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A B S T R A C T

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established inter-

ventional treatment for improving motor symptoms of patients suffering from Parkinson’s

disease (PD). While STN is originally localized using imaging modalities, additional intraop-

erative guidance such as microelectrode recording (MER) is crucial to refine the final elec-

trode trajectory. Analysis of MER by an experienced neurophysiologist maintains good

clinical outcomes, although the procedure requires long duration and jeopardizes the

safety of the surgery. Lately, local field potentials (LFP) investigation has inspired the emer-

gence of adaptive DBS and revealed beneficial perception of PD mechanisms. Several stud-

ies confronting LFP analysis to detect the anatomical borders of STN, have focused on

handcrafted feature engineering, which does not certainly capture delicate differences in

LFP. This study gauges the ability of deep learning to exhibit valuable insight into the elec-

trophysiological neural rhythms of STN using LFP. A recurrent convolutional neural net-

work (CNN) strategy is presented, where local features are extracted from LFP signals via

CNN, followed by recurrent layers to aggregate the best features for classification. The pro-

posed model outperformed the state-of-the-art techniques, yielding highest average accu-

racy of 96.79%. This is the first study on the analysis of LFP signals to localize STN using

deep recurrent CNN. The developed model has the potential to extract high level biomark-

ers regarding STN region, which would boost the neurosurgeon’s confidence in adjusting

the trajectory intraoperatively for optimal lead implantation. LFP is a robust guidance tool

and could be an alternative solution to the current scenario using MER.
� 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Parkinson’s Disease (PD) is a chronic and quickly evolving

long-term neurodegenerative disease. An estimated 10 mil-

lion people succumbed to PD-related ailments[1]. At present,

following Alzheimer’s disease, PD is the second most preva-

lent neurodegenerative disorder [2], such as more than 150

000 PD patients are treated worldwide [3]. PD affects the basal

ganglia (BG), owing to deficiency of dopamine [4], leading to

major motor symptoms including bradykinesia [5] and tremor

[6] as well as increasingly identified non-motor symptoms for

instance, cognitive dysfunctions and sleep disorders [7]. Con-

sequently, PD patients suffer from difficulty in movement ini-

tiation and control. Until now, primary causes are not well

recognized yet, which several genetic, lifestyle and environ-

mental factors. Due to the lack of full understanding of the

neural mechanisms behind the PD disorder, there is no cure

for PD, increasing the need for robust management of the dis-

ease to alleviate the main symptoms whether pharmacother-

apy [8] or interventional [9].

Deep brain stimulation (DBS) of the three frequently cho-

sen targets, namely, bilateral ventral intermediate nucleus

(VIM) of the thalamus, subthalamic nucleus (STN) [10] and

medial globus pallidus (mGP) [3], is currently the most domi-

nant and potent surgical treatment for advanced PD patients

to control dopamine-related motor symptoms in cases where

they are no longer reactive to pharmacological approaches

[11]. DBS is accomplished by implanting permanent elec-

trodes in the brain which deliver continuous high-frequency

stimulation to the designated target regions. However, similar

to most intracranial neurosurgical procedures, achieving

great therapeutic outcomes and success of the interventional

procedure can be significantly decided by the optimal posi-

tioning of the stimulating DBS lead in the target structure

[12,13]. Besides, sub-optimal placing of DBS electrodes pro-

vokes up to 48.5% of revisions in interventional neurostimula-

tion treatments [14].

During the preoperative surgical planning stage, the rele-

vant craniotomy position on the skull, the optimal target

coordinates in the stereotactic frame space and the corre-

sponding electrode insertion trajectories are identified based

on the fusion of magnetic resonance (MR) imaging and intra-

operative stereotactic computer tomography (CT) sequences

as a typical procedure of the clinical care. In addition to the

anatomical information, other preoperative imaging modali-

ties (e.g. functional MR and positron emission tomography

(PET)) could be employed to extract the functional character-

istics of the STN structure in order to determine the trajectory

depth and the stereotactic angles [15]. Nevertheless, using

neuroimaging alone as the guiding modality does not assure

precise locating of the DBS electrode in the defined target dur-

ing the operation. These imaging modalities can just provide

the approximate position of the target, because of several rea-

sons, for instance, resolution limitations of images and possi-

ble distortion as well as potential mechanical errors in

stereotactic frame space registration [2]. Besides, displacing

of the identified target coordinates due to additional deforma-

tions derived from anatomic shifts with the craniotomy.
Moreover, authors in [16] reported that exploiting MR imaging

solely in intraoperative STN detection would cause up to 20%

of cases with sub-optimal electrode insertion.

