6. REFERENCES


 manganese interaction and its relation to boron levels in tomato 

Amberger, A. 1974. Micronutrients, dynamics in the soil and function in 

Anter, F. 1984. Chemical and biological approach towards the definition 
 of calcareous soils. III. Movement and distribution of Fe as related to 

Aoyama, M. and T. Nazawa. 1993. Microbial biomass nitrogen and 
 mineralization-immobilization processes of nitrogen in soils 

 iron from a calcareous soil by plant-borne chelators 

Balba, A. M. 1987. Soil reclamation and Improvement. Alex., Egypt. pp. 189- 
 218 (in Arabic)

 conditioners under consecutive irrigation and rainfall. Soil Sci. 

Bergmann, W. 1988. Ernahrungsstorungen bie kulturpflanzen Entste- 
 hung visuelle und analytische diagnose. pp. 243-269. Gustav Fischer 
 verlag. (C. F. Marschner. 1995).

 carbonate 
 in sea water. IV. Theory of calcite dissolution. Amer. J. Sci. 274: 108- 
 134.

Berry, A. and H. M. Reisemauer. 1967. The influence of molybdenum on 
 iron
nutrition of tomato. Plant and Soil.27:303-313.


movement from band placed ferrous-iron fertilizer in an iron-deficient


Hilal,H.M.;F.Anter and H.El-Damaty.1973..A chemical and biological approach towards the definition of P in soils as affected by percentage and particle size of calcium carbonate fixation. Plant and Soil.39:469-478


Lindsay, W. L. 1979. Chemical equilibrium in soil. Wiley Inter-science, New York.

Lindsay, W. L. 1984. Soil and plant relationships associated with iron deficiency with emphasis on nutrient interactions. J. Plant Nutri. 7: 489-500.


Plummer, L.N.; T.M.L. Wigley and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂-water systems at 5 C to 60 C and 0.0 to 1.0 atm CO₂. Amer. J. Sci. 278:179-216.


