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Abstract The objective of this study was to present a novel
bivariate distribution, which we denoted as the bivariate odd
generalized exponential gompertz(BOGE-G) distribution. Other
well-known models included in this one include the gompertz,
generalized exponential, odd generalized exponential, and odd
generalized exponential gompertz distribution. The model intro-
duced here is of Marshall-Olkin type [16]. The marginals of the
new bivariate distribution have odd generalized exponential gom-
pertz distribution which proposed by[7]. Closed forms exist for
both the joint probability density function and the joint cumulative
distribution function. The bivariate moment generating function,
marginal moment generating function, conditional distribution,
joint reliability function, marginal hazard rate function, joint mean
waiting time, and joint reversed hazard rate function are some
of the properties of this distribution that have been discussed.
The maximum likelihood approach is used to estimate the model
parameters. To demonstrate empirically the significance and
adaptability of the new model in fitting and evaluating real
lifespan data, two sets of real data are studied using the new
bivariate distribution. Using the software Mathcad, a simulation
research was conducted to evaluate the bias and mean square error
(MSE)characteristics of MLE. We found that the bias and MSE
decrease as the sample size increases.

Keywords Odd Generalized Exponential, Gompertz Dis-
tribution, Joint Probability Density Function, Conditional
Probability Density Function, Maximum Likelihood Estimation,
Fisher Information Matrix, Simulation

1 Introduction

One of the traditional continuous mathematical models that rep-
resent a survival function based on mortality laws is the gompertz
distribution. The gompertz, exponential, and generalized exponen-
tial distributions can all be used to analyze lifetime data, whereas

the exponential only has a constant hazard rate function but the
gompertz and generalized exponential distributions only have a
monotone hazard rate. The lifespan components of physical sys-
tems, the creatures in biological populations, data in reliability and
medical investigations, as well as the modeling of human mortality
and fitting actuarial tables, all benefited from the use of these dis-
tributions. Demographers and actuaries used the gompertz distri-
bution to characterize the distribution of adult lifespans. It served
as a model of growth to meet the growth of the tumor. In recent
years, computer scientists have begun to use the gompertz distribu-
tion to simulate the failure rates of computer programming. This
concept can also be applied to network theory and marketing sci-
ence.

Recently, El-Damcese et al [7] has defined a new four-parameter
distribution referred to as odd generalized exponential gompertz
(OGE-QG) distribution. Tahir et al. [24] introduced a new class
of univariate distributions called the odd generalized exponential
(OGE) distribution and studied each of the odd generalized ex-
ponential Weibull (OGE-W) distribution, the odd generalized ex-
ponential Frechet (OGE-Fr) distribution and the odd generalized
exponential Normal (OGE-N) distribution. Jafari et al. [13] in-
troduced a new distribution called the Beta-Gompertz (BG) distri-
bution. El-Gohary et al. [8] proposed a new distribution known
as the generalized gompertz (GG) distribution, which consists of
the E, GE and G distributions.. Eugene et al. [9] introduced a
new generalization of the gompertz (G) distribution which results
of the application of the Gompertz distribution to the Beta gener-
ator. Gupta and kundu [12] compared the generalised exponential
(GE) distribution to the well-known gamma or weibull distribution
as a possible alternative. Pollard and valkovics [20] were the first
to study the gompertz distribution, they both used the incomplete
or complete gamma function to determine the moment generating
function of the gompertz distribution, and their conclusions are ei-
ther approximative or left in integral form. Because the hazard rate
shapes could be increasing, decreasing, bathtub-shaped, or upside-
down bathtub-shaped, this method is adaptable.

The major goal of this paper is to provide a new bivariate
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odd generalized exponential gompertz (BOGE-G) distribution so
that the marginal are (OGE-G) distributions. It is obtained using
a technique similar to that of the Marshall and Olkin bivariate
exponential model see [16].The paper is organized as follows.
Section 2 we introduced that the proposed BOGE-G distribution
has four parameters but the scale and location parameters can be
easily introduced. Also, the joint cumulative distribution function
(CDF), the joint probability density function (PDF), the marginal
probability density functions and the conditional probability
density functions of (BOGE-G) distribution is derived in section
2. Section 3 introduces the moment generating function. In
section 4 some reliability studies are obtained. Section 5 obtains
the parameter estimation using MLE. In section 6 data analysis
are obtained using two real data sets. In section 7 we introduced
the simulation study. Finally, a conclusion for the results is given
in section 8.

