Contents

Acknowledgments

Dedication

<table>
<thead>
<tr>
<th>List of Abbreviations</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>VIII</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XVI</td>
</tr>
</tbody>
</table>

Introduction 1

Aim of the work 4

CHAPTER (1): Introduction to Laser Physics 5

1.1 Characters of Laser Beam 7
1.2 Laser Physics 9

CHAPTER (2): Laser System 16

2.1 Basic Components of Laser System 16
2.2 Classification of Laser Systems 18
 2.2.1 According to the Gain Medium 18
 2.2.2 According to Operating Modes 24
2.3 Evolution of Cooling Systems for Laser Devices 26
2.4 Cooling methods coupled with laser systems 26
2.5 Uses of Laser in Dermatology 27
2.6 Contraindications of Laser Therapy 28

CHAPTER (3): Laser Tissue Interactions 30

3.1 Categories of Interactions 30
 3.1.1 Photochemical reactions 31
 3.1.2 Photothermal reactions 34
 3.1.3 Photoablation 40
 3.1.4 Plasma-induced photoablation 43
 3.1.5 Photodisruption 44
3.2 Selecting an Interacting Mechanism 44
CHAPTER (4): Aging and Anti-aging

4.1 Causes of Aging .. 45
 4.1.1 Intrinsic Aging ... 45
 4.1.2 Extrinsic Aging ... 46
4.2 Facial Shape and Age ... 48
4.3 Histopathological Effect of Aging. 49
4.4 Clinical classification of aging skin 50
4.5 Antiaging Procedures .. 53
 4.5.1 Sunscreens and Sunblocks 53
 4.5.2 Moisturizers and keratolytic agents 55
 4.5.3 Antioxidants ... 56
 4.5.4 Caloric Restriction 59
 4.5.5 Estrogens .. 59
 4.5.6 Chemical peels .. 60
 4.5.7 Botulinum Toxin .. 67
 4.5.8 Fillers .. 69
 4.5.9 Dermabrasion .. 72
 4.5.10 Microdermabrasion 72
 4.5.11 Vibradermabrasion 73
 4.5.12 Mesotherapy .. 73

CHAPTER (5): Ablative Laser Resurfacing 76

5.1 Overview of Laser Skin Resurfacing 76
5.2 Overview of Ablative Laser Resurfacing 76
5.3 Principles of Action of Ablative Laser Systems 77
5.4 Indications for Ablative Laser Resurfacing 78
5.5 Carbon Dioxide (CO₂) Laser Resurfacing 79
 5.5.1 Aim of CO₂ Laser Action 80
 5.5.2 Histopathological Effect 81
 5.5.3 CO₂ Laser Endpoints 82
 5.5.4 Types of CO₂ Laser 82
 5.5.5 Differences between CO₂ Laser Types 83
 5.5.6 Mechanism of action of CO₂ Laser 84
5.6 Er:YAG Laser Resurfacing 85
 5.6.1 Mechanism of action of Er:YAG laser 85
 5.6.2 Histopathological effect 86
5.6.3 Er:YAG Laser Endpoints .. 87
5.6.4 Types of Er:YAG Laser .. 88
5.7 Indications of CO₂ and Er:YAG laser resurfacing 92
5.8 Patient Selection for Ablative Laser Resurfacing 110
5.9 Preresurfacing skin care ... 113
5.10 Anesthesia .. 115
5.11 Skin Resurfacing .. 117
5.12 Postresurfacing skin care .. 119
5.13 Adverse Effects and Complications 122

CHAPTER (6): Nonablative Laser Resurfacing 133
6.1 Principles of action of nonablative laser systems 134
6.2 Indications for nonablative laser resurfacing 135
6.3 Aim of nonablative laser ... 136
6.4 Histopathological effect ... 137
6.5 Classification of nonablative laser devices 137
 6.5.1 Mid-infrared lasers (1320-nm Nd:YAG, 1450-nm diode, 1540-nm Er:glass) .. 140
 6.5.2 Q-switched Nd:YAG (1064 nm) 147
 6.5.3 Pulsed Dye Laser (585 to 600 nm) 151
 6.5.4 Intense Pulsed Light .. 155
 6.5.5 Light-emitting diodes 157
 6.5.6 Radiofrequency .. 158
6.6 Combination treatment ... 162
6.7 Patient selection ... 166
6.8 Anesthesia .. 167
6.9 Technique .. 167
6.10 Postresurfacing skin care .. 167
6.11 Adverse Effects and Complications of Nonablative Laser Resurfacing 168

