Some types of developing bio artificial devices include: the Extracorporeal Liver Assisting Device (ELAD), HepatAssist, Modular Extracorporeal Liver Support (MELS), and the Amsterdam Medical Center Bioartificial Liver (AMC-BAL).

While the artificial liver dialysis devices include: Molecular Adsorbent Reticulating system (MARS), Single Pass Albumin Dialysis (SPAD), Prometheus system.

The real need for these complicated devices in patients with fulminant hepatic failure is to prevent or reverse the potentially fatal cerebral edema that occurs in this setting.

In fact, artificial livers Studies are still ongoing to determine the beneficial effects and its future role in the management of liver failure. Survival will be the ultimate outcome parameter for these studies of the artificial liver.

References


Bernau et al and O’Grady et al, Controlled trials of charcoal hemoperfusion and prognostic factors in fulminant hepatic failure. *Gastroenterology* 1988; 94.


Davem Tim (2001). Fulminant hepatic failure. UCSF GI division fellow’s Course.


Farmer DG, Anselmo DM, Ghobrial RM, et al: Liver transplantation for fulminant hepatic failure: Experience with more than 200 patients over a 17-year period. *Ann Surg* 2003;237:666-676. Long-term survival was nearly 70%, and the serum creatinine level was the single most important predictor of survival.


Gambro Lundia AB (October 2008).


IJ Beckingham.2001,ABC OF LIVER, PANCREAS AND GALL BLADDER ,CHAPTER 14 ,page :47


Keeffe EB. Selection of patients for liver transplantation. In Maddrey WC, Sorrel ME, Schiff ER. Transplantation of liver, Philadelphia. Lippincott Williams & Wilkins, 2001 pp,5-34 with permission.

Keeffe EB: Liver transplantation: current status and novel approaches to liver replacement. Gastroenterology 2001;120:749-762. This review summarizes the current status of liver transplantation, including organ allocation, and concisely reviews the use of split livers and the evolving practice of living donor liver transplantation.


Lok ASF, McMahon BJ. American Association for the Study of Liver Diseases. AASLD practice guideline: chronic hepatitis B. Available at: www.aasld.org. 2003; [Full Text].


Lorenzen et al, Medicinsk Compendium, 15. edition, Kobenhavn, Nyt Nordisk Forlag Arnold Busck, 1999,


Major study: Bioartificial liver reduces mortality by 44 percent in acute liver-failure patients. 2004


O'Grady J. Personal view: Current role of artificial liver support.[Aliment Pharmacol Ther. 2006 Jun 1;23 (11) :1549-57 PMID ]


Pitltin and Mullon, Evidence of absence of porcine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system. Artificial organs, ma 1999, 23(9) 829-833.


Rahman TM, Hodgson HiP. Clinical management of acute hepatic failure. Inten Care Med 2001; 27: 467-76


Runyon BA: Management of adult patients with ascites due to cirrhosis. Hepatology 2004;39:841


Sauer TM, Gerlach JC: Modular extracorporeal liver support. Artif Organs 2002, aug 26 (8); 703-6


Schechter DC, Nealon TF, GibbonjH. A simple extracorporeal device for reducing elevated blood ammonia levels. Surgery 1958; 44; 892-897.


Steiner Christian, Pezynska-Jolanta Majcher, Piotr Pezynski (April 2002). Therapy information for Doctors and Nurses (MARS)


Tinsly RHarrison’s. Principles of Internal Medicine, sixteen edition ,chapter:291,page:1873 ,2005


Trey C. The fulminant hepatic failure surveillance study. Brief review of the effects of presumed etiology and age on survival. CMAJ, 1972; 106.

Ttewbv PN, Williams R. Pathophysiology of hypotension in patient with fulminant hepatic failure. Gut 1977; 18:1021-1026,


Wiesner RH, McDiarmid SV, Kamath PS, et al: MELD and PELD: application of survival models to liver allocation. Liver Transpl 2001;7:567-580. This review outlines the rationale and logistics of the Model for End-Stage Liver Disease and how it will impact the organ allocation system in the United States.


