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The effects of variable thickness, hydromagnetic flow, Brownian motion, heat generation,
on heat transfer characteristics and mechanical properties of a moving surface embedded
into cooling medium consists of water with nano-particles are studied. The governing
boundary layer equations are transformed to ordinary differential equations. These equa-
tions are solved analytically using (OHAM) for general conditions. The velocity, tempera-
ture, and concentration profiles within the boundary layer are plotted and discussed in
details for various values of the different parameters such as Brownian parameter, thermo-
phoresis parameter, shape parameter, magnetic parameter and heat source parameter the
effect of the cooling medium and flatness on the mechanical properties of the surface are
investigated.
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1. Introduction

The problem of boundary layer flow over a moving surface into a cooling medium is a mathematical simulation to the
heat treatment process. The process of heat-treating is the method by which metals heated and cooled in a series of specific
operations that never allow the metal to reach the molten state. The purpose of heat-treating is to make a metal more useful
by changing or restoring its mechanical properties. Through heat-treating, we can make a metal harder, stronger, and more
resistant to impact. Heat-treating can also make a metal softer and more ductile.

The boundary layer flow caused by a moving surface has drawn the attention of many researches [1–17]. The dynamics of
the boundary layer flow over a moving surface embedded into a regular fluid was the main goal of many researchers until
the advent of new type of fluid, which called a nanofluid.

Nanofluid described as a fluid in which solid nanoparticles with the length scales of 1–100 nm suspended in conventional
heat transfer basic fluid. These nanoparticles enhance thermal conductivity and convective heat transfer coefficient of the
base fluid significantly. Conventional heat transfer fluids such as oil, water and ethylene glycol mixture are poor heat transfer
fluids because the thermal conductivity affects the heat transfer coefficient between the heat transfer medium and the heat
transfer surface. Therefore, numerous methods have been taken to improve the thermal conductivity of these fluids by sus-
pending nano/micro sized particle materials in liquids. The term nanofluid has been suggested by Choi [18]. There are many
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studies on the mechanism behind the enhanced heat transfer characteristics using nanofluids. The collection of papers on
this topic is included in the book by Das et al. [19] and in the review papers by Azizah et al. [20], Aminreza et al. [21], Nazar
et al. [22], Hamad [23], Oztop et al. [24], Yacob et al. [25], prasad [26], and Elbashbeshy et al. [27].

On the other hand, the effect of Brownian motion and thermophoresis of a nanofluid have been investigated by Rana [28],
Alsaedi [29], Khan [30], and Anbuchezhian [31].

All of the previous studies deal with moving surface with constant thickness under different effects of flow and thermo
boundary layer. The variable thickness may occur in the engineering applications more frequently than a flat surface. Fang
et al. [32] studied the boundary layer flow over a stretching sheet with variable thickness. Elbashbeshy et al. [33] studied the
flow and heat transfer over a moving surface with non-linear velocity and variable thickness in a nanofluid.

The objective of the present paper is to study the effect of hydro-magnetic flow and heat transfer characteristic of a nano-
fluid over a steady moving surface with variable thickness on the mechanical properties of the surface in the presence of
Brownian motion and heat source during the heat-treating process.

2. Formulation of the problem

Consider a steady, laminar, two dimensional flow of an incompressible viscous electrically conduction nanofluid over a
continuous moving surface in the presence of a transverse magnetic field B(x) and heat generation Q(x). We assume that
the surface is sufficiently thin with no induced stream-wise pressure gradients and the induced magnetic field produced
by the motion of an electrically conducting fluid is negligible. This assumption is valid for small magnetic Reynolds number.
Further, since there is no external electric field, the electric field due to polarization of charges is negligible. Moreover, it is
assumed that both the fluid phase and nanoparticles are in thermal equilibrium state and no slip occurs between them.