Thus, an additional real time fine-tuning to the electrode

trajectory via intraoperative modality is crucial to mitigate

the aforementioned encumbrances, account for sources of

potential errors and guarantee accurate implantation. This

fine-tuning would help to expose the underlying neu-

roanatomical structuresof interest andpinpoint thefinal local-

izationof the STN. PDpatients are commonlyawakeduring the

surgery (i.e. patient is under only local anesthesia which pre-

serves the wakefulness), this allows for real time corrections

to bemade in the electrodes positioning based on the immedi-

ate motor symptoms response to a small amount of test stim-

ulation [17]. In contrast, this process is used to imply the

optimal alignment of the target with respect to the clinical

effects of the applied stimulation on the patient’s symptoma-

tology (i.e. motor disorder control and induced side effects).

As a result, additional motor activities are incorporated for

guidance and the best place to apply stimulation is not delin-

eated purely anatomically but also functionally. Despite that

this method is demanded, it necessitates the patient to be in

conscious state and performs extra movements, thus, adds a

sourceof discomfort to theprocedure.Also, this could threaten

the safety of the surgery, in particular, patients with severe

motor symptoms. Furthermore, thismethodwould be compli-

cated in case thenumber of trial-and-error attempts increases.

Moreover, it is not always possible for different anesthesia

techniques, especially global anesthesia where the patient is

not awake and therefore, the available information to the sur-

gical team is limited and the success rate is lower. Accordingly,

another adjunctive source of information from intraoperative

guidance is critical regardless of the type of anesthesia

employed [18].

Currently, interventional MR (iMR) imaging is a possible

solution andhas proved to be successful in confirming or refin-

ing the anatomical placement of the electrode during the DBS

surgery. However, this method entails a specially designed

MR room which would be significantly expensive [19]. Micro-

electrode recording (MER) which maintains good clinical out-

comes as with iMR imaging, is an alternative tool for final

trajectory refinement [20]. Often, MER is employed intraopera-

tively to capture the electrophysiological activity of neurons

close to the electrode tip at defined intervals along the trajec-

tory. The neurophysiological characteristics of the targeted

structure (inside STN) is divergent from other structures in

the surrounding areas (outside STN) in terms of spike back-

ground activity and firing rate. Also, STN is associated with

higher density of neurons and background noise in addition

to the presence of large peaks corresponding to spontaneous

discharge activity [21]. Therefore, as the recorded MER reflects

the neural population in the closest vicinity of the electrodes, a

trainedneurophysiologist or highly experiencedneurosurgeon

canvisualize and/or listen toMER signalswith thegoal of local-

izing the anatomical boundaries of STN.

While MER is effective in its use and offers significant

information of the electrophysiological pattern inside STN

which are important for neuronavigation, the procedure jeop-



ig. 2 – Bispectrum plot of the average of 1000 randomly

hosen LFP samples from Non-STN region.
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ardizes the safety of the surgery and suffers from several lim-

itations. Such as employing multiple electrodes with sharp

tips which could lead to intracranial hemorrhage within the

microelectrode trajectory [22,23]. Besides, the complexity of

mental interpretation of MER signal patterns [24] and the sus-

ceptibility to several types of artifacts[21]. Also, the mislabel-

ing of STN borders owing to similar spiking characteristics or

uninterrupted transition from STN to substantia nigra (SNR)

[25]. Moreover, the subjective judgment to affirm each record-

ing increases the surgery time and opens the door for human

error.

All the challenges discussed above justify the interest in

further considering a more robust guidance tool for accurate

implantation of the DBS electrode with the patient in an

unconscious state in order to reduce the surgery time, amelio-

rate the patient comfort and improve the safety of the proce-

dure. Local field potentials (LFP) which render the aggregate

activity of neuronal populations within a larger diameter

from the electrode contact, have been regarded as a signifi-

cant indicator of electrophysiological neural rhythms for

detection of STN region in PD [26–29]. Fig. 1 and Fig. 2 display

unique typical bispectrum plots of STN and non-STN LFP sig-

nals. It is clear that the bifrequency magnitude is distinguish-

ing for each class. Also, most of the magnitude of the

bispectrum lies within �0.02 to 0.02 and there is a random

distribution of the magnitudes at various frequencies.

