)

So that

u2 = (v2)
( 1
2 ) . (3.31)

When λ2 − 4µ > 0, µ = 0,

v3 =
a1

2

(
λ±

√
λ2 − 4µ

)
+ a1

λ

exp (λ (ξ + C1))− 1
. (3.32)

So that

u3 = (v3)
( 1
2 ) . (3.33)

When λ2 − 4µ = 0, µ ̸= 0, λ ̸= 0,

v4 =
a1

2

(
λ±

√
λ2 − 4µ

)
− a1

2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)
. (3.34)

So that

u4 = (v4)
( 1
2 ) . (3.35)

When λ2 − 4µ = 0, µ = 0, λ = 0,

v5 =
a1

2

(
λ±

√
λ2 − 4µ

)
+ a1

1

ξ + C1
. (3.36)

So that

u5 = (v5)
( 1
2 ) . (3.37)

When λ2 − 4µ < 0,

v6 =
a1

2

(
λ±

√
λ2 − 4µ

)
+ a1

2µ√
4µ− λ2 tan

(√
4µ−λ2

2
(ξ + C1)

)
− λ

. (3.38)

So that

u6 = (v6)
( 1
2 ) . (3.39)

and

v7 =
a1

2

(
λ±

√
λ2 − 4µ

)
+ a1

2µ√
4µ− λ2 cot

(√
4µ−λ2

2
(ξ + C1)

)
− λ

. (3.40)
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So that

u7 = (v7)
( 1
2 ) . (3.41)

• Remark: All the obtained results have been checked with Maple 16 by putting them back
into the original equation and found correct.

4 Figures

Physical explanations for some obtained solutions.
In this section, we describe all figure for the exact traveling wave solutions by selecting some special
values pf parameters in the exact solutions using the mathematical software Maple 18, which can
be shown below in the Figs.1, 2 and 3. From these explicit solutions, we see that:

Eqs.(3.11) and (3.28) are kink shaped soliton solutions, Eqs.(3.12) and (3.29) are singular kink
shaped soliton solutions while, Eqs.(3.13), (3.14), (3.15), (3.16), (3.17), (3.32), (3.34), (3.36), (3.38)
and (3.40) are singular soliton solutions. The graphical representation of these solutions are shown
in the following figures.

[Eq.(3.11)] [Eq.(3.12)]

[Eq.(3.13)] [Eq.(3.14)]

Figure 1: The Solitary wave solution of Eqs.(3.11), (3.12),(3.13) and (3.14)
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[Eq.(3.15)] [Eq.(3.16)]

[Eq.(3.17)]

Figure 2: The Solitary wave solution of Eqs.(3.15) and (3.16), (3.17)

[Eq.(3.33)] [Eq.(3.35)]

[Eq.(3.37)]

Figure 3: The Solitary wave solution of Eqs.(3.33), (3.35) and (3.37)
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5 Conclusion

The exp(−φ(ξ))-expansion method has been applied in this paper to find the exact traveling
wave solutions and then the solitary wave solutions of two nonlinear evolution equations, namely,
Nonlinear dynamics of microtubules - A new model and The Kundu- Eckhaus equation . Let us
compare between our results obtained in the present article with the well-known results obtained by
other authors using different methods as follows: Our results of Nonlinear dynamics of microtubules
- A new model and The Kundu- Eckhaus equation are new and different from those obtained in
[32], [33] and [34] and Figs. 1, 2 and 3, show the solitary traveling wave solution of Nonlinear
dynamics of microtubules - A new model and The Kundu- Eckhaus equation. We can conclude
that the exp(−φ(ξ))-expansion method is is a very powerful and efficient technique in finding exact
solutions for wide classes of nonlinear problems and can be applied to many other nonlinear evolution
equations in mathematical physics. Another possible merit is that the reliability of the method and
the reduction in the size of computational domain give this method a wider applicability.
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