2 Bivariate Odd Generalized Exponential
Gompertz Distribution

In this section we introduce the BOGE-G distribution using a
technique similar to that which was used by [16] to define the Mar-
shall and Olkin bivariate exponential distribution. In order to es-
timate the related joint probability density function, we must start
with the joint cumulative function of the suggested bivariate distri-
bution. Finally, this distribution’s conditional probability density
functions and marginal probability density functions are also de-
rived. Let Z be a random variable has univariate OGFE — G distri-
bution with parameters «, A, ¢, 8 > 0 written as OGE -G (04, ),
where the vector O is defined by ©; = (a;, A, ¢), then the corre-
sponding cumulative distribution function is given by

7oz|:e%(eczfl)71:| g
F(201,8) ={1—e 220, ()

where a;, A, ¢ are scale parameters and 3 is shape parameter.
Then the probability density function takes the following form

cz 2 (e —1) —a[e%(cm_l)—l}
afeFect® e

NP
y {1_6‘“[”( )‘1}} @)

Joint cumulative distribution function

[(201,8) =

2.1

Assume that Uy, U, and Us are three mutually independent ran-
dom variables where U; ~ odd generalized exponential gompertz
(©1,51), Us ~ odd generalized exponential gompertz (61, f52)
and Us ~ odd generalized exponential gompertz (©1, 33) distri-
bution. Define Z; = max{U;,Us} and Zy = max{Us, Us}.
Then we say that the bivariate vector (Z;, Z) has a bivariate
odd generalized exponential gompertz distribution with parame-
ters (o, 81,52, B3, A, ¢). Denote it by BOGE — G (). The joint

cumulative distribution function of bivariate odd generalized ex-
ponential gompertz distribution of the random variables (77, Z5)
can be obtained through the following lemma.

Lemma (1). If (Z1, Z3) ~ BOGE —G(p), then the joint CDF'
of (Z1, Zy) for z; > 0, 25 > 0, is B

Lemma (1). If (Z1, Z3) ~ BOGE —G(p), then the joint CDF'
of (Zl, ZQ) for z; > 0, z9 > 0, is B

B B
FBOEG—G(ZMZZ) _ {1 - e—a[e<1_1]} 1 {1 _ e—a[eiz_l]} 2
B:
{1 _ e—a[5<3—1]} 3 . (3)
Where z = min{z1, 2}, ¢; = 2(e — 1) ;i = 1,2 and

G =2 — 1),
Since the joint C DF' of the random variables Z; and Zs is
defined as

P(Zy < 21,725 < 2z9)
P(max{Ul,Ug} < Zl,maX{UQ,Ug} < 22)
= P(U; < z,U3 < 29,U3 < min(zy, 22)).

Fpocr-a(z1, 22)

As the random variables U; (i = 1,2, 3) are mutually indepen-
dent, we directly obtain

Fpoce-c(z1,22) = P(Ui < 21,Us < 29,Us < min(z1, 22))
= Foge-c(z1;61,01)Focr—c(22; 52,01)
Foce-c(z; B3,01). “4)

Substituting from (1) into (4), we obtain (3), which complete
the proof of the lemma (1).

2.2 Joint probability density function

The following theorem gives the joint PDF of the Z; and Z»
which is the joint PDF of BOGE — G(p).

Let
sz’ = 1- eia[ECiil]a 1=1,2
and Q, = 1- e—ale-1]
Theorem(1). If the joint CDF of Z; and Z, is as in (3), then

then the joint PDF of Z; and Zs takes the form

fl(Zl,ZQ) Zf 0< 21 <29 <00

fQ(Zl,ZQ) Zf 0<2z<z1 <@

fa(z,2)  if 0<z1=120=2<00,
(5)

[21,2,(21,22) =

Where

fi(z1,22) = foae—c(z1; 81+ B3,01) foae—a(z2; B2,01)
_ a2(51 + 53))\26621+4170‘[661*1} [QzJﬁlJngfl
s e [T o ©)
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fa(z1,22) = foce-a(z1;B1,01) foce—c(z2; B2 + P3,01)
_ a2/81)\26CZ1+C1—O¢[6<1 —1] [Qzl]ﬁl_l ~
(ﬂ? + B3)€CZ2+C2_Q[€(2_1] [sz]ﬁ2+53—1 , (7)
and
fa(z,2) = meGEfG(Z% B+ P2+ F3,01)

aﬂg)\echngfa[eCafl] [sz],@1+ﬁ2+ﬁ371 ) (8)