Overall, MER as well as LFP have valuable potential to

reveal hidden footprints of PD disorder. Nevertheless, the

examination of these signals is a tiresome job even for an

expert neurosurgeon. Hence, proposing a computer-aided

STN detection system helps neurosurgeons in supporting

the decline STN localization errors and obtaining a significant

opinion about the optimal electrode trajectory during the sur-

gery. Up to now, most of the developed approaches for auto-

matic detection of STN borders have focused on MER

analysis [2,12,24,30,31]. However, other studies were carried

out to correlate LFP features with automated localization of

the STN region [22,23,32,33]. In [22], Telkes et al. investigated

the frequency profile of the LFP signals via exploring the

frequency-depth analysis in accordance with the time–fre-

quency analysis. Then, normalized energy features calculated
Fig. 1 – Bispectrum plot of the average of 1000 randomly

chosen LFP samples from STN region.
F

c

from the spectrum of different sub-bands were employed to

identify the neurophysiological borders of STN. Their experi-

ments demonstrated that the frequency content of beta and

gamma bands are strongly representative of the dorsal STN

border presence, while the other bands did not provide distin-

guishing characteristics. They reported that LFP could be a

possible alternative solution to MER for targeting STN during

DBS surgery. In this regard, Cao et al. [33] inferred that power

band ratios of LFP signals in the frequency ranges (16–20 Hz),

(20–30 Hz) and (100–250 Hz) present vital signatures for detec-

tion of functional regions in the BG area. These results are

consistent with previous studies on the automated identifica-

tion of STN using MER signals. Such as, Valsky et al. [25] ver-

ified that 100–150/5–25 Hz power ratio furnishes a reliable

discrimination between STN and SNR, and yielded an accu-

racy of 94%. Similarly, Cagnan et al. [34] revealed that back-

ground neural activity and spectral features of beta (13–

30 Hz) and gamma (31–100 Hz) bands show different values

inside STN compared with outside STN. As reported therein,

their method achieved an accuracy of 88%. Also, LFP signals

acquired from STN sub-territories manifest discriminating

neurophysiological characteristics concerning the motor

sub-types of PD [27]. While authors in [26] explored the spec-

tral features extracted from directional LFP signals with the

goal of finding markers to select the optimal contacts.

It is evident that several models have been implemented

to support STN identification based on Machine Learning

(ML) strategies. These traditional ML techniques hinge on

handcrafted feature extraction from different neurophysio-

logical signals, LFP, which are eventually classified by differ-

ent algorithms either supervised [32] or unsupervised [28].

Meanwhile, advances in terms of available computing power

and algorithms have exhibited the use of deep learning (DL)

methods typically, convolutional neural network (CNN) and

recurrent neural network (RNN), in automated detection of

STN are on the increase. MER signals classification in the con-

text of STN detection using DL algorithms to ameliorate the

performance has similarly been on the rise. Khosravi et al.

[30] proposed an early design of a deep neural network

(DNN) binary classifier to identify the borders of STN. They

demonstrated the ability of wavelet transform (WT) to display
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the frequency profile of MER signals and extract distinguish-

ing features. Using artificial neural network (ANN), they

yielded highest classification accuracy of 92%. In parallel, in

2021, the work of Martin et al. [2] has led to the development

of dynamic DL approaches to deal with the complexity of MER

signals, reporting that a Bayesian extension using features

obtained from 1D CNN achieved the highest performance

with accuracy of 83.5%. However, to our best knowledge no

studies have pursued to quantify and localize the STN region

using DL concept based on LFP signals. Herein, a new effective

19-layered recurrent convolutional network is developed to

identify the dorsal and ventral borders of STN. The primary

goal of our study emphasizes on divulging the importance

of intraoperative LFP neural signals and clarifying their pre-

dictive role in terms of STN localization during DBS surgery.

A DL approach is implemented in order to personalize the

evidence-based DBS implantation procedure and validated it

using 17 PD patients. Moreover, this model is able to reveal

the neural basis from LFP signals without the focus on typical

design of feature extraction or selection and classification

protocols as enumerated earlier in previous studies. This cir-

cumvents the inherent shortcomings corresponding to train-

ing MLmodels, especially on big data of LFP recordings. As the

implemented recurrent CNN model is capable of aggregating

the best fusion of feature extraction and classification.