Fig. 1 shows the x-axis runs along the center of the surface, and the y-axis is perpendicular to it.
We assume that the surface is not flat with a given profile, which is specified as y ¼ dðxþ bÞ

1�n
2 , we assume the coefficient d

being small so that the surface is sufficiently thin.
The governing boundary layer equations for the steady two-dimensional laminar hydro-magnetic nanofluid flow over a

moving surface and subjected heat source can be written as
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With boundary conditions
u ¼ Uw; v ¼ 0; T ¼ Tw; C ¼ Cw; at y ¼ dðxþ bÞ
1�n

2

u ¼ 0; v ¼ 0; T ¼ T1; C ¼ C1 as y!1
ð5Þ
where u and v are velocity components in the x and y directions, respectively, t is the kinematic viscosity, q is the density of
the base fluid, r is the electrical conductivity, and a is the thermal diffusion, DB is the Brownian diffusion coefficient, DT is the
Thermophoretic diffusion coefficient, s is the ratio between the effective heat capacity of the nanoparticle and heat capacity
of the fluid, B(x) is the strength of the magnetic field. The special form of the magnetic field BðxÞ ¼ B0ðxþ bÞ

n�1
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Fig. 1. Physical model and coordinate system.
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generation Q(x) = Q0(x + b)n�1 are chosen to obtain a similarity solution. This form of B(x) has also been considered by prasad
[26].

The velocity, temperature, and the nanoparticle concentration are assumed in the form
UwðxÞ ¼ aðxþ bÞn; hðgÞ ¼ T � T1
Tw � T1

; /ðgÞ ¼ C � C1
Cw � C1

ð6Þ
where a and b are constants. n is the shape parameter. It is assumed n > �1 in this work for the validity of the similarity var-
iable and functions.

3. Similarity transformation

We look for a similarity solution of Eqs. (1)–(4) subjected to the boundary conditions (5) of the following form
g ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where g is the similarity variable, and w is the stream function which is defined as u ¼ @w
@y and v ¼ � @w

@x which satisfies Eq. (1),
substituting Eq. (7) into Eqs. (2)–(4), we obtain the following ordinary differential equations
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is the surface thickness parameter and
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indicates the plate surface. We defined F(g) = f(g � a) = f(f), Therefore the similarity Eqs. (8)–(10) and the

associated boundary conditions (11) become
f 000 þ ff 00 � 2n
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Here Pr, Le, M, k, Nb, and Nt denote the Prandtl number, the Lewis number, magnetic field parameter, the heat source param-
eter, the Brownian motion parameter and the thermophoresis parameter respectively.

4. Analytical solution using optimal homotopy asymptotic method (OHAM)

In this section, the optimal homotopy asymptotic method is applied to nonlinear ordinary differential equations (12)–(14)
with the boundary conditions (15) with the following assumptions
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f ¼ f 0 þ pf1 þ p2f 2; h ¼ h0 þ ph1 þ p2h2; / ¼ /0 þ p/1 þ p2/2; H1ðpÞ ¼ pC1 þ p2C2; H2ðpÞ
¼ pC3 þ p2C4; and H3ðpÞ ¼ pC5 þ p2C6
where p e [0, 1] is an embedding parameter, Hp is a nonzero auxiliary function, Ci are constants [34].

4.1. Analytical solution of the momentum boundary layer problem

The optimal homotopy asymptotic method is applied to nonlinear ordinary differential equation (12) with the boundary
conditions (15) under the following assumption
L ¼ f 00 þ f 0 and N ¼ f 000 þ ff 00 � 2n
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� �
M f 0

� �
ð16Þ
Collecting the same powers of p, and equating each coefficient of p to zero, we obtain a set of differential equations with
boundary conditions.
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Solving differential equations (17)–(19) with the boundary conditions, the General solution of (13) can be determined in
the form:
f ðfÞ ¼ f 0ðfÞ þ f 1ðfÞ þ f 2ðfÞ ð20Þ
The residual equation for the problem obtained in the form
R1ðf;C1;C2Þ ¼ f 000ðfÞ þ f ðfÞf 00ðfÞ � 2n
nþ 1
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The optimally unknown constant C1 and C2 can be obtained from the conditions
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4.2. Analytical solution of the thermal boundary layer problem

The optimal homotopy asymptotic method is applied to nonlinear ordinary differential equation (13) with the boundary
conditions (15) under the following assumptions
L ¼ h0 þ h and N ¼ h00 þ Pr f h0 þ 2
nþ 1

� �
khþ Nbh0/0 þ Nth02

� �
� h0 � h
where L is a linear operator, N is a nonlinear operator, Therefore the OHAM family equation is
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Collecting the same powers of p, and equating each coefficient of p to zero, we obtain a set of differential equations with
boundary conditions.