CHAPTER (7): Fractional Laser Resurfacing 169
7.1 Advantages .. 170
7.2 Principles of Action ... 171
7.3 Indications of fractional laser resurfacing 175
7.4 Histopathological effect .. 186
7.5 Classification of fractional laser devices 187
7.6 Patient Selection ... 191
7.7 Pretreatment skin care .. 192
7.8 Anesthesia ... 192
7.9 Technique of Skin resurfacing ... 192
7.10 Postresurfacing skin care .. 194
7.11 Adverse Effects and Complications of fractional laser resurfacing 195
7.12 Examples of fractional laser devices 198
 7.12.1 Fraxel Laser ... 198
 7.12.2 Lux 1540 Fractional (Palomar Medical Technologies
 , Burlington, Mass) .. 204
 7.12.3 Pixel® 2940nm .. 205
 7.12.4 Affirm Laser .. 207
 7.12.5 Active FX .. 208
 7.12.6 Total FX Laser Resurfacing .. 209
 7.12.7 Profractional Laser .. 210
 7.12.8 MiXto SX CO₂ Laser ... 211

CHAPTER (8): Plasma Skin Resurfacing .. 213
 8.1 Principles of action .. 213
 8.2 Indications of plasma skin resurfacing 216
 8.3 Device .. 219
 8.4 Histopathological effect .. 220
 8.5 Preresurfacing care .. 223
 8.6 Patient Selection ... 223
 8.7 Anesthesia ... 224
 8.8 Skin resurfacing technique ... 224
 8.9 Postresurfacing skin care .. 227
 8.10 Side effects ... 228