Furthermore, three longstanding feature extraction tech-

niques are utilized in this study. Then, the performance of

the developed model is evaluated alongside the three feature

groups. The comparison in the manner mentioned above is

crucial to confront the performance of the proposed model

against the traditional methods in the area of LFP analysis.

First power band and peak-to-average power ratios of the

LFP signals in different frequency sub-bands (i.e. delta, theta,

alpha, low beta, middle beta, high beta, gamma and high

gamma) were extracted as in [28,35]. Second statistical

moment features of the Hilbert-Huang marginal spectrum

(HMS) of the same aforementioned frequency sub-bands were

extracted based on previous studies [28,36]. Third we devel-

oped wavelet packet transform (WPT) based features similar

to the reported in [24] as a reliable source of information for

distinguishing between MER signals stem from inside and

outside STN. Consequently, each feature group was classified

using 10 conventional ML classifiers. From the results of the

presented comparison, it can be inferred that the proposed

recurrent CNN model betters the other methods in terms of

accuracy for the dataset employed.

2. Methods

2.1. Data acquisition and preprocessing

The dataset analyzed in this study includes LFP signals of 32

trajectories collected from 17 idiopathic PD patients (10 males
Table 1 – Description of the collected LFP dataset.

Patients Trajectories Sampling frequency

17 32 760
and 7 females; age: 62:2� 5:7 years) undergoing a routine sin-

gle or bilateral insertion during DBS surgery at the First Affil-

iated Hospital of Harbin Medical University, Harbin, China.

The mean disease duration was 10� 3:5 years. All patients

were inserted in STN using one microelectrode. LFP record-

ings were obtained from 10.0 mm to �4.0 mm with respect

to the predetermined target. Commonly, the electrode

advance was fixed in 1.0 mm and 0.5 mm steps at depth from

10 mm to 5 mm and from 5 mm to 4 mm below the estimated

surgical zero-point, in that order. In parallel to the data acqui-

sition, LFP recordings were annotated as either inside STN

(STN) or outside STN (Non-STN) by an expert neurosurgeon.

LFP recordings were acquired with the NeuroNav system

(Alpha Omega Engineering, Israel), which also measures the

LFP distance from the estimated target. Each recording was

sampled at 760 Hz after being digitally filtered with 50 Hz

notch filter. All study subjects had provided informed con-

sent. LFP signals were segmented into 1-s segments. Thus,

the dataset contains a total of 4248 1-s LFP signals, where

2627 signals are labeled as being inside the STN and the

remaining 1621 signals are labeled as outside the STN. LFP

dataset used in this work is illustrated in Table 1.

2.2. Data scaling

After segmentation, normalization technique is applied. To

normalize our dataset, Min–max method is utilized to trans-

form each LFP recording consisting of 760 sampling points

into the common range [0,1] for further analysis. The normal-

ization approach employed here is patient-independent such

as the minimum and maximum parameters are calculated

from the entire LFP recordings. In this work, normalization

procedure is important to get rid of the amplitude scaling

problem, group the data together in a small range of values

and handle the bias to larger values before being fed to the

developed DL model for training and testing.

2.3. Feature extraction from LFP

In this work, in the first feature group, we extracted the power

band ratios (i.e. power of the signal in a certain band divided

by the total power) and peak-to-average power ratios of the

LFP signals in the following frequency sub-bands, delta (0.1–

3 Hz), theta (4–7 Hz), alpha (8–12 Hz), low beta (12–16 Hz), mid-

dle beta (16–20 Hz), high beta (20–30 Hz), gamma (30–100 Hz)

and high gamma (100–250 Hz). In the second feature group,

for each sub-band (i.e. the aforementioned frequency sub-

bands), first empirical mode decomposition was employed

to extract the intrinsic mode functions (IMF) which include

the significant frequencies of interest of the LFP signal. Then,

HMS which represents the time-energy-frequency distribu-

tion, was obtained by applying Hilbert-Huang transform to

each IMF. After that, seven statistical moments namely, max-
STN (s) Non-STN (s) Total (s)

2627 1621 4248
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imum, variance, energy, Shannon’s entropy, mean value,

Skewness and Kurtosis, were calculated from HMS. In the

third feature group, we decomposed the LFP signals using

WPT with Daubechies 4 into five levels. Then, for each sub-

band (i.e. 32 sub-bands), two statistical parameters namely,

standard deviation and energy were calculated. To sum up,

we extracted three feature groups where the first group

includes 16 features (8 power band ratios and 8 peak-to-

average power ratios), the second group includes 56 HMS

based features and the last group contains 64 WPT based fea-

tures. In the subsequent sections, we will denote the first,

second and third feature groups as Power, HHT and WPD,

respectively.

