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1. Introduction 

Stochastic differential equations  have an important role in explaining some  phenomena such as 

population dynamics [1], optimal pricing in economics [2], motions of ions in crystals [3], and 

thermal  noise [4]. Finding the exact solution of such stochastic differential equations is difficult in 

many cases. Thus, numerical and semi-analytic methods have been developed. Like, 

Euler-Maruyama method [5,6], Finite  difference schemes [7,8], theta methods [9], finite element 

approaches [10–12], Homotopy analysis method [13], wavelets collocation method [14], Picard 
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method [15], hat function operational matrix method [16], operational matrix of based on Chebyshev 

polynomials [17,18], B-spline  collocation method [19,20] and mean-square dissipative  method [21]. 

Additionally, many theoretical studies about the existence and uniqueness have been conducted by 

researchers in the literature [22–24]. 

The main contribution of the current paper is to implement a numerical technique based on 

Temimi and Ansari (TAM) [25] to solve the following model of stochastic nonlinear differential 

equations: 

( , )+( ( , )+  (t)) (t),                      (0)=
du

F t u G t u f n u a
dt

=                 (1) 

where  (t)u is the unknown function, 𝑡 represents the independent variable, ),( utF  and ),( utG  

are linear or nonlinear functions and  (t) n is Gaussian white noise. The relation between the Wiener 

process )(tw and the Gaussian white noise  (t) n is defined by 

( )
( )

dw t
n t

dt
=                                            (2) 

the expectation 0)]([ =tnE , and finite variance 
2)]([ =tnVar . 

The Temimi and Ansari method (TAM) has been successfully applied to solve many classes of 

differential equations, such as nonlinear second-order multipoint boundary value problems [25], 

ordinary differential equations [26], Fokker-Planck’s equations [27], and korteweg-de Varies 

equations [28]. In this paper, we modified the Temimi-Ansari method called the discrete 

Temimi-Ansari method DTAM to handle the stochastic nonlinear differential Eq (1). The proposed 

method provides a prodigious performance by merging the traditional TAM with the finite difference 

numerical scheme. To test the proposed method, we solve four stochastic models. These models are 

stochastic Langevin's equation, Ginzburg-Landau equation, Davis-Skodje, and Brusselator systems. 

These problems illustrate the accuracy of the proposed method as compared with the stochastic 

Runge Kutta method (SRK), and semi-analytic methods. 

This work is structured as follows: Section 2, introduces the discrete Temimi-Ansari method (DTAM). 

In the third section, the stochastic models were solved using the proposed method. Finally, 

conclusions are presented in Section 4. 

2. Discrete Temimi-Ansari method and convergence analysis 

Consider the following differential equation in the form is 

[ ( )] [ ( )] ( ) 0L u t N u t g t+ + =                               (3a) 

with initial conditions: 

     , 0
j

j

d u
I u

dt

 
= 

 
                                 (3b) 

where 𝐿 and 𝑁 represent the linear and nonlinear operators, respectively, and 𝑔(𝑡) represents the 

inhomogeneous term. The Temimi-Ansari method was used to solve differential Eq (3) as follows: 

First consider the initial approximate function 𝑢0(t), which is the solution of the following 
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initial value problem 

0
0 0[ ( )] ( ) 0,          , 0

j

j

d u
L u t g t I u

dt

 
+ = = 

 
                          (4) 

To find the next approximate function 𝑢1(t), the following problem must be solved 

1
1 0 1[ ( )] [ ( )] ( ) 0,                , 0

j

j

d u
L u t N u t g t I u

dt

 
+ + = = 

 
                  (5) 

The nth approximate functions )(tun can be evaluated in the same way. Then 

n-1[ ( )] [ ( )] ( ) 0,      2,3,......,      , 0
j

n
n n j

d u
L u t N u t g t n I u

dt

 
+ + = = = 

 
          (6) 

In this method, it is very serious to note that each of ( )nu t is separately a solution to model (3a). 

We document that this scheme is easy to implement and has the distinction that each solution is a 

refinement of the previous iteration. Sequential solutions must be verified versus the previous 

iteration to confirm the convergence of solutions. The analytical solution converges to the exact 

solution as the number of iterations increases. Depending on this, an analytical solution can be 

obtained with good agreement with the exact solution as 

( ) lim ( )n
n

u t u t
→

=                                       (7) 

An error analysis of a single nonlinear ordinary differential equation, generalization of these 

theorems applied to systems of differential equations, and a complete study of convergence criteria 

for the TAM iterative scheme are presented in [26,29,30]. 