The expressions for fi(.,.) and f2(.,.) can be obtained simply

. O°F .
by taking W for 21 < 23 and 21 > 23 respectively .
But f3(.,.) cannot be obtained in the same way. For this reason
we use the fact that

o0 Z2 oo zZ1
/ / fi(z1, z2)dz1d2o +/ / fa(z1, 22)dzad2y
o Jo o Jo

+/0oo fa(z,2)dz =1

o0 z2
/ / fi1(z1, 22)dz1d 2o
o Jo

)

o0
[ apppesrianalean
0

> [sz]ﬂl +B2+83—1 dzs
B2

_— 10
B1+ P2 + B3 10

and

00 z1 00
/ / fa(21, 22)dzodzy = / Oéﬂ1)\€cz1+cra[e<1 -1
o Jo 0

> [QZI]IB1+52+/33—1 dzs
B1
B1+ B2+ Bs

substituting from (10) and (11) into (9) we obtain

(1)

/ f3(z,2)dz = / aﬁ3)\ecz+C3—a[ec3—1]
0 0

« [Qz]ﬁ1+,32+ﬁ3—1 dz

B3
B1+ B2+ B3

thus
f3(z, Z) = aﬂg)\ecz+43—a[e<3_1] [QZ]B1+EQ+B3—1

Figure 1. shows the surface plots of the joint probability den-
sity function (PDF) for 5, = B2 = 63 = 2, A = a = 1 and
c = 1.5,0.5 and 2 respectively, it means that this distribution is
flexible model that can be utilized to fit and analyze real lifespan
data efficiently.

A New Bivariate Odd Generalized Exponential Gompertz Distribution

012
-0.10
012 -0.08
0.10
=
S 008 L ooe
g 006
0.04
102 -0.04
0.02
06
2 08 4o 10
11
10
-0.9
11
10 -0.8
= 09
> 08 o7
g 07
06
05 -0.6
04
05
04
06
05
-0.4
06
05
T o4 0.3
‘2 03
& 02
01 0.2 -0.2
01

06
- 08

10 e

Figure 1. Joint PDF of BOGE-G distribution for 51= f2=£3=2, A = a = 1 and
c = 1.5,0.5 and 2 respectively
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2.3 Marginal probability density functions

The following theorem gives the marginal probability density
functions of Z; and Z,.

Theorem (2).  The marginal probability density functions of
Z;, (i =1,2,3) is given by

fZ'i(Zi) = fOGE—G(Zi; 67, + B27@)a 2 > 0
By + Bs) Azt e (€T mD—alefi—1] 4 161465 -1
(12)

where ¢ = 1,2
The marginal cumulative distribution function of Z; is
F(z) P(Z; < z;) = P(max{U;,Us} < z)
P(UL < Ziy U3 < Zz').

As the random variables U; (¢ = 1,2) and Us are mutually in-
dependent,we directly obtain

F(Zz) =
= Q)" @I™ =

[Qi]51+53

= Foce-ac(zi; B + P3,01). (13)
From which we readily derive the pdf of Z;, fz,(z;) = 6127&),

as in (12).

where

~afeti-y

v:l—e ,i:1,2

Q-

Thus, the conditional probability density functions of bivariate
distributions are obtained from the joint and marginal distributions

fz,.2, (Z1,Z3), fz, (Z2) respectively. Thus, the conditional
probability density functions of Z; for fixed values of Z; is

f(zlsz) i Py
NIOE f o f (22) >

Theorem (3). The conditional probability density functions of Z;
given Z5 = z; can be expressed as follows

fZl|Z2 (Zl |ZQ) =

féll)\Zz (21 |2’2) Zf 0< 21 <29 <00

fé?‘ZQ (Zl |2’2) Zf 0< 21 <29 <00

fz202, (Z1122) =

fé?;)\zg (21]22) if 0< 21 =2 =2 < o0,

where

aBa(B1 + Bs) e el -1 (g 11
(B2 + B3) ’

Fz, (21 122) =

ex1 (1 —alef— _
fézl)lZz (21 ]22) = afi e’ 1eS1e afet 1] [QZl]Bl 1’
and

B3
B2 + 3

3 -1
o)z Q="

(2122) =

81

3 Moment Generating Function

In this section, we present the joint moment generating function
of (Z1, Z5), the marginal moment generating function of Z; and
used the moment marginal generating function of Z; to derive the
expectation of 7.