Ten ML classifiers were employed to evaluate the perfor-

mance of the features discussed earlier. Decision tree (Tree),

five Boosting algorithms (AdaBoostM1, Bagging, GentleBoost,

LogitBoost and RobustBoost), k-Nearest Neighbour (KNN)

and support vector machine (SVM) with radial basis function

(RBF), polynomial (Poly) and linear kernels were utilized.

2.4. Proposed deep learning model

A DL model is implemented herein to achieve good classifica-

tion performance on LFP signals in order to detect the STN

region. DL is another type of artificial neural networks estab-

lished with mathematical manipulation which has the ability

to convert an input state into an output by various layers pro-

cessing of the input and unit-wise computation of the proba-

bility of each output [21]. Higher computational complexity

emerges from increasing the number of deep layers where

each neural network layer performs the mathematical

manipulation. The morphology of the LFP waveform declares

the required features for classification, therefore handcrafted

feature extraction algorithms are critical to characterize LFP

signals via group of parameters. Convolution layers in CNN

have been proven efficient in exposing the hidden non-

linear features from raw data which manifests good signal

to noise ratio [37]. However, it is neither potent nor conve-

nient to depend solely on CNN, because morphological fea-

tures of LFP signals can be difficult to categorize and very

complex due to the fact that the duration of these recordings

could extend to ten seconds. Also, the possible presence of

irrelevant or redundant parts. In view of this, CNN model is

designed for local feature extraction from the LFP signals

and RNN layers such as long short-term memory (LSTM) or

Gated Recurrent Unit (GRU) are utilized to summarize the

local feature series. Consequently, the proposed recurrent

CNN model comprises of three parts: namely, local feature

extraction (LFE), global feature extraction (GFE) and classifica-

tion. The proposed model fuses LFE and GFE parts to produce

a prodigious yet efficient system for the detection of STN

boundaries. Accomplishment of the proposed system

requires feeding the segmented normalized LFP signals (1-s)

into the CNNmodel where optimum combination of deep fea-

tures are extracted. Following that, recurrent layers are used

to transform the deep feature maps into global vectors ready

for classification. Dense layers are employed to retain the

deep feature maps and categorize them into different classes

following which final location is identified, i.e., STN or Non-

STN. Fig. 3 presents the detailed architecture of the proposed
recurrent CNNmodel as stated earlier. Table 2 illustrates each

layer in the proposed model. The remainder of this sub-

section explains details of the three parts that formulate the

proposed model.

2.4.1. Local feature extraction (LFE)
LFE part has been optimized to compose uncomplicated lay-

ers, that focused on raw LFP signals to exhibit the morpholog-

ical characteristics of 1-s LFP recording and produce a

sequence of local features. CNN is used to construct the LFE

part as discussed earlier. As shown in Fig. 3, normalized LFP

signals are fed to the input layer. Then, a series of repeating

structures (i.e. Each structure is made up of convolution,

batch normalization and pooling layers) are applied hierarchi-

cally on the input signals. Convolution layers are used to

extract substantial feature maps with different sizes. The ker-

nel size of the first Convolution layer in the first structure is

assigned at 9, decreased by 2 for the second structure, then

through every 2 structures, the kernel size is decreased by 2.

Batch normalization layer is inserted after the convolution

layer to set the LFP signals into a certain range of values so

as to accelerate the learning process. Therefore, faster conver-

gence is guaranteed during training. Max pooling layers

whose size is 2 are employed to progressively decrease the

dimensionality of the feature maps via keeping only the high-

est numbers in every kernel which characterize the most piv-

otal features. As a result, the number of parameters is

reduced, which helps to manage the computational complex-

ity and overfitting problem. The LFE part ends with an average

pooling layer, then the feature maps are injected to the GFE

part.

2.4.2. Global feature extraction (GFE)
In GFE part, the feature maps are converted into global vec-

tors. Two recurrent layers with 128 and 64 neurons are

employed to specify the characteristics of the global vectors

that emanate from the last layer of each recurrent network.