To supply the convergence analysis for the proposed method in this paper, we begin by 

submitting the following steps for the proposed approximate analytical scheme: 

0 0

1 0

2 0 1

0 1 1

( ),

[ ],

[ ],

.

.

[ ..... ]n n

u t

 

  

    −

=


= 

 =  +





=  + + +

                          (8) 

The operator [ ( )]u t  is defined as 

1

0

[ ( )] ( ) ( ), 1, 2,3,........
n

n n i

i

t u t u t i
−

=

 = − =                        (9) 

where the term ( )nu t  is the analytical solution of the TAM. 

According to these criteria, appropriate conditions for the convergence of this technique are 

studied with the following theorems. 
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Theorem 1. The series solution 
0

( ) ( )i

i

u t u t


=

= will represent the exact solution to the given 

nonlinear problem if this series solution is convergent. 

Proof. Fruition [29,30]. 

Theorem 2. Suppose that   defined in Eq (9), is an operator from   to  , where   is a 

Hilbert space. The series solution 
0

( ) ( )
n

i

i

u t u t
=

= converges if  0 <  1   such that 

 0 1 0 1 1[ ..... ] [ ..... ] ,   0 .n n       − + + +   + + +     

This theory is a special case of fixed-point theory and it is sufficient to prove the convergence of 

TAM. 

Proof. Fruition [29,30]. 

Theorem 3. If the series solution 
0

( )i

i

u t


=

 is convergent to  ( )u t , then the maximum error ( )nE t is 

given by 

0

1
( )  

1

n

nE t r u
r


−

                              (10) 

where the tailless series 
1

0

( )
n

i

i

u t
−

=

  is used as a way to solve the presented nonlinear problem. 

Proof. Fruition [29,30]. 

The solution obtained by TAM converges to the exact solution provided that:  0 < < 1  such 

that 

1

1 1

1

 0

,              

 00,     

nn

n n

n

B







−

− −

−

 


= 


=

                          (11) 

when 10 <  1 ,  1, 2,3,..nB n−  = the power series solution
0

( )n

n

u t


=

  converges to the exact solution ( ).u t  

The  TAM approach can be used to solve the differential Eq (1) with a random function 

excitation. However, only a few iterations can be calculated due to the difficulty of integrating 

random functions. We adopted discrete Temimi-Ansari (DTAM) to solve stochastic nonlinear 

differential Eq (1) as follows: 

Suppose: 1 2 n0 < < ....<  t t t T= is a uniform mesh of ],0[ T  with i i-1 ,  1 .t t P i n− =   Let ],0( Ph  be 

a given constant. For a given h , the finite difference formulas to approximate
dt

tdu i )( 10 +  and
dt

tdw i )( 1+  

are given by 

1

0 1 0 0 1 1( ) ( )
( ),      

i i

i i i idu t u u dw t w w
O h

dt h dt h

+

+ + +− −
= + =                      (12) 

where iiii

i

j

i

i wtwandwtwutuutu ==== ++

+

+ )(   )(,)(,)( 1100

1

010 . Therefore, the first iterative equation 
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to discretize the initial approximate function )( 10 +itu  is 

 1

0 0 1 ( )( )i i

i i iu u f t w w +

+= + −                             (13) 

and by using 

11

1 1 11 1( ) ( )
( ),              ( )

i ii i

i n i n ndu t du t u uu u
O h O h

dt h dt h

++

+ + −−
= + = +               (14) 

The next discrete approximate function )( 11 +itu and the nth discrete approximate functions )( 1+in tu

can be computed as follows 

1

1 1 0 0 1( , ) ( ( , ) ( ))( )i i i i

i i i i iu u hF t u G t u f t w w +

+= + + + −                     (15a)
1

1 1 1( , ) ( ( , )  ( ))( ),  2,3,4,......i i i i

n n i n i n i i iu u hF t u G t u f t w w n +

− − += + + + − =            (15b) 

The Wiener process )(tw  is a random function, so the solution must be based on k runs with 

different samples of the Wiener process )(tw . Then the iterative Eqs (13) and (15) can be written in 

the following form: 

1

0, 0, 1, , ( )( )i i

k k i i k i ku u f t w w+

+= + −                           (16a) 