31 The marginal
function

moment generating

We drive the marginal moment generating function of Z;.
Lemma (2). If Z ~ BOGE — G(y), then the moment gener-
ating function of Z; is given by

Mz(t) _ (61+631)
1=0 j=0 k=0 [=0 m=0 !
U(B1 + Bs)
cl—m+1)—1 (14)

(] l
WhereU—<k)<m

QI TINHL(G41)T (j—k+1)!
it

Using f z, (21) in (12) and substituting in

) (71)i+j+k+m %

Ma(t) = B ™) = [ e g (),
0
we get
o0 o
MZl (t) = / e_tzla)\(ﬁl + Bs)eczl""Cl_a[e —1]
0
1 B1+B3—1

X {1 — efa[ec 71]} : dz

by using binomial series expansion of

{1 _efa[eml]}ﬁl*ﬁs‘l

{1 —e_“[ecl—l]}ﬁﬁﬁsfl i

(51+@31>
i=0 !

X( 1)1 7(1[ <171]1'

then
Mgy (t) = 0&\@4‘532 <51+?3_1>
i=0

% /Oo e—tzl +cz1 +C1—@[€<1 _1](i+1)d2’1 (15)
0

by using taylor series expansion of eale -1+

DI

7=0

we get

e —1]Gi+1) _ 1)7ad ( z+1) _1)j

(e
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therefore, 4 Reliability Analysis
B1+ps—1 The joint reliability function, joint hazard rate, joint mean wait-
M A ; ’ ’

7, (¢ ; ZO aX(fy + B3) < i ing time, joint reversed (hazard) function, and its marginal func-

! ) . tion are some of the reliability measures that were introduced in

Lol (4 1) ; ;
(_1)1,+J % this section.
jl

emtatenta (& 1) dy 4.1 Joint reliability function
0

Assume (71, Z5) be two dimensional random variables with
CDF Fz, 7, (#1, 22), and the marginal functions are Fz, (1) and

( By + By —1 ) Fz, (#2) then, the joint reliability function Rz, z, (21, z2) is

again using binomial and taylor series expansion, we get

TR 30 3) 3 35S

=0 j=0 k=0 [=0 m=0

(8

Rz, 7, (z1,22) = 1=-Fz, (21)—Fz, (22)+Fz, z, (#1,22). (16)

X
g

+ B3

~—

/ e~ trartea(l=mtl) g, Assume the random vector (Zy, Z) has the BOGE-G then, the
0 joint reliability function of (71, Z5) is given by
therefore, we can rewrite (15) as follows:

R1 (2’1,22) Zf 0< 21 < 29

© oo j oo 1
le(t) = ZZXJ:Z Z < ﬂ1+537 1 ) thzz (21,2’2) = RQ (21,212) Zf 0< 29 < 21 (17)

i=0 j=0 k=0 1=0 m=0 Rs(z,2z) if 21 =22=z2,
X U(f + Bs) where
c(l—-m+1)—t

Ry (z1,22) =1 —F., (z1) — F., (22) + F1 (21, 22) ,

3.2 The joint moment generating function .
it equal to
The joint moment generating function of (z1, z2) can be derive

in next theorem.
Theorem (4). If (21, 22) having BOGE — G(yp) distributions, R (21,22) = 1— [Q.]7 7 — Q.17 +1Q..1" 7 [Q.,]
then the joint moment generating function of (z1, 22) is given by

In addition,

Mt tz) — iiiii(ﬁﬁ@g’l)(@il)

Ry (21,22) = 1= F,, (21) — F, (22) + F2 (21, 22) ,

o aBz(Br + B3)U .
[t +tcl—m+1)[ta—c(l—m+1) it equal to
oo oo j oo
B+ Bs—1 B2 —1
IYYEy (A )(212
i=0 j=0 k=0 1=0 m=0 2(217 22) —1_ [Q21]51+53 _ [Q22}62+B3 + [Qzl]Bl [QZQ]BQ_‘—B:}
y aXBz(B1 + B3)U
[t1 +c(l—m+1)][t1 +t2 — 2¢(Il —m +1)] Furthermore
0o oo S l
+ZZEJ:Z Z < ﬁ2+?3 - > < 512_— ! ) Ry (21,22) = 1= F, (21) — sy (22) + Fo (22)
=0 j=0 k=0 =0 m=0 it has been found that