CHAPTER (9): Summary and Conclusion 229

Recommendations ... 233

References ... 234
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 FU</td>
<td>5 Fluorouracil</td>
</tr>
<tr>
<td>AFSR</td>
<td>Ablative fractional skin resurfacing</td>
</tr>
<tr>
<td>AHAs</td>
<td>Alpha Hydroxy Acids</td>
</tr>
<tr>
<td>AKs</td>
<td>Actinic Keratosis</td>
</tr>
<tr>
<td>ALA</td>
<td>5-Aminolaevulinic Acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>BCCs</td>
<td>Basal Cell Carcinoma</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium ion</td>
</tr>
<tr>
<td>CAP</td>
<td>Combined Apex Pulse</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disc</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DEJ</td>
<td>Dermoepidermal Junction</td>
</tr>
<tr>
<td>DVD</td>
<td>Digital Video Disc</td>
</tr>
<tr>
<td>ELOS</td>
<td>Electro-optical Synergy</td>
</tr>
<tr>
<td>Er:YAG</td>
<td>Erbium-doped Yttrium Aluminium Garnet Laser</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FR</td>
<td>Fractional Resurfacing</td>
</tr>
<tr>
<td>HeAg</td>
<td>Helium-Silver Laser</td>
</tr>
<tr>
<td>HeNe</td>
<td>Helium-Neon Laser</td>
</tr>
<tr>
<td>HEPCO₂</td>
<td>High-Energy Pulsed CO2</td>
</tr>
<tr>
<td>HPD</td>
<td>Hematoporphyrin Derivative</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes simplix virus</td>
</tr>
<tr>
<td>IPL</td>
<td>Intense pulsed light</td>
</tr>
<tr>
<td>J</td>
<td>Joules</td>
</tr>
<tr>
<td>J/cm²</td>
<td>Joules per Square Centimeter</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diodes</td>
</tr>
<tr>
<td>LITT</td>
<td>Laser-Induced Interstitial Thermotherapy</td>
</tr>
<tr>
<td>LSR</td>
<td>Laser Skin Resurfacing</td>
</tr>
</tbody>
</table>
MENDs: Micro-epidermal necrotic debris
MIS: Minimally Invasive Surgery
MMP: Matrix Metalloproteinases
ms: Millisecond
m-THPC: Meta-Tetrahydroxyphenyl Chlorin
MTZs: Microscopic thermal zones
NARF: Nonablative radiofrequency
NB-UVB: Narrow band ultraviolet B
Nd:glass: Neodymium-doped glass
Nd:YAG: Neodymium-doped Yttrium Aluminium Garnet
Nd:YLF: Neodymium-doped Yttrium Lithium Fluoride
NeCu: Neon-Copper Laser
NFSR: Nonablative fractional skin resurfacing
Nm: Nanometer
NMSCs: nonmelanoma skin cancers
ns: Nanosecond
PABA: Para Amino Benzoic Acid
PDT: Photodynamic Therapy
PpIX: Protoporphyrin IX
PSR: Plasma skin regeneration
RF: Radio Frequency
ROS: Reactive Oxygen Species
RTD: Residual Thermal Damage
SCCs: Squamous Cell Carcinomas
SP: Short-Pulsed
SPF: Sun Protective Factor
TCA: Trichloroacetic Acid
TEA: A nitrogen Transverse Electrical discharge in gas at Atmospheric pressure laser
UHF: Ultra-high-frequency
UV: Ultraviolet Light
VSP: Variable Square Pulse
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Watts</td>
</tr>
<tr>
<td>W/cm²</td>
<td>Watts per Square Centimeter</td>
</tr>
<tr>
<td>ZTD</td>
<td>Zone of thermal damage</td>
</tr>
<tr>
<td>ZTM</td>
<td>Zone of thermal modification</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Wavelength.</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Frequency.</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Coherent and Incoherent waves.</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>White light, Monochromatic light and Laser light.</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Collimated Light Source.</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>Phases of Spontaneous emission.</td>
<td>9</td>
</tr>
<tr>
<td>1.7</td>
<td>Phases of photon emission.</td>
<td>10</td>
</tr>
<tr>
<td>1.8</td>
<td>Diagram illustrating steps needed for lasing (in the three level lasers).</td>
<td>13</td>
</tr>
<tr>
<td>1.9</td>
<td>Two level atom system.</td>
<td>14</td>
</tr>
<tr>
<td>1.10</td>
<td>Three level atom system.</td>
<td>15</td>
</tr>
<tr>
<td>1.11</td>
<td>Four level atom system.</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Basic Structure of Laser Machine</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>An overview of the different types of laser-tissue interaction, and the irradiance and exposure durations at which they dominate.</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Photodynamic therapy procedure for cancer treatment.</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Reversible and irreversible tissue damage caused by laser at certain temperatures and durations.</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Location of thermal effects inside biological tissue.</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>Basic structure of laser-induced interstitial thermotherapy</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Excitation and dissociation processes of photoablation</td>
<td>40</td>
</tr>
<tr>
<td>3.7</td>
<td>Summary of the five main principles of photoablation</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Aging and the changing facial shape</td>
<td>48</td>
</tr>
</tbody>
</table>
4.2.a Intrinsic skin aging is exemplified by uniformly pigmented, smooth skin below the collar line. However, above the collar line shows chronic sun exposure (cutis rhomboidalis nuchae).

4.2.b Extrinsically aged skin is characterized by wrinkling, laxity, and pigmentary changes

4.3 Old women before and after the phenol peel

4.4 Old woman before and after Jessner/trichloroacetic acid peel.

4.5 Female Patient having Forehead lines before and after botulinum injection.

4.6 24-years old female with an early naso-labial fold and some soft tissue loss lateral to the chin before and after six months with excellent response to fat transfer

4.7 Static Lines of the face before and after treatment with mesotherapy with marked improvement.

4.8 The Derma Roller showing stainless steel micropoints

5.1 Skin biopsy specimen obtained immediately after CO₂ laser treatment showing epidermal and papillary dermal necrosis. Hematoxylin–eosin stain. Original magnification: X100

5.2 Effect of Er:YAG laser on the skin.

5.3 Laser pulse of conventional laser, and VSP technology

5.4 The effect of VSP Er:YAG laser on the human tissue

5.5 Different types of wrinkles

5.6 Patient with an old depressed scar and photodamage before and after CO₂ laser resurfacing.

5.7 Patient, phototype III, wrinkles grade III before and after dual mode Er:YAG+CO2 laser resurfacing

5.8 Different types of acne scars

5.9 Facial photodamage and infraorbital hyperpigmentation in a 32-year-old woman with skin phototype V before (A) and 6 months after single-pass CO2 laser skin resurfacing (B).