1

1, 1, 0, 0 1, ,( , ) ( ( , )  ( ))( )i i i i

k k i k i i i k i ku u hF t u G t u f t w w +

+= + + + −               (16b) 

1

, , 1, 1 1, ,         ( , ) ( ( , )  ( )) ( ),   2,3,4,......i i i i

n k n k i n k i n i i k i ku u hF t u G t u f t w w n +

− − += + + + − =      (16c) 

The time step h  should be used to warrant convergence of systems (16a)–(16c). Applying the 

convergence standard of the fixed-point iteration by differentiating the right-hand side of Eq (16b) 

concerning 0,ku we obtain 

0, 0,

1, ,

0, 0,

( , ) ( , )
( )<0

i i

i k i k

i k i ki i

k k

F t u G t u
h w w

u u
 +

 
+ −

 
                    (17) 

0,

0,

1, ,

0,

0,

( , )

<- ( )
( , )

i

i k

i

k

i k i ki

i k

i

k

G t u

u
h w w

F t u

u

 +




−





                         (18)

 

Let 
0, 0,

1 2

0, 0,

( , ) ( , )
,

i i

i k i k

i i

k k

G t u F t u
f f

u u

 
= =

 
 then we have: 

1
1, ,

2

<- ( )i k i k

f
h w w

f
 + −                                (19) 

The condition 1
1, ,

2

< -  ( )i k i k

f
h w w

f
 + −  is a sufficient condition for the time step used in FDM 

for convergence. Due to similarity in the other two Eqs (16a) and (16c), the same condition can be 

also used in the numerical FDM approximations. 

Finally, by taking the mean and the variance of the solution sequences {𝑢𝑛,1, 𝑢𝑛,2, 𝑢𝑛,3, … . , 𝑢𝑛,𝑘} 
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we obtain the mean and the variance of the solution. This elegant combination of the traditional TAM 

and finite difference numerical scheme produces a fast and effective tool in handling stochastic 

nonlinear differential equations and this is one of its uncountable merits. Thus, we simply calculate 

many iterations without time consumption in comparison with traditional methods such as HAM, 

WHEP, and even TAM which are unable to perform many iterations due to the complexity of 

calculations of the mean and the variance. 

3. Numerical simulation and discussion 

3.1. Numerical simulation 

In this section, four examples are given to illustrate the applicability of the proposed method, 

and all of them are performed on a computer by using the Mathematica program. 

Example 1. Consider the stochastic Langevin's equation [31] of the form: 

2 20.5 (t),                      (0)=2                                 0tdu
u e n u t

dt

−+ =                (20) 

The constructed iterative scheme (16) for stochastic Langevin's Eq (20) at 1= is 

21

0, 0, 1, , ( )iti i

k k i k i ku u e w w
−+

+= + −
                             (21a)

21 2

1, 1, 0, 1, ,0.5   ( )iti i

k k k i k i ku u h u e w w
−+

+= − + −                          (21b)

21 2

, , 1, 1, ,0.5   ( ),  2,3,4,....iti i

n k n k n k i k i ku u h u e w w n
−+

− += − + − =                  (21c) 

By choosing 01.0 =h , Figure 1 displays the expectation of sequences {𝑢5,1, 𝑢5,2, 𝑢5,3, … . , 𝑢5,1000} 

and the solution by the stochastic Runge Kutta method (SRK), which was built in Mathematica 

software. The variance by the proposed scheme and stochastic Runge Kutta method (SRK) after 5 and 6

iterations are shown in Figures 2 and 3, respectively. These figures confirmed that the resulting 

numerical scheme solutions (21) are compatible with the stochastic Runge Kutta method (SRK) in a 

good manner. Additionally, the proposed solutions illustrated the accuracy compared with WHEP, 

Pickard, HPM, and HAM [31]. 

 

Figure 1. The mean of stochastic Langevin's equation by 5 iterations of DTAM. 
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Figure 2. The variance of stochastic Langevin's equation by 5 iterations of DTAM.

 

Figure 3. The variance of stochastic Langevin's equation by 6 iterations of DTAM. 