>+ B3)U
[~ti+c(l—m+D][ta—c(l—m+1)]

Ry(z,2) =1— [QZJBH_BS — [QZ2]52+53 + [Qz],’31+52+53 )

( 52-5-@3—1 > ( 51'—1)

0 ! ' 42 The joint hazard rate function and its
2 + B3)U marginal functions

tl +t2—20(l—m—|—1)]

)

>

S
]

Assume (Z1, Z3) be two dimensional random variable with

m
0o [e'e) ] [e'e) l . oqe .
B+ Ba+85—1 PDF fz, z, (%1 ,22), and reliability function Rz, z, (%1, 22).
1535359 35 Bl (e

Basu [3] defined the bivariate hazard rate function as

fz1.25 (21 ,22)
Rz, 7, (#1,22)

h(Zl,Zg) = (18)

X[—(tl +t)+c(l—m+1)]
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Moreover, the bivariate hazard rate function for the random vector
(Z1, Z5) which has the BOGE-G is

hi(z1,22) if 0<2z1 <29
th,Z2 (21722) = ho (21,22) if 0<z3<2z, (19)
hs(z,2) if z1=22=2,
where Al )
21, %2
h 1 )
1 (21 22) = Ri (21, 22)

Therefore, we have

042(51 + 63)/\26621+C1—a[e<1—1] [Qz1]61+ﬁ3_1
L e 2N

hl (21722) = 1— [Qz }81+B3 o [Qz ]ﬁ1+53
+1Qu ] [Qn,) 2
ha(z1,22) = ]Jm
a261/\266z1+C1704[e€1 71} [QZ1}51_1
(B2 + Ba)ecste ol 1] g, Pt
h2(2172'2) = 1— [Qz ],31+ﬂ3 o [Qz ]62+,33
+[Q)7 Q)
and
R
af )\echrCsfoc[e%—l} [Q2}51+ﬁ2+53_1
hs(z,z) = 3 - [QZ}BIJF,@S - [Qz]ﬁz+53

+ [Qz]ﬂl +B2+PB3
Moreover, the marginal hazard rate functions h(z; ), of the BOGE-

G can be obtained from the marginal probability density functions
of z; and the marginal reliability function of z;

a(B + 53))\GCZ1+C17a[e<171] [Q21]61+5371

hz1 (Zl) = - [Q21]51+63 ’
similarly,
04(52 + 53))\66z2+<27a[6<2*1] [Q22]52+5371
hzz (22) - 1_ [Qz2]’82+’83 .
4.3 The joint mean waiting time and its

marginal functions

The waiting time is closely related to another important random
variable reversed hazard rate function. In fact, since the reversed
hazard function already imposes the requirement of a failure in
[0,t], it is useful to describe the amount of time that has passed
since the failure in several applications (actuarial science, relia-
bility analysis). One of the most crucial uses of the waiting time

is to describe various maintenance strategies to any system. The
distribution function can be predicted using the waiting time ob-
servations. The joint mean waiting time function M, (¢1,%2) is
defined as follows

My, (t1,t2) =

v

The following lemma obtains the joint mean waiting time of
(Zl, 22) .

Lemma (3). The joint mean waiting time M,,(¢1,t2) to the
random variables Z; and Zs is

(21, 22) dzadz;. 20)

My, (t1,t2)
ng (tla t2)
My, (1)

ift <ty
Zf t1 > to
Zf tl - t27

My(t1,t2) = 21)

where

8

>

0

co oo J
My (ty,t2) = t1 ) ZZZ
’ =0 j= 01l=0 m=
j 2 I 2
m
52 (71)2(i+j+k+m)
T
(i) N!(j — k)
[ec(lfm)tl _ 1] [ec(lfm)tg _ 1]
(11?2 2+ (1 — m)2

Ao

< 514‘33

>

Mg

My (t1,t2) =

oo oo J
o e

(*1)() (2)
< 5; )(1)2(i+j+k+m)
(i)™ N (j — k)2 x

[ec(lfm)tl _ 1] [ec(lfm)tQ _ 1]
(GUN? 20D (1 — m)? ’

MN

and

(_1)i+j+k+m (O[Z)j A
(] _ k’)l [ec(l—m)t _ 1]
ST —m)
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44 The joint reversed hazard rate func-
tion and its marginal functions