5.10 A 50-years old woman with melasma (skin type V) before and after VSP Er:YAG laser
5.11 Patient with SCC in situ before and after curettage and CO2 laser ablation with secondary hypopigmentation

Preoperative (A and B), immediately postoperative (C and D), and 2-year postoperative (E) after CO2 laser ablation and adjunctive dermabrasion, curettage, and shave excisions.

Lesions on the dorsal aspect of forearm before (a and c) and after (b and d) therapy with patient(a) treated with narrow band ultraviolet b (NB-UVB) alone and (c) treated with ER:YAG laser ablation and 5FU application, followed by NB-UVB therapy showing marked response in Patient (a) and mild response in(c).

5.14.a Hyperpigmentation seen 4 weeks after single-pass CO2 laser treatment in a patient with skin phototype III.

5.14.b Hyperpigmentation resolved 13 weeks postoperatively

5.15.a Hyperpigmentation observed 3 weeks after multipass Er:YAG laser resurfacing (skin phototype III).

5.15.b Complete normalization of skin pigmentation 11 weeks postoperatively.

5.16 Six cosmetic units of the face.

6.1 Non-ablative lasers used for skin rejuvenation. Water-specific laser induces thermal changes in water-containing tissues, while vascular-specific laser induce thermal changes in the surrounding tissues around blood vessels

6.2 Different ablative and nonablative lasers used in the treatment of scars and skin Rejuvenation

6.3 45-years-old patient before and 6 months after treatment with a 1320-nm Nd:YAG laser showing improvement in skin quality.

(A) Loose irregular dermal collagen fibrils consistent with solar damaged dermis.

(B) Increased collagen thickness in papillary dermis 6 months after treatment with a 1320-nm Nd:YAG laser

6.4 42-years-old patient before and 6 months after treatment with a 1450-nm diode laser showing improvement in rhytids

6.5 Treatment of facial acne scars using 1450-nm diode laser

6.6 X
(A) Histological specimen of photodamaged facial skin with evidence of dermal elastosis pre-treatment (H & E, X10 magnification). (B) Facial skin immediately after 1540nm erbium glass laser irradiation with evidence of an acute inflammatory cell infiltrate and mild tissue edema (H & E, X10 magnification). (C) Histological specimen six months after the third 1540nm erbium glass laser treatment demonstrates increased dermal collagen (H & E, X20 magnification).

Photograph of patient with acne scars who underwent Q-switched Nd:YAG laser treatment. (A) Before treatment. (B) Visible cosmetic improvement 6 months after the last treatment.

Photograph of patient with acne scars who underwent Q-switched Nd:YAG laser treatment. (A) Before treatment. (B) Marked clinical improvement seen 6 months after the last treatment.

Representative photographs of acne scar improvement taken before (A and C) and after (B and D) treatment with a short-pulsed 1064-nm Nd:YAG laser. Photos were taken 2 to 4 weeks after the last treatment. Improvement is noted in scar contours, depth and erythema.

Photomicrograph from biopsy specimens from acne scars. (A) Pretreatment histology demonstrating interfibrillar spaces and random arrangement of the collagen fibers. (B) Four weeks after the final treatment. The number of collagen fibers has increased, with greater density of fibers, thus indicating some compaction in the remodeling process (Sirius red staining; magnification, 20X).

Post traumatic hypertrophic scar before and after 1 PDL and 4 IPL treatments.

Forehead of 47-years old patient with rhytids preoperative and 6 months after treatment with the IPL source.

Photoaged skin before and after three months treatments with a Lumenis Quantum IPL.

Full-face photography at initial screening visit and at the 12-week follow-up after using LED.

Preoperative view of a “tired-looking” eye from low eyebrow position causing overhanging of upper eyelid, and 3 months after a single treatment session with NARF resulting in eyelid elevation.