Zero order equation p0
h00 þ h0 ¼ 0; h0ð0Þ ¼ 1 ð24Þ
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First order equation p1
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Solving differential equations (24)–(26) with the boundary conditions, the General solution of (13) can be determined in
the form:
hðfÞ ¼ h0ðfÞ þ h1ðfÞ þ h2ðfÞ ð27Þ
The residual equation for the problem obtained in the form
R2ðf;C3;C4Þ ¼ h00ðfÞ þ Pr f ðfÞh0ðfÞ þ 2
nþ 1

� �
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ð28Þ
The optimally unknown constant C3 and C4 can be obtained from the conditions
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4.3. Analytical solution of the concentration boundary layer problem

The optimal homotopy asymptotic method is applied to nonlinear ordinary differential equation (14) with the boundary
conditions (15) under the following assumptions
L ¼ /0 þ / and N ¼ /00 þ 1
2
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where L is a linear operator, N is a nonlinear operator, therefore the OHAM family equation is
ð1� pÞ½/0 þ /� ¼ Hp /00 þ 1
2

Lef /0 þ Nt
Nb

h00
� �

ð30Þ
Collecting the same powers of p, and equating each coefficient of p to zero, we obtain a set of differential equations with
the boundary conditions.
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Solving differential equations (31)–(33) with the boundary conditions, the General solution of (14) can be determined in
the form:
/ðfÞ ¼ /0ðfÞ þ /1ðfÞ þ /2ðfÞ ð34Þ
The residual equation for the problem obtained in the form
R3ðf;C5;C6Þ ¼ /00ðfÞ þ 1
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� �

ð35Þ
The optimally unknown constant C5 and C6 can be obtained from the conditions
@J3

@C5
¼ @J3

@C6
¼ 0 where J3ðCiÞ ¼

Z 1

0
R2

3ðf;CiÞdf ð36Þ



54 M.S. Abdel-wahed et al. / Applied Mathematics and Computation 254 (2015) 49–62
To validate the analytic method (OHAM) used in this study, the results for �f 00ð0Þ are compared with the numerical solu-
tion which reported in Fang et al. [31] see Table 1.

5. Results

From the engineering point of view, the most important characteristics of the flow are the skin friction coefficient, Nusselt
number and Sherwood number, which indicate physically to surface shear stress, rate of heat transfer and rate of mass trans-
fer respectively. These characteristics affect directly on the mechanical properties of the surface during heat treatment pro-
cess, such that increasing the rate of heat transfer from the surface accelerates the cooling of the surface, which improve the
hardness, stiffness and strength of the surface but on the other hand decrease the ductility of the surface and increase surface
cracking.

5.1. Surface shear stress
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5.2. Surface heat flux (rate of heat transfer)
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Since the Nusselt number given by
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5.3. Surface mass flux (rate of mass transfer)
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6. Discussions

We present in this study a mathematical simulation to the heat treatment process of a moving continuous surface with
variable thickness using nanofluid as a cooling medium. The influence of all embedded parameters on the velocity, temper-
ature and nanoparticles concentration within the boundary layer shown in Figs. 2–15. The Prandlt number of the base fluid
(water) is kept constant at 7.
Table 1
The values of �f 00ð0Þ at different values of n and a.

a n Fang et al. [32] OHAM

0.25 0.50 0.93380 0.92641
1.00 1.00000 1.00000
5.00 1.11860 1.12623

0.5 0.50 0.97990 0.96335
1.00 1.00000 1.00000
2.00 1.02340 1.03339
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Moreover, Tables 2–6 show the effect of all embedded parameters on the velocity gradient, temperature gradient and
concentration gradient at the surface and the corresponding values of skin friction, Nusselt number and Sherwood number
at Re ¼ 5� 105:

6.1. Analysis of shape parameter (n)

Mainly the study depend upon the shape parameter or motion parameter (n) due to its importance, such that this param-
eter can controls the surface shape, type of motion and the behavior of the boundary layer.

