REFERENCES

Adam, M. (2005):
Integrating research and development: the emergence of rational drug design in the pharmaceutical industry. Studies in history and philosophy of biological and biomedical sciences; P. 36.

Alexander, R.W. and Dzau, V.J. (2000):

Harrison's principles of internal medicine. McGraw-Hill Medical.

Peripheral administration of an angiotensin II AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation stress. Endocrinology; 142(9): 3880 – 9.

Armario, A.; Montero, J.L. and Balasch, J. (1986):
Sensitivity of corticosterone and some metabolic variables to graded levels of low intensity stresses in adult male rats. Physiology & Behavior; 37(4): 559 – 561.

Armistag, A. (1983):
Textbook of stastics.

Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation; 101: 1780 – 84.

References

General characteristics of the insulin resistance syndrome: prevalence and heritability. Europian group for the study of insulin resistance (EGIR). Drugs; 58(Suppl. 1): 7 – 10 and 75 – 82.

Black, P.H. (2002):

Black, P.H. (2003):
The inflammatory response is an integral part of the stress response: implication for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X. Brain Behav. Immun.; 17: 350 – 64.

Anxiety and depression are associated with unhealthy lifestyle in patients at risk of cardiovascular disease. Atherosclerosis; 178(2): 339 – 44.

Bowling, A. (1999):

Bucolo, G. and David, H. (1973):

Campany, L.; Pol, O. and Armario, A. (1996):

Cannon, W.B. (1939):

Capuron, L. and Dantzer, R. (2003):

Caraway, W.T. and Watts, N.B. (1987):

Carey, R.M. and Siragy, H.M. (2003):

Carol Y. (1999):
Stress and the autonomic nervous system "Fight or Flight"
Carr, M.E. (2001):

Dallman, M.F.; Pecoraro, N.C. and La Fleur, S.E. (2005):

Deedwania, P.C. (2003):

Brain corticosteroid receptor balance and homeostatic control. Front Neuroendocrinol.; 12: 95 – 164.

Dimsdale, J.E. (2008):

D'mello, A.P.; and Liu, Y. (2006):

Ferrario, C.M. (2006):

Festa, A.; D'Agostino, R. Jr; Tracy, R.P. and Haffner, S.M. (2002):
Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes; 51: 1131 – 1137.

Fleschner, M.; Watkins, L.R.; Belligrau, D.; Laudenslager, M.L. and Maier, S.F. (1992):
Specific changes in lymphocyte subpopulation: a mechanism for stress induced immunomodulation. Neuroimmunol.; 41: 131 – 42.

Flores-Riveros, J.R. (1993):
Insulin downregulate expression of the insulin-responsive glucose transporter (GLUT4): effects on transcription and mRNA turnover. PNAS; 90(2): 512 – 6.

Folkow, B. (1993):

Folkow, B. (1997):

Fowler, B. (2005):

Garcia, R. (2002):

Gaspaini, L. and Xu, H. (2003):

Gavras, I. and Gavras, H. (2002):

Ginsberg, H.N. (2000):

Pharmacological evidence that the sympathetic nervous system mediates the increase in renin secretion produced by immobilization and head tilt in rats. Neuropharmacology; 27: 1209 – 13.

Goodfriend, T.L.; Elliot, M.E. and Catt, K.J. (1996):

Gosse, P. and Dallocchio, M. (1993):

Haller, H. (1977):

Hjemdahl, P. (2002):
Stress and the metabolic syndrome. Circulation; 106: 2634.

Hopfner, R.L. and Gopalakrishnan, V. (1999):

High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes; 49: 1939 – 45.

Endocrine Responses to Unpredictable Environmental Events: Stress or Anti-Stress Hormones? Integrative and Comparative Biology; 42(3): 600 – 609.

Juhan-Vauge, I.; Morange, P.E. and Alessi, M.C. (2002):

Koko, V. Djordjeviæ, J.; Cvijæ, G. and Davidoviæ, V. (2004):

Krentz, A.J. (2006):

Landsberg, L. (2001):

References

Lazarus, R.S. (1993):

Lerch, M.; Teuscher, A.U.; Beissner, P.; Schneider, M.; Shaw, S.G. and Weidmann, P. (1998):

Li, Y.; Woo, V. and Bose R. (2001):

Linden, W.; Stossel, C. and Maurice, J. (1996):

Lonnroth, P. and Smith, U. (1983):

Lorell, B.H. (1999):
Role of angiotensin AT_{1} and AT_{2} receptorsin cardiac hypertrophy and disease. Am. J. Cardiol.; 83: 48H – 52H.
References

Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA; 282(16): 1539 – 46

Neuroendocrine and immunocytochemical demonstrations of decreased hypothalamo-pituitary-adrenal Axis responsiveness to restraint stress after long-term social isolation. Endocrinology; 139: 579 – 587.