Assume (z1, z2) be two dimensional random variable with CDF
Fz, 7, (z1,22) and pdf fz, 7, (21, z2) .Then joint reversed hazard
rate function is

21, %
r (21722) — fZl,Zg ( 1 2) )
Fz, 2, (z1,22)
Thus, the bivariate reversed hazard rate function for the random
vector (21, z2) which has the BOGE-G is

(22)

r1 (z1,22) if 0< 2z <29
rz..2, (71,22) = 12 (21,22) if 0<z<z  (23)
r3 (z,2) if z1=22=2,
Where A )
_ J1is, %)
r (21, 22) = Fr (o)
then, we have
Ji(z1, 22)
ri(z1,20) = 2720
(21, 22) Fi(z1,22)
a2\2ecr1 G —alet —1] (81 + B3)
(21, 22)  fpeeertiaals -1
ri(z1,22) =
e Q-] 1Q-=]
when h )
_ J2l#;1,%22)
" (21,22) B Fy (21722)

therefore, it equal to

7“2(21, ) = ;:Z((Z’ Z))
a261 )\2€c21+§17a[e<1 71]
X (B2 + 53)6522+<2*a[e<2*1]
TQ(Zlsz) = [Q ][Q ] )
also,
T3 (2722) = 73;:; ((Z))
hence
cz+(3—ales3 —1
rg(z,zz) = a(ﬁl +Fat 53))\6 . [ ]

Q-]

In addition, the marginal reversed hazard rate functions rz, (21)
and 7z, (22) to the BOGE-G are

_ fZl (Zl)
%) = )
it equal to
a(ﬁl + 53))\6021 eS1 e*a[él 71]
Tz, (21) = [Q ] ,
z1
similarly,
a(ﬁZ + BB))\@CZQ eCZ2+C2—a[e€2_1]
rz,(22) = |

[sz]

5 Maximum Likelihood Estimation

In this section, we use maximum likelihood to estimate the un-
known parameters of the BOGE-G distribution. Using the same
justification as that given in [10]. we want to estimate the other
parameters (). Suppose that we have a sample of size n, takes the

form {(z1, 22) , .... (21n, 22 ) } from BOGE-G distribution.
We employ the notation shown below

ny = (4215 < 22;),n0 = (4213 > 22;)
(i§Z1i = ZZi)

ny + no + ng.

, N3 =
wheren =

Based on the observations, the likelihood function is calculated
using the density functions fi (21, 22) , f2 (21, 22) and fj (2)

ni no ng

) = H f1 (21,5 224) H f2 (214, 22i) H fo (%)
i=1 i=1 i=1

and let

Hj‘ = € s
Wy o= TN o

The log-likelihood function can be expressed as

o) = miln[a?Bo(Bi+ )]+ o
i=1

n1

23

i=1

—1)—ay (Wy-1)
1=1

+(Br+Bs—1)> In(1—Hyu)+ed 2

i=1 =1

FAS ) e Y (Wa = 1)+ (B 1)
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We obtain the likelihood equation by computing the first partial
derivatives of the above equation with respect to 31, 82, 83, v, A

and c, and setting the results equal zeros as
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To get the MLEs of the parameters (), we have to solve
the above system of six non-linear equations with respect to
081, B2, B3, a, A and c. Since it is difficult to solve the above equa-
tions, numerical methods must be used to obtain the MLEs, the
second derivatives for the BOGE-G distribution are provided in
the appendix.

Using the variance-covariance matrix, we can obtain the (1 —
0)100% confidence intervals for the parameters 1, 2, 83, @, A
and c as shown in the following forms.

ﬁi + Z% Var (51>,
where Z 3 is the upper (%) th percentile of the standard normal
distribution.
6 Data Analysis
By comparing the BOGE-G distribution with other well-known

distributions like the bivariate exponentiated generalized weibull
gompertz (BEGWG) distribution and the bivariate exponentiated

modified weibull (BEMW) distribution, we demonstrate the em-
pirical significance of the BOGE-G distribution. For more in-
formation, see [5, 23]. The fitted distributions are compared us-
ing a number of criteria, such as the maximum log-likelihood
(L), Akaike information criterion (AIC), correct Akaike infor-
mation criterion (CAIC), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC) test, Bayesian esti-
mation (BSE), and confidence interval, to determine which distri-
bution best fits the data.