Female patient before (A) and 1 month after (B) four treatments with RF showing improvement in the laxity of the cheek area.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.18</td>
<td>(A) Female patient before (left) and 1 month after (right) four treatments with RF showing Marionette line laxity (Friedman and Gilead, 2007). (B) Female patient before (left) and 1 month after (right) four treatments with RF showing improvement of periorbital wrinkles.</td>
</tr>
<tr>
<td>6.19</td>
<td>Female patient with perioocular wrinkles undergone treatment with The 595-nm PDL first followed by 1450-nm laser irradiation. Results after four sessions (one every 2 weeks) showing better and younger skin.</td>
</tr>
<tr>
<td>6.20</td>
<td>Effect of subcision and 1320-nm Nd:YAG nonablative laser on the left side of face. (A) Left side of face baseline (6 weeks of topical 0.5% tretinoin only). (B) Left side of face after 5 weeks with two subcision treatments and six 1320-nm Nd:YAG laser treatments at 2-week intervals. (C) Left side of face 3 months after the last 1320-nm Nd:YAG laser treatment showing good results (Fulchiero et al., 2004).</td>
</tr>
<tr>
<td>7.1</td>
<td>Model of reepithelialization process after fractional versus selective photothermolysis treatment.</td>
</tr>
<tr>
<td>7.2</td>
<td>Comparison between ablative skin resurfacing (ASR), nonablative skin resurfacing (NSR), and fractional photothermolysis on their effect on skin.</td>
</tr>
<tr>
<td>7.3</td>
<td>Female patient showing photoaged skin before and after treatment using 1,550-nm Erbium-Doped Fiber Laser (Fraxel Laser).</td>
</tr>
<tr>
<td>7.4</td>
<td>Non facial photoaged skin before and after treatment with Fraxel Laser showing moderate improvement.</td>
</tr>
<tr>
<td>7.5</td>
<td>Photoaged hands of an old patient before and after fractional laser.</td>
</tr>
<tr>
<td>7.6</td>
<td>A 48-year-old woman with epidermal and dermal melasma before and 5 months after 5 FR treatment. Improvement of the melasma as well as hypopigmentation is noted.</td>
</tr>
<tr>
<td>7.7</td>
<td>Female patient with mixed variant melasma before and after fractional laser treatment showing marked resolution.</td>
</tr>
<tr>
<td>7.8</td>
<td>Male patient before and after three treatments with fractional photothermolysis showing improvement of pitting and boxcar scars of forehead and cheeks.</td>
</tr>
<tr>
<td>7.9</td>
<td>Atrophic acne scars and facial pores in a 38-year-old woman before (A) and 4 months after (B) three successive monthly fractional photothermolysis system.</td>
</tr>
<tr>
<td>7.10</td>
<td>Atrophic acne scars and facial pores in a 26-year-old man before and 4 months after fractional photothermolysis system.</td>
</tr>
</tbody>
</table>
7.11 Side-by-side comparison of the patient at baseline following CO₂ laser resurfacing before FR (left) and after 4 sessions of FR (right)
7.12 Wrinkled skin on the glabella and temple after PDL and CO₂ laser ablation before and after fractional laser treatment with noticeable improvement
7.13 Baseline (A, C, and E) and follow-up (B, D and F) photos 1 month after third FR treatments of upper and lower eyelids
7.14 Histological effect of 1550-nm erbium-doped fiber laser at a pulse energy of 8mJ applied on human skin
7.15 Histology slides of biopsy sections taken before treatment and after the final treatment with a single Active FX treatment with the fractional ablative CO₂ device on one facial side (top) and five Fraxel SR™ treatments with the fractional nonablative laser device (bottom) on the other facial side.
7.16 Left: CO₂ laser resurfacing 1 day after treatment with ablation. Right: One day after FP with only mild redness and swelling
7.17 Post-inflammatory hyperpigmentation and crust following treatment with FR after two treatment sessions with complete disappearance of pigmentation after three month of treatment
7.18 Female patient before and (b) 1 week after fractional resurfacing of the upper lip showing clear signs of herpes simplex infection are observed, then herpetic lesion has healed without any scarring, wrinkles are significantly better
7.19 Patient with acne scar before and after treatment with fractional laser showing noticeable improvement
7.20 Patient’s back at before and after four treatments with the second-generation erbium-doped 1550- nm fractional photothermolysis laser with dramatic improvement in the depth of the boxcar acne scars.
7.21 Patient before and 1 month after six treatments with the second-generation erbium-doped 1,550-nm fractional photothermolysis laser showing marked improvement of boxcar and icepick scarring, as well as improvement in postinflammatory erythema.
7.22 Pre- and 1 month post-treatment using 1,550-nm erbium (Er)-doped on the left hand in the upper figure(B) and using 1,540-nm Er:glass on the right hand in the lower figure(B)
7.23 Hypopigmented facial acne scars on the left temple and left cheek at baseline. (B)
7.24 Marked improvement in pigmentation 1 month after four fractional resurfacing treatments
7.24 Treatment patterns 1 day post-treatment with 1,550-nm erbium (Er)-doped laser