Maurer, M.S. (2003):
Age: a non modifiable risk factor?. JAAC; 42(8): 1427 – 1428.

McEwen, B.S. (2002*):

McGarry, J. (2002):

Stress and thyroid autoimmunity. Thyroid; 14: 1047 – 55.

Morse, S.A; Zhang, R.; Thakur, V. and Reisin, E. (2005):

Murali, B. and Goyal, R.K. (2001):

Nagaraja, H.S.; Anupama, B.K. and Jeganathan, P.S. (2006):

Nagaraja, H.S. and Jeganathan, P.S. (1999):

Naito HK (2003):
Coronary artery disease and disorders of lipid metabolism, clinical chemistry: theory, analysis, correlation. 4th ed Kaplan LA and pesce AJ; P.603.

The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: part II: AT(1) receptor regulation. Circulation; 105: 530 – 6.

Psychological stress and the insulin resistance syndrome. Metabolism; 45: 1533 – 8.

Reaven, G.M. (1988):

Reaven, G.M. (1994):

Reaven, G.M. (2005):

Reaven, P. (2004):

Reudelhuber, T.L. (2005):
Reudelhuber, T.L. (2005):
The continuing saga of the AT2 receptor: A case of the good, the bad, and the innocuous. Hypertension 46(6): 1261 – 2.

Rosmond, R. (2003):

Rosmond, R. (2005):

Brain and peripheral angiotensin II play a major role in stress. Stress; 10(2): 185 – 93.
References

Sacks, B.D. (1994):

Schneider, D.J. (2005):

Seltzer, A.; Bregonzio, C.; Armando, I.; Baiardi, G. and Saavedra, J.M. (2004):
Oral administration of an AT1 receptor antagonist prevents the central effects of angiotensin II in spontaneously hypertensive rats. Brain Res.; 1028: 9 – 18.

Selye, H. (1936):

Selye, H. (1950):

Selye, H. (1956):

Robbins Basic Pathology: With student consult online access.

Silbernagl, I. (2000):
Color atlas of pathophysiology; P. 268.

Singer, H. (1977):
Diagnosis of primary hyperlipoproteinemia. Z. Gesamte Inn. Med.;
32(9): 129 – 33.

Effect of immobilization stress on lipid profile. Indian J. of Physiol.

Influence of leptin on arterial dispensability: a novel link between

Angiotensin type 2 receptors: potential importance in the regulation

Steroid receptors and their associated proteins. Mol. Endocrinol.;
7(1): 4 – 11.

Smith, D.G.; Ben-Sholomo, Y.; Beswick, A.; Yarnell, J.; Lightman, S. and
Elwood, P. (2005):
Cortisol, testosterone and coronary heart disease. Circulation; 112:
332 – 340.

Stanton, A. (2003):

Steptoe, A. and Brydon, L. (2005):
Associations between acute lipid stress responses and fasting lipid levels 3 years later. Health Psychology; 24(6): 601– 607.

Third report of the National Cholesterol Education Program (NCEP) expert panel (2002):
High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma proceeds a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation; 98: 2241.

Torpy, J.M. (2007):
Chronic stress and the heart. JAMA; 298(14): 1722.

Tracey, K.J. (2002):

Effects of acute and chronic restraint on the adrenal gland weight
and serum corticosterone concentration of mice and their fecal
Sci.; 59: 82 – 86.

High prevalence of coronary atherosclerosis in asymptomatic
teenagers and young adults: evidence from intravascular ultrasound.
Circulation; 103(22): 2705 – 10.

The effects of losartan and immobilization stress on heart rate
114 (3): 365 – 79.

Losartan may prevent the elevation of plasma glucose levels induced

Losartan may prevent the elevation of plasma glucose,
corticosterone and catecholamine levels induced by chronic stress.

Vaccarino, V. and Bremner, J.D. (2006):
Stress response and the metabolic syndrome. Cardiology; Vol. 11,
Part 2, P. 1 – 12.

Stress: a risk factor for serious illness. Metabolism; 51(6 Suppl. 1):
40 – 45.
Evolution of hypertension from non hypertensive blood pressure levels: rates of progression in Framingham Heart Study. J. Am. Coll. Cardiol.; 35: 292A.

Vague, J. (1947):

IGF-1 treatment reduces hyperphagia, obesity and hypertension in metabolic disorders induced fetal programming. Endocrinology; 142(9): 3964 – 73.

Elevated C-reactive protein levels in over weight and obese adult. JAMA; 282(22): 2131 – 35.

Vonhoute, P.M. and Boulanger, C.M. (1995):

Wang, H.L.; Fan, D.S.; Shen, Y.; Sun, A.P.; Zhang, J. and Yang, (2005):

Insulin like growth factor 1 (IGF-1) supplementation prevents diabetes- induced alterations in coenzymes Q_9 and Q_{10}. Acta diabetol.; 40(2): 85 – 90.

World Health Organization (1999):