6.1 The First Real Data

Here, the data set was sourced from Meintanis [17]. The data set
in table 1 shows data from football (soccer) games where at least
one kick goal was scored by the home team and at least one goal
was scored directly from a penalty kick, foul kick, or many other
direct kicks (all of them will be referred to as kick goals by any
team). Here Z; stands for the time in minutes of the first kick goal
scored by any team. Z is the first goal of any kind that the home
team has ever scored. Clearly all possibilities are open Z; > Zs,
Zo > Z1and Zy = Z1.

Table 1. The UEFA Champions League data for the year 2004:2005 and 2005:2006

Zy Zy Zy Ly Zy Zs Zy I3
26 20 82 48 34 34 25 14
63 18 72 72 53 39 55 11
19 19 66 62 54 7 49 44
66 85 25 9 51 28 24 24
40 40 41 3 76 64 44 30
49 49 16 75 64 15 27 27
8 8 18 18 26 48 28 28
69 71 22 14 16 16 2 2
39 39 36 52 44 13

From this data, we can determine the values of the unknown
parameters and the confidence intervals listed in Table 2.

Table 2. The Confidence interval for the BOGE-G distribution

Parameter Estimated interval Confidence interval
51 0.64 [0.348, 0.931]
o 0.945 [0.348,1.458]
53 0.778 [0.422,1.133]
o 1.234 [-0.015,0.115]
A 1.464 [1.339,1.529]
c 1 [0.935,1.065]

In order to demonstrate that the BOGE-G distribution is suit-
able for use as a lifespan model, we compare it to the bivariate
exponentiated generalized weibull gompertz (BEGWG) distribu-
tion and the bivariate exponentiated modified weibull (BEMW)
distribution. This data set is fitted using the BOGE-G model. Ta-
ble 3. lists the values for the test statistics for the log likelihood
(L), Akaike information criterion (AIC), correct Akaike informa-
tion criterion (CAIC), Bayesian information criterion (BIC), and
Hannan-Quinn information criterion (HQIC).

From Table 3. Because the BOGE-G distribution has the lowest
AIC, CAIC, BIC, and HQIC test values, we may declare that it is
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Table 3. L,AIC, CAIC, BIC and HQIC

The Model L AIC CAIC BIC HQIC

BEGWG -442.821 897.642 900.642 906.974 900.863
BEMW -256.423  524.846 527.846 534.179  528.068
BOGE-G -61.701 135402 138.402 144.734  138.62

the best distribution.

6.2 The Second Real Data

The data set displays league information for American football
(National Football League). It is formed from the games that were
played over three weekends in 1986. The data was initially pub-
lished in "Washington Post,” and it is also accessible in [4]. Here,
Z1”the game time” refers to the first points scored by kicking the
ball between the goal posts, while Z5 “’the game time” refers to the
first points scored by moving the ball into the end zone, denoted by
Zy and Zs, respectively. These times are useful for casual view-
ers who want to know how long they will have to wait to see a
touchdown or for viewers who are just interested at the beginning
stage of a game.

The data (scoring time in minutes and seconds) are shown in
table 4. In addition, all of the data points are split by 100 just for
computation. Clearly all possibilities are open Z; > Zs means
that the first score is an unconverted touchdown are safety, Z5 >
Z1means that the first score is a field goal and 75 = Z;means the
first score is a converted touchdown.

Table 4. American Football (National Football League) league data

Z1 Z Z1 Z Z1 Za Z1 Zs
2.05 3.98 8.53 14,57 290 2.90 1.38 1.38
9.05 9.05 31.13 4988 7.02 7.02 10.53 10.53
0.85 0.85 1458 20.57 6.42 6.42 12.13  12.13
343 3.43 5.78 1040 8.98 8.98 14.58 14.58
7.78 7.78 13.80 49.75 10.15 10.15 11.82 11.82
10.57 1428 7.25 7.25 8.87 8.87 5.52  11.27
7.05 7.05 4.25 4.25 1040 10.25 19.65 10.70
2.58 2.58 1.65 1.65 2.98 298 17.83 17.83
7.23 9.68 6.42 15.08 3.88 6.43 10.85 38.07
6.85 3458 422 9.48 0.75 0.75

3245 3245 1553 1553 11.63 17.37

From the above data, we can determine the values of the un-
known parameters and the confidence intervals listed in Table 5.