Example 2. Consider the following scalar stochastic Ginzburg-Landau equation [23]: 

( )
( ) ( ) ( )( ) ( )

( )
( )2 30.5 , 0

du t dw t
u t u t u t u a

dt dt
   = + − + =              (22) 

where 0, , 0    . Eq (22) from the theory of superconductivity is derived by Ginzburg and Landau 

to describe a phase transition in a deterministic sense [32,33]. By choosing 1.5 = , 1 = = and

0.01h = , the proposed iterative Eq (16) for the Ginzburg-Landau Eq (22) are 

1

0, 0,

i i

k ku u+ =                                  (23a) 

1 3

1, 1, 0, 0, 0, 1, ,0.02 0.01 ( )i i i i

k k k k k i k i ku u u u u w w+

+= + − + −                   (23b) 

1 3

, , 1, 1, 1, 1, ,0.02 0.01 ( ), 2,3,i i i i

n k n k n k n k n k i k i ku u u u u w w n+

− − − += + − + − =            (23c) 

By choosing ( )0 2u = and 5000k = runs with different samples of the Wiener process ( )   tw , the 

expectation and the variance of the proposed method and stochastic Runge Kutta method are shown in 

Figures 4 and 5, respectively. These figures confirmed that the presented solutions are compatible 
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with the stochastic Runge Kutta method in a good manner. 

 

Figure 4. The mean for Ginzburg-Landau equation by 7 iterations of DTAM. 

 

Figure 5. The variance for Ginzburg-Landau equation by 7 iterations of DTAM. 

Example 3. Consider Davis-Skodje system is [33] 

( )
( ) ( )

( )1
  

du t dw t
u t u t

dt dt
= − +                             (24a) 

( )
( )

( )

( )

( )

( )( )
( )

( )2

2
       

1 1

dv t u t u t dw t
v t v t

dt u t dtu t
   = − + − +

+ +
              (24b) 

The chemical reaction system (24) introduced in [34] and if 1   gives a measure for the spectral gap 

or stiffness of the system. This system is simulated when 0.01 = = and 1000 = , and the proposed 

iterative scheme is given by 
1

0, 0,

i i

k ku u+ =                                    (25a) 

1

1, 1, 0, 0, 1, 1, 1, ,   0.01 ( )i i i i

k k k k i k i ku u h u u w w+

+= − + −                     (25b) 

1

, , 1, 1, 1, 1, 1, ,   0.01 ( ), 2,3,i i i i

n k n k n k n k i k i ku u h u u w w n+

− − += − + − =                    (25c) 
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1

0, 0,

i i

k kv v+ =                                    (25d) 

( )
0, 0,1

1, 1, 0, 0, 2, 1, 2, ,2

0,
0,

1000 1000 0.1 10 ( )
1 1

i i

k ki i i i

k k k k i k i ki
i

k
k

u u
v v hv h h v w w

u u

+

+= − + − + −
+ +

     (25e) 

1, 1,1

, 1, 1, 1, 2, 1, 2, ,

1, 1,

1000 0.1 10 ( ), 2,3,..
1 1

i i

n k n ki i i i

n k n k n k n k i k i ki i

n k n k

u u
v v hv v w w n

u u
 − −+

− − − +

− −

= − + − + − =
+ +

  (25f) 

The stable equilibrium point for the nonlinear system (24) is (0, 0) proven in [34]. Figure 6 simulates 

the nonlinear system (24) for 0 10t   using 100k = samples with initial position 

( ) ( )( ) ( )0 , 0 6,0.85u v =  by using the proposed scheme (25). We can see that the current method 

converges toward the asymptotic solution (0, 0). 

 

Figure 6. The discrete TAM solution for Davis-Skodje system. 

Example 4. Consider a stochastic version of the Brusselator system [35]: 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( )221 1 1
du t dw t

u t u t u t v t u t u t
dt dt

  = − + + + + +            (26a) 

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( )22     1 1
dv t dw t

u t u t u t v t u t u t
dt dt

  = − − − + − +              (26b) 

This nonlinear system is unforced periodic oscillations in certain chemical reactions. We 

simulate this system when 1.9 = and 0.1 = , and the proposed iterative scheme of it is given by 

1

0, 0,

i i

k ku u+ =                                    (27a) 

( ) ( ) ( )
2 2

1

1, 1, 0, 0, 0, 0, 0, 0, 1, ,0.9 0.9 1 0.1 1 ( )i i i i i i i i

k k k k k k k k i k i ku u hu h u h u v u u w w+

+= − + + + + + −      (27b) 

