Spectrophotometric Determination of Zinc in Pharmaceutical Samples with Some Salicylic Azo Compounds

Alaa S. Amin

Chemistry Department, Faculty of Science, Benha University Benha, Egypt
SPECTROPHOTOMETRIC DETERMINATION OF ZINC IN PHARMACEUTICAL SAMPLES WITH SOME SALICYLIC AZO COMPOUNDS

Key Words: The salicylic azo compounds, determination of zinc in pharmaceutical preparations.

Alaa S. Amin
Chemistry Department, Faculty of Science, Benha University
Benha, Egypt

ABSTRACT

A sensitive spectrophotometric method for zinc has been established by reacting zinc with three salicylic acid azo dyes 2-hydroxy (Ia), 2-carboxy (Ib) and 4-(2-arsonophenylazo) salicylic acid (Ic) in universal buffer solution of pH 8.4, 7.1 and 6.0 respectively. The molar absorptivities are 1.16, 1.39 and 1.36 X 10^4 l/mo1.cm at 515, 450 and 525 nm using reagents la, lb and Ic respectively. The formed complexes have the molar ratios of zinc to ligands 1 : 1 and 2 : 1. Beer's law is obeyed up to 7.19 ppm of zinc whereas the optimum concentration range as evaluated by Ringbom's method is 0.5-7.00 ppm. Sandell sensitivities of the method are evaluated. The method has been used to determine zinc in various pharmaceutical products.

INTRODUCTION

Zinc in trace amounts is essential for enzymatic reactions in animal nutrition. Its deficiency causes serious hazards, but overdosage results in poisonous effects. From this physiological point of view, the determination of zinc in pharmaceutical compounds is important. Numerous reagents have been used for the spectrophotometric determination of zinc.

The proposed method is relatively simple, rapid, and does not require extraction or temperature control. The method...
finds a wide range of applications in the analysis of commercial drug samples containing zinc.

EXPERIMENTAL

Reagents

Analytical grade chemicals were used throughout. The stock solution of zinc was prepared by dissolving 2.875 g of ZnSO₄·7H₂O in 100 ml of bidistilled water. The solutions of lower concentrations were prepared by suitable dilution.

Solutions of ligands (10⁻³ M) Ia, Ib and Ic were prepared by dissolving accurate weight of the solid, prepared and purified according to the previous method in ethanol.

\[X = \text{OH (Ia)} \quad \text{COOH (Ib)} \quad \text{and ASO (OH)₂ (Ic)} \]

Universal buffer solutions of pH values 2.04-12.56 were prepared as recommended previously.

Apparatus

An Orion Research Model 601 A/Digital Ionalyzer, pH-meter with a combined saturated calomel-glass electrode was used for pH measurements. A Perkin Elmer A 3B recording spectrophotometer, equipped with 10 mm matched silica cells was used. All experiments and measurements were carried out at ambient temperature.

Procedure

Transfer a suitable aliquot (upto 5 ml) of a sample solution containing 6.5-180 μg of zinc into a 25-ml measuring flask. Add with mixing 15 ml of buffer solution of suitable pH value for different ligands and 5 ml of ligand (Ia, Ib or Ic) solution. Shake the mixture well for 2 min, dilute to the mark with bidistilled water and measure the
absorbance at the recommended wavelength against a reagent blank similarly prepared.

RESULTS AND DISCUSSION

The ligands are characterized by an intense broad band in the wavelength range 270-420 nm [Fig. (1)]. On the addition of Zn ions these bands are shifted to longer wavelengths as a result of complex formation. The following is a study of the optimum condition for the spectrophotometric determination of zinc ions using the reagents under investigation Ia-c.

Effect of time and temperature

It was found that the full colour development of the complex is obtained after shaking for 2 min and remains constant for 15 hr., after which the solutions suffer a decrease in absorbance. It was also found that raising the temperature up to 60°C has no effect on the absorbance of Zn-complexes, whereas boiling destroys the colour of formed complexes.

Effect of pH

The Britton universal buffers 10 were the most suitable media for developing the orange-red complexes of Zn$^{2+}$. Measurements have shown that the pH at which the maximum complex formation occurs depend on the ligand used [Fig. (1)]. The absorption spectra of the ligands and their Zn-complexes at the recommended pH values indicate that the visible absorption bands of the free ligands are bathochromically shifted in the presence of Zn$^{2+}$ions to 515, 450 and 525 nm using reagents Ia, Ib and Ic respectively [Fig. (2)].

Effect of reagents concentration

The effect of reagents concentration has been studied by measuring the absorbance at 515, 450 and 525 nm using pH's 8.4, 7.09 and 6.01 for Ia, Ib and Ic respectively, of
Fig. (1): Effect of pH values on the absorbance of the complexes formed between \(2 \times 10^{-4}\text{M}\) (Ia, Ib and Ic) with 3.9 ppm of \(\text{Zn}^{2+}\) ions at pH = 7.0 and 6.01 at \(\lambda_{\text{max}} = 515, 450\) and 525 nm respectively.

solutions containing 3.9 ppm of \(\text{Zn}^{2+}\) ions. A \(2 \times 10^{-4}\text{M}\) of the reagent is adequate for the full development of orange-red colour. Addition of excess reagent has no adverse effect on the absorbance.

The stoichiometry of the complexes:

Investigation of the molecular ratio of \(\text{Zn}^{2+}\) complexes with Ia, Ib and Ic in the light of the spectrophotometric results obtained from the molar ratio and continuous variation methods revealed the formation of 1 : 1 and 2 : 1 (M : L) complexes. The stability constants of these complexes are calculated from the data of molar ratio and continuous variation methods applying the Harvey and
Fig. (2): Absorption spectra of ligands Ia, Ib and Ic and their complexes with Zn\(^{2+}\) ions.