Table 5. The Confidence interval for the BOGE-G distribution

Parameter Estimated interval Confidence interval
51 0.059 [-0.022, 0.14]

B2 0.372 [-0.022,0.556]

B3 0.744 [0.5,0.988]

o 0.05 [-0.043,0.143]

A 2 [1.907,2.093]

c 1 [0.907,1.093]

In order to demonstrate that the BOGE-G distribution is suit-
able for use as a lifespan model, we compare it to the bivariate
exponentiated generalized weibull gompertz (BEGWG) distribu-
tion and the bivariate exponentiated modified weibull (BEMW)

distribution. This data set is fitted using the BOGE-G model. Ta-
ble 6. lists the values for the test statistics for the log likelihood
(L), Akaike information criterion (AIC), correct Akaike informa-
tion criterion (CAIC), Bayesian information criterion (BIC), and
Hannan-Quinn information criterion (HQIC).

Table 6. L,AIC, CAIC, BIC and HQIC

The Model L
BEGWG
BEMW

BOGE-G

AIC CAIC BIC HQIC
-485.972  983.944 986.344  994.37  987.766
-242.273  496.546  498.946 506.972  500.368
-236.704  485.409 487.809 495.835 489.23

From table 6. The BOGE-G distribution has the lowest values
for the AIC, CAIC, BIC, and HQIC tests, hence we can declare
that it is the best distribution.

7 Simlulation Study

In this section, we use simulation to eassess the performance
of the MLEs for the BOGE-G parameters. For different combina-
tions of ¢ sample sizes n=(20,50,100 and 200) are generated from
the BOGE-G model. The population parameters are generated us-
ing the software Mathcad. In Table 7, the empirical findings are
presented. It is clear that the estimates for these sample sizes are
fairly consistent and near to the actual values of the parameters.
Furthermore, the biases and standard errors of the MLEs dimin-
ish as sample size increases as expected. This study presents an
assessment of the properties for MLE in terms of bias and mean
square error (MSE). The following algorithm shows how to gener-
ate data from the BOGE-G distribution.

* Generate vy, vo and v3 from v(0, 1).
1
* Compute U; = (%)ln{l +5In {1 —1m@ fv)ﬂ}},
where : = 1, 2, 3.
* Obtain Z; = max {Uy, Us} and Z3 = max {Us, Us}.

The MLEs values are listed in Table 7 for the BOGE-G distri-
bution when (a, A, ¢, 51,02,83) = (0.7,0.7,0.7,3, 3.4, 3.5) based
on complete data.

Table 7. Estimation summaries for the BOGE-G distribution, for selected values
of A\=a=c¢c=0.7,51 =3,82=34and 53 = 3.5

[ n=20 | n=50 [ n=100 [ n=200 |
Bias MSE Bias MSE Bias MSE Bias MSE
-1.217 2747 -0.641 0417 -0.621 0.606 -0.533 0.354
-3.112° 12,659 -1.5 2.603 -1.833 5322 -1.174 1.544
-1.584  4.285 -1.71 3318 -1.199 1.619 -1.117 1.435
0.018 0.037 0.07 0.014 0.118 0.049 0.131 0.045
0.332 0.11 0.294  0.086 0.31 0.096 0.291 0.085
-0.129  0.023  -0.054 0.0056 -0.1 0.016 -0.003 0.0023

From Table 7. , the following observations can be noted:

* The MSEs for the MLE always decrease to zero when n
Srows.

* The magnitude of bias in general always close to zero when
n Zrows.
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8 Conclusions

In this paper we have introduced a new model, called the bi-
variate Odd Generalized Exponential Gompertz (BOGE-G) distri-
bution whose marginals are odd generalized exponential gompertz
distributions.We also examined some of the new bivariate distribu-
tion’s statistical features. Based on complete data, the parameters
were estimated using the maximum likelihood technique, and it
was founded that the MLEs performed quite well in estimating the
parameters. We provided the observed Fisher information matrix.
We derived the confidence interval estimates of the parameters us-
ing the maximum likelihood method . Two real data sets were
used to demonstrate the usefulness of the proposed model, and it
was founded that the new model provide a better fit than other
sub models like the bivariate exponentiated generalized weibull
gompertz (BEGWG) distribution and the bivariate exponentiated
modified weibull (BEMW) distribution. We anticipate that the
suggested model will find widespread use in disciplines like bi-
ology, gerontology, computer science, marketing, network theory,
and others.
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