The number of hidden units in the recurrent layer determines

the vector length. Therefore, GFE decides which features to

keep from the LFE part at each time step, before feeding them

to the classification part. LSTM and GRU were tested as the

recurrent layer. The number of trainable parameters in the

slightly more complex LSTM layers is higher than GRU layers

(i.e. see Table 2).

2.4.3. Classification
Classification is the last part of the proposed recurrent CNN

model. Two dense layers are used to learn the feature vectors

and classify the input LFP signal into two classes based on the

predicted probabilities, i.e., STN or Non-STN. The first dense

layer is followed by a rectified linear unit (ReLU), where the

last dense layer has one cell and followed by the final activa-

tion layer SoftMax, which produces the probability of each

class.

2.4.4. Implementation details
Grid search technique was employed to optimize all the

hyperparameters including kernel size, number of CNN fil-

ters, neurons in the dense layer and number of recurrent

memory units. The training mini batch size was set as 128.



Fig. 3 – Architecture of the proposed DL model using LSTM as the recurrent layer.

Table 2 – Specifics of each layer in the proposed recurrent CNN architecture.

No. Layer name Kernel size No. of filters Layer Params. Output shape Number of Params.

0 Input - - - 760� 1 0
1 Conv 1D 9� 1 40 Stride = 1, Activation = ReLU 752� 40 400
2 Batch Norm. - 40 - 752� 40 160
3 Max Pooling 1D 2� 1 40 Stride = 2 376� 40 0
4 Conv 1D 7� 1 45 Stride = 1, Activation = ReLU 370� 45 12645
5 Batch Norm. - 45 - 370� 45 180
6 Max Pooling 1D 2� 1 45 Stride = 2 185� 45 0
7 Conv 1D 7� 1 45 Stride = 1, Activation = ReLU 179� 45 14220
8 Batch Norm. - 45 - 179� 45 180
9 Max Pooling 1D 2� 1 45 Stride = 2 89� 45 0
10 Conv 1D 5� 1 50 Stride = 1, Activation = ReLU 85� 50 11300
11 Batch Norm. - 50 - 85� 50 200
12 Max Pooling 1D 2� 1 50 Stride = 2 42� 50 0
13 Conv 1D 5� 1 50 Stride = 1, Activation = ReLU 38� 50 12550
14 Batch Norm. - 50 - 38� 50 200
15 Avg Pooling 1D 2� 1 50 Stride = 2 19� 50 0
16 LSTM/GRU - - 128 units, sequence-to-sequence 128 552448/414720
17 LSTM/GRU - - 64 units, sequence-to-label 64 49408/37248
18 Dense - - Activation = ReLU 64 4160
19 Softmax - - Activation = Softmax 2 130

Norm. = Normalization, Params. = Parameters.
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Adam stochastic optimizer with learning rate of 0.001 was

used for training using the backpropagation algorithm. Binary

cross-entropy was employed as the loss function and accu-

racy was computed to determine the convergence. Overfitting

is a huge concern during local feature learning process. To

ameliorate the generalization, only 40 epochs were selected

for training the network. The developed models are imple-

mented on MATLAB (MATLAB and Neural Network Toolbox

Release 2021a, The MathWorks, Inc., Natick, Massachusetts,

United States). The hardware environment in this study is a

computer with an Intel Core i5-8400 CPU, a Nvidia GeForce

GTX 1060 GPU and 16 GB memory.

2.5. Performance evaluation and metrics

To elude any ascendancy associated with biasing and data

leakage, leave-one-patient-out-cross-validation (Leave CV)

was used to assess the performance of the implemented net-

works and the ML classifiers on a database of 4248 1-s LFP

samples obtained from 17 patients with PD. Therefore, even-

tually there were 17-fold cross-validation iterations. For each

fold, the same model was employed and the training dataset

was constructed from LFP samples originate from 16 patients,

while the testing dataset was constructed from LFP samples

drawn from the left patient. This process was repeated for

17 times. The average over the 17 folds was calculated to esti-

mate the final performance. By doing this, we ensured that

LFP samples from the same patient will not appear in both

training and testing datasets and more importantly each

method is trained and tested on the same datasets to verify

the comparative study. To further gauge the efficacy of the

proposed methods, five frequently used metrics, i.e., accuracy

(Acc), sensitivity (Sens), specificity (Spec), F1-score and preci-

sion, were employed to evaluate the classification perfor-

mance. The latter two measure criteria are less influenced

by data imbalance. The mathematical formulation of the