One can observe that the outer shape of the surface depend on the value of n. such that for n = 1, the study reduced to flat
surface with constant thickness while for n < 1, the study transformed to surface with increasing thickness and convex outer
shape. However, for n > 1, the study transformed to surface with decreasing thickness and concave outer shape.

On the other hand, this parameter can also controls the type of motion such that for n = 0, the motion reduced
to linear with constant velocity and the motion reduced to deceleration motion if n < 1 and acceleration motion for
n > 1.

In addition, this parameter controls the normal boundary layer behavior such that for n = 1 the boundary condition
(15) reduced to f(0) = 0 which indicates to impermeable surface. While for n < 1 the boundary condition becomes
f(0) > 0 which indicates to suction process. Also for n > 1 the boundary condition becomes f(0) < 0 which indicates to
injection process.

The effect of shape parameter on the velocity, temperature, and nanoparticles concentration shown in Figs. 2–4 respec-
tively. It observed that increasing of n leads to increasing of the boundary layer velocity, and temperature but the nanopar-
ticles concentration has reverse mechanism such that the increasing of n leads to decreasing of the nanoparticles
concentration near the surface. Moreover, one can observe that by increasing of n the concentration layer near the surface
increased.

On the other hand, the effect of shape parameter on the velocity gradient, temperature gradient, concentration gradient
and the corresponding values of skin friction, Nusselt number and Sherwood number presented in Tables 2 and 3.

One can observe that the value of velocity gradient, temperature gradient and concentration gradient all decrease
with increase of shape parameter n. Moreover, the increasing of n leads to increasing of surface skin friction and
decreasing of Nusselt number and Sherwood number. Therefore, the rate of heat and mass transfer from the surface
will be decreases. It is worth mentioning that decreases the rate of heat transfer from the surface leads to deceleration
of cooling process, which has a direct negative effect on the mechanical properties of the surface such as hardness,
stiffness, strength, etc.

6.2. Analysis of thickness parameter (a)

The effect of thickness parameter on the velocity, temperature, and nanoparticles concentration shown in Figs. 5–7
respectively. It is observed that increasing of a leads to decreasing of the velocity and temperature but the nanoparticles con-
centration has reverse mechanism such that the increasing of a leads to increasing of the nanoparticles concentration near
the surface and decreasing far of it.

On the other hand, the effect of thickness parameter on the velocity gradient, temperature gradient, and the concentra-
tion gradient and the corresponding values of skin friction, Nusselt number and Sherwood number presented in Tables 2 and
3. It noted that the increasing of thickness parameter leads to increasing of all previous physical properties.

It is worth mentioning that increases the rate of heat transfer from the surface leads to acceleration of cooling process,
which has a direct positive effect on the mechanical properties of the surface such as hardness, stiffness, strength.
Fig. 2. The velocity profiles with increasing of shape parameter (n).



Table 2
Values of velocity gradient, temperature gradient and concentration gradient at the surface and the corresponding values of skin friction, Nusselt number and
Sherwood number at M = 0, Le = 2, Pr = 6.2, k = Nt = Nb = 0.1.

a n f 00ð0Þ h0(0) /0(0) Cfx Nu Sh

0.5 �0.5 �1.166667 �9.186514 7.241713 �0.00165 3247.92 �2560.33
0.50 �1.023235 �1.992730 1.122908 �0.00251 1220.29 �687.640
1.00 �1.000000 �1.308134 0.479281 �0.00283 924.990 �338.900

1 �0.5 �2.833333 �18.314577 15.115865 �0.00401 6475.18 �5344.27
0.50 �1.153874 �2.815158 1.888074 �0.00283 1723.93 �1156.20
1.00 �1.000001 �1.308130 0.479266 �0.00283 924.990 �338.890

Table 3
Values of velocity gradient, temperature gradient and concentration gradient at the surface and the corresponding values of skin friction, Nusselt number and
Sherwood number at M = 1, Le = 2, Pr = 6.2, k = Nt = Nb = 0.1.