( ) ( ) ( )
2 2

1

, , 1, 1, 1, 0, 1, 1, 1, ,
0.9 0.9 1 0.1 1 ( )

i i i i i i i i

n k n k n k n k n k k n k n k i k i k
u u hu h u h u v u u w w

+

− − − − − +
= − + + + + + −       (27c) 

1

0, 0,

i i

k kv v+ =                                    (27d) 
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( ) ( ) ( )
2 2

1

1, 1, 0, 0, 0, 0, 0, 0, 1, ,1.9 1.9 1 0.1 1 ( )i i i i i i i i

k k k k k k k k i k i kv v hu h u h u v u u w w+

+= − − − + − + −      (27e)

( ) ( ) ( )
2 21

1, 1, 1,, , 1, 1, 1, 1, ,1.9 1.9 1 0.1 1 ( )
i i i i ii i i

n k n k n kn k n k n k n k n k i k i kv v hu h u h u v u u w w
+

− − −− − − += − − − + − + − (27f) 

where 2,3,4,....n = On the interval [0,125]t   with 0.025h = and starting with 

( ) ( )( ) ( )0 , 0 0.1,0u v = − as in [36]. Figure 7 shows that the approximate trajectories of the proposed 

scheme (27) remain close to the origin replicating the behavior of the correct solution. 

 

Figure 7. The discrete TAM solution for Brusselator system. 

3.2. Discussion 

The  TAM approach can solve the differential Eq (1) with a random function excitation. 

However, only a few iterations can be calculated because of the stiffness of integrating random 

functions. We suggested discrete Temimi-Ansari (DTAM) to solve the stochastic nonlinear 

differential equation. We establish an unusual stochastic method to approximate a wide class of 

stochastic differential equations by combining the classical TAM with the finite difference numerical 

scheme. 

The ability of the proposed scheme has been illustrated by several nonlinear stochastic differential 

equations. In particular, Figures 1–5 show that the proposed method is able to solve the nonlinear 

stochastic Langevin's equation (20) and Ginzburg-Landau (22). Also, calculating the amount of the 

convergence parameter 𝐵𝑛 for Eqs (20) and (22) as in (11) is shown in Tables 1 and 2. These tables 

refer to the values of 𝐵𝑛 less than one and verify that the proposed solutions are convergent. In 

Figures 6 and 7, we examine the behavior of the stochastic Davis-Skodje system (24) and the 

Brusselator system (26). It can be seen that the proposed method solutions tend to the solution (0, 0). 

The results reveal that the proposed method is reliable and can be applied to stiff stochastic problems 

in applied sciences. This wonderful scheme produces a fast and functional approach in treating the 

stochastic nonlinear differential equations and this is one of its uncountable advantages. The classical 

semi-analytic method needs a huge time and effort to reach an acceptable solution because of the 

complexity of mean and variance solutions. Our proposed method beats this shortage simply. We can 

expand the above analysis to many random parameters besides the noise enjoined in the previous 

examples. 

 



5103 

AIMS Mathematics  Volume 7, Issue 4, 5093–5105. 

Table 1. Compute the convergence of DTAM solutions for stochastic Langevin's equation. 

Number of iterations 𝑛 = 3 𝑛 = 4 

𝐵𝑛 of the mean 0.99 0.999 

𝐵𝑛 of the variance 0.992 0.959 

Table 2. Compute the convergence of DTAM solutions for Ginzburg-Landau equation. 

Number of iterations 𝑛 = 3 𝑛 = 4 

𝐵𝑛 of the mean 0.99 0.997 

𝐵𝑛 of the variance 0.9992 0.999 

4. Conclusions 

In some cases, the traditional TAM is not suitable to solve the stochastic nonlinear differential 

Eq (1), and we devolved this method to handle this class. The DTAM had been successfully applied to 

find the solutions of the stochastic nonlinear differential equations. The efficiency and accuracy of the 

proposed method were demonstrated by solving stochastic Langevin's equation, Ginzburg-Landau 

equation, Davis-Skodje, and Brusselator systems. Through the figures, it can be seen clearly that the 

discrete TAM solutions converge when the number of iterations is increased. The motivation of our 

work is achieved by comparing the stochastic Runge Kutta method with DTAM. Future directions 

might include solving various complicated stochastic linear and nonlinear differential equations, 

partial stochastic differential equations, fractional differential equations, fractional stochastic 

differential equations, delayed fractional stochastic differential equations, and fuzzy differential 

equations. 
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