Manning equation. The values of the log of \(K_f\) amount to 8.2, 8.5 and 7.4 for 1 : 1 complexes, whereas for 2 : 1 complexes the log of \(K_f\) are 5.9, 6.3 and 4.8 for Ia, Ib and Ic respectively.

Spectrophotometric characteristics:

In presence of excess ligands only 1 : 1 complex is formed and thus used for analytical purposes. Beer's law is obeyed for the range 0.26-6.54, 0.26-5.88 and 0.26-7.19 ppm for complexes of Ia, Ib and Ic respectively. The molar absorptivity of the 1 : 1 Zn complexes were 1.16, 1.39 and 1.36 \(\times 10^4\) liters/mol. cm, whereas the Sandell sensitivity were 8.6, 7.1 and 7.3 ng/cm\(^2\) at 315, 450 and 525 nm for Ia, Ib and Ic - Zn\(^{2+}\) complexes respectively.
Table (1): Effect of foreign ions on spectrophotometric determination of 3.9 ppm of zinc.

<table>
<thead>
<tr>
<th>Tolerance limit ppm</th>
<th>Foreign Ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Ba$^{2+}$, Sr$^{2+}$, Ca$^{2+}$, Bi$^{3+}$, Al$^{3+}$, Fe$^{3+}$, As$^{3+}$, Sb$^{3+}$, V$^{5+}$, Cr$^{3+}$, Mo$^{6+}$, U$^{6+}$, Cl$^{-}$, NO$_3^-$, SO$_4^{2-}$, PO$_4^{3-}$, tartrate, oxalate, borate, perchlorate, acetate.</td>
</tr>
<tr>
<td>300</td>
<td>Mn$^{2+}$, Mg$^{2+}$, Pb$^{2+}$, Pd$^{2+}$, Au$^{3+}$, Zr$^{4+}$, Th$^{4+}$, Pt$^{2+}$, benzoate, citrate, thiourea.</td>
</tr>
<tr>
<td>120</td>
<td>Ag$^+$, In$^{3+}$, La$^{3+}$, Sc$^{3+}$, Y$^{3+}$, Sm$^{3+}$, Gd$^{3+}$, Eu$^{3+}$, Nd$^{3+}$, Pr$^{3+}$, thiosulphate, carbonate, bicarbonate, urea.</td>
</tr>
<tr>
<td>40</td>
<td>Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$, Cd$^{2+}$, Hg$^{2+}$, Ascorbic acid.</td>
</tr>
</tbody>
</table>

Effect of foreign ions

Interference studies showed that a large number of cations and anions do not interfere (yielding less than 2% error in analytical recovery). The effect of foreign ions and their tolerance limits in the determination of zinc applying the described method are reported in Table (1).

Analysis of Pharmaceutical Samples

Stresstabs* 600 and Vitazinc (capsules):

A capsule was dissolved in aqua regia and the solution was evaporated to dryness, to the residue add 2 ml of concentrated sulphuric acid and the solution was evaporated to dryness, again the process was repeated, then dissolved in 100 ml of bidistilled water. An aliquot was taken for estimation of zinc per capsule by the recommended procedure [Table (2)].
Table (2): Analysis of pharmaceutical samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>Amount found in (per capsule)</th>
<th>Amount certified</th>
<th>Amount found by linands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stressabs (I)</td>
<td>Zinc sulphate (25.9 mg); Thiamine monohydrate (20 mg); Riboflavin (10 mg); Nicotinamide (10 mg); Pyridoxine Hydrochloride (25 mg); Calcium pantothenate (3 mg)</td>
<td>25.0 mg</td>
<td>25.0 mg</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td>Cupric oxide (175 mg); Zinc Gluconate (50000 IU); Vitamin A (100 mg); Vitamin E (25 mg); Vitamin B1 (3 mg); Vitamin B2 (1 mg); Vitamin B3 (1 mg)</td>
<td>21.9 mg</td>
<td>21.9 mg</td>
<td>21.0 mg</td>
</tr>
<tr>
<td></td>
<td>Vitamin (powder) (100 gm contains: Zinc sulphate 0.5 g; Copper sulphate 0.5 g; Zinc oxide 1.0 g; Camphor 1.0 g; Talc purified 66.5 g)</td>
<td>1.0 g</td>
<td>1.0 g</td>
<td>1.0 g</td>
</tr>
<tr>
<td></td>
<td>Hamoderme (powder) (100 gm contains: Zinc sulphate 30.0 g; Talc purified 66.5 g)</td>
<td>30.0 g</td>
<td>30.0 g</td>
<td>30.0 g</td>
</tr>
<tr>
<td></td>
<td>Prozoline zinc (solution) (100 ml contains: Zinc sulphate 250 mg; Naphazoline 50 mg; Maleate 50 mg; Cetrimide 2 mg)</td>
<td>10.1 mg</td>
<td>10.1 mg</td>
<td>10.1 mg</td>
</tr>
</tbody>
</table>
Hamoderme (talc powder):

The sample (25 mg) was treated with 3 ml of concentrated sulphuric acid, the solution was diluted, washed with water and filtered to remove the white residue. The filtrate and washings were completed to 50 ml and analysed for zinc as previously described. The calculated amount of zinc per one gram was recorded in [Table (2)].

Prozoline zinc (solution):

A 10-ml portion of the solution was evaporated to dryness and the soluble salts were dissolved in 2 ml of concentrated sulphuric acid. The solution was filtered to remove the insoluble residue and washed 3 times with bidistilled water. The filtrate was made up to 25 ml in a measuring flask. An aliquot was analysed for zinc per 10 ml as described and the results were recorded in Table (2).

REFERENCES

Received June 29, 1993
Accepted July 19, 1993