a n f 00ð0Þ h0(0) /0(0) Cfx Nu Sh

0.5 �0.5 �2.698243 �9.212846 7.432311 �0.00382 3257.23 �2627.72
0.50 �1.541648 �1.922033 1.153334 �0.00378 1177.00 �706.270
1.00 �1.414214 �1.255416 0.587011 �0.00400 887.71 �415.080

1 �0.5 �3.866086 �18.326942 15.172941 �0.00547 6479.55 �5364.44
0.50 �1.633396 �2.749794 1.854783 �0.00400 1683.90 �1135.82
1.00 �1.414214 �1.255409 0.586987 �0.00400 887.71 �415.06

Table 4
Values of temperature gradient and concentration gradient at the surface and the corresponding values of Nusselt number and Sherwood number at
a = n = M = 0.5, Le = 2, Pr = 6.2, Nt = Nb = 0.1.

k h0(0) /0(0) Nu Sh

�0.50 �3.112363 2.232995 1100.39 �789.48
�0.30 �2.777494 1.906843 1161.91 �797.69

0.00 �2.181766 1.328482 1090.88 �664.24
0.30 �1.372622 0.548155 782.51 �312.50
0.50 �0.528105 �0.259352 323.40 158.82

Table 5
Values of temperature gradient and concentration gradient at the surface and the corresponding values of Nusselt number and Sherwood number at
a = n = M = 0.5, Le = 2, Pr = 6.2, k = Nb = 0.1.

Nt h0(0) /0(0) Nu Sh

0.1 �1.945147 1.099440 1020.04 �576.55
0.3 �1.579208 3.374871 900.29 �1923.97
0.5 �1.269412 4.548747 777.35 �2785.53

Fig. 3. The temperature profiles with increasing of shape parameter (n).
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Fig. 4. The concentration profiles with increasing of shape parameter (n).

Fig. 5. The velocity profiles with increasing of thickness parameter (a).

Fig. 6. The temperature profiles with increasing of thickness parameter (a).
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6.3. Analysis of hydro-magnetic flow

The present study showed that the hydromagnetic flow has a direct impact on the boundary layer velocity and nanopar-
ticles concentration through Figs. 8 and 9. Such that the increasing of magnetic parameter leads to decreasing of velocity and
increasing of nanoparticles concentration.

On the other hand, the effect of hydromagnetic flow on the skin friction, Nusselt number and Sherwood number tabulated
in Tables 2 and 3. By comparing between Tables 2 and 3, one can observe that using hydromagnetic flow as a cooling med-
ium increase skin friction and Sherwood number but decrease Nusselt number by a limited values. Consequently, the surface
shear stress and rate of mass transfer increased and rate of heat transfer decreased by increasing of magnetic parameter M.



Fig. 7. The concentration profiles with increasing of thickness parameter (a).

Fig. 8. The velocity profiles with increasing of magnetic parameter (M).

Fig. 9. The concentration profiles with increasing of magnetic parameter (M).
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6.4. Analysis of Brownian motion

Brownian motion is the random moving of particles suspended in a fluid (nanoparticles) resulting from their bombard-
ment by the fast moving atoms or molecules in the fluid. This motion controls the temperature and the concentration of the
particles within the boundary layer over the surface. The Brownian motion parameter Nb is the key of this mechanism such
that the increasing of Nb leads to increasing of the boundary layer temperature and decreasing of the nanoparticles concen-
tration as shown in Figs. 10 and 11. Moreover, one can observe that the profiles of nanoparticles concentration at Nb = 0.3
and Nb = 0.5 are very close but for Nb = 0.1 the concentration profile increased rapidly to a maximum level near the surface
and decay gradually to zero, this profile indicates that the effect of Nb limited into a small range of its value. In addition,



Fig. 10. The temperature profiles with increasing of Brownian parameter (Nb).

Fig. 11. The concentration profiles with increasing of Brownian parameter (Nb).
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Fig. 11 shows that the concentration of the nanoparticles at Nb = 0.1 increases significantly in the presence of the hydromag-
netic flow.

On the other hand, the effect of Brownian motion on the temperature gradient, concentration gradient and the corre-
sponding values of Nusselt number, Sherwood number presented in Table 6. It is clear that this motion decrease the rate
of heat and mass transfer by decreasing the Nusselt number, Sherwood number.