7.25 Fractional resurfacing. Patient before (A) and after (B) treatment with 1,550-nm erbium-doped mid-infrared fractional laser resurfacing

7.26 Caucasian woman, 50 years old, phototype III, (a) before and (b) after full-face fractional resurfacing with Er: YAG laser (1,400 mJ) showing improvement of wrinkles and skin texture

7.27 Immediately after treatment, “netlike” ablation with background erythema and 3 days after, darkening of the skin by exfoliated epidermis, in a “net” pattern

7.28 Photoaging of the dorsae of hands treated by six, biweekly, 1,440 nm, Nd:YAG fractional laser sessions before and after treatment

7.29 Photoaging of the neck treated by six, biweekly, 1,440 nm, Nd:YAG fractional laser sessions; before and three months after-treatment

7.30 Female patient before and after Active FX Laser skin Resurfacing

7.31 Differences between ActiveFX, DeepFX, and TotalFX

7.32 Highly magnified appearance of the microcrusting 48 hours after treatment with MiXto SX. Each microcrust has a 300-μm diameter

7.33 A 19-year-old patient with hyperpigmented severe acne scarring before and 3 months after treatment

8.1 Showing mechanism of plasma generation

The effects of pulse energy on depth of cleavage. Pulse energies of 1.0 J (left) result in a very superficial cleavage line (arrow) just beneath the stratum corneum. The cleavage line (arrow) resulting from pulse energies of 2.5 J (middle) is localized within the basal cell layer. Pulse energies of 4.0 J (right) result in a cleavage line (arrow) within the papillary dermis

8.2 Before and after (30 days) photos demonstrating degree of improvement in cheek (above) and full face with tightening of the jowls (below) following a single high-energy PSR treatment

8.3 Patient treated at 4 J, single pass of PSR, at pre-treatment (a), 2 days post-treatment (b), 7 days post-treatment (c), and 90 days posttreatment (d). Note improvement in hyperpigmentation

8.4 Photodamaged neck skin before (A) and 4 days (B), 14 days (C), and 90 days (D) after PSR treatment

XIV
Photodamaged skin on the dorsal hands before (A) and 4 days (B), 14 days (C),
and 90 days (D) after PSR treatment

Plasma skin regeneration (PSR) using the Portrait® PSR. The plasma generating
device (a) and handpiece (b) with plasma energy emanating from tip are shown.
Appearance of blue noncontact illuminated targeting ring used for gauging
appropriate angle and distance from skin surface (c)

Histological changes following treatment with high-energy PSR after treatment.

Time course for healing following high-energy treatment with PSR2/3 for
moderate to severe photodamage.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different types of Excimer Laser</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Different types of lasers and their applications in dermatology</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Biological effects of tissue heating caused by laser</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Johnson’s wrinkling scale. A descriptive scale; the category of photodamage selected according to overall severity (0 = none, 1–3 = mild, 4–6 = moderate, 7–9 = severe).</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Weiss’s photodamage grading.</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>List of some of the common chemical absorbers available and the protection they provide against the UV range</td>
<td>54</td>
</tr>
<tr>
<td>5.1</td>
<td>Treatment modalities for skin aging and scarring: advantages and disadvantages</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>Obagi classification</td>
<td>112</td>
</tr>
<tr>
<td>6.1</td>
<td>Long-pulse Nd:YAG lasers used for nonablative resurfacing</td>
<td>141</td>
</tr>
<tr>
<td>6.2</td>
<td>Q-Switched Nd:YAG lasers used for nonablative resurfacing</td>
<td>147</td>
</tr>
<tr>
<td>6.3</td>
<td>Pulsed dye lasers used for nonablative resurfacing</td>
<td>152</td>
</tr>
<tr>
<td>7.1</td>
<td>Chronology of Wound Healing after Fractional Photothermolysis Treatment</td>
<td>173</td>
</tr>
</tbody>
</table>