6.5. Analyses of thermophoresis particle deposition

Thermophoresis is a phenomenon observed in mixtures of mobile particles where the different particle types exhibit dif-
ferent responses to the force of a temperature gradient. Explain this phenomenon appears in this study through the thermo-
phoresis parameter Nt such that increasing this parameter leads to increasing of boundary layer temperature and
nanoparticles concentration as shown in Figs. 12 and 13. Moreover, Fig. 13 shows that increasing thermophoresis parameter
from 0.1 to 0.5 leads to increasing of nanoparticles concentration near the surface to three times of its value.

It is worth mentioning that the thermophoresis parameter is possible to be a positive or negative signal such that the neg-
ative value of Nt indicates to hot surface while positive to cold surface. Moreover for hot surfaces, thermophoresis tends to
blow the nanoparticles concentration boundary layer away from the surface since a hot surface repels the sub-micron sized
particles from it, thereby forming a relatively particle free layer near the surface.
Table 6
Values of temperature gradient and concentration gradient at the surface at a = n = M = 0.5, Le = 2, Pr = 6.2, k = Nt = 0.1.

Nb h0(0) /0(0) Nu Sh

0.1 �1.945147 1.099440 1020.04 �576.55
0.3 �1.532260 0.037401 873.52 �21.322
0.5 �1.299666 �0.004258 795.88 2.6175



Fig. 12. The temperature profiles with increasing of thermophoresis parameter (Nt).

Fig. 13. The concentration profiles with increasing of thermophoresis parameter (Nt).

Fig. 14. The temperature profiles with increasing of heat source parameter (k).
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On the other hand, the effect of thermophoresis parameter on the temperature gradient, concentration gradient and the
corresponding values of Nusselt number, Sherwood number shown in Table 5. It is clear that the increasing of thermopho-
resis parameter decreases the rate of heat transfer and increase mass transfer.

6.6. Analyses of heat source or sink

The effect of heat source parameter (k) on the temperature and nanoparticles concentration showed in Figs. 14 and 15
respectively. As expected, the increasing of k leads to increasing of boundary layer temperature and decreasing of



Fig. 15. The concentration profiles with increasing of heat source parameter (k).
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nanoparticles concentration close to the surface. Moreover, Table 4 shows the effect of this parameter on the temperature
gradient, concentration gradient and the corresponding values of Nusselt number and Sherwood number. The results
obtained in Table 4 indicates that the increasing of heat source parameter leads to decreasing of Nusselt number, Sherwood,
heat and mass transfer from the surface.

7. Conclusions

We present in this study a mathematical model of a continuous moving surface with variable thickness embedded into a
nanofluid. The heat and mass transfer characteristics and the mechanical properties of the surface were our goal in this study
and the following results obtained:

� The flatness of the surface leads to boundary layer under suction or injection process according to the value of shape
parameter.
� The flatness of the surface has a direct effect on the mechanical properties of the surface. (i.e. hardness, stiffness and

strength). Such that the increasing of shape parameter n produces a negative effect on the surface mechanical properties.
� Using hydromagnetic flow as a cooling medium increase surface shear stress and rate of mass transfer from the surface

and decrease the rate of heat transfer.
� The nanoparticle concentration near the non-flat surface is bigger and thinner than that on the flat surface.
� For all embedded parameters used in this study, the nanoparticles concentration profile increases rapidly near the surface

and then return in decay.
� Effect of Brownian motion on the nanoparticles concentration increases in the presence of hydromagnetic flow.
� The Brownian motion and thermophoresis both have a negative effect on the surface hardness and strength.
� Boundary layer velocity increases with increase of shape parameter n and decrease of thickness parameter and magnetic

field parameter.
� Boundary layer temperature increases with increase of shape parameter n, Brownian motion parameter, thermophoresis

parameter, heat source parameter and decrease of thickness parameter.
� Nanoparticles concentration increases with decrease of shape parameter n, Brownian motion parameter, heat source

parameter and increase of thickness parameter and magnetic field parameter and thermophoresis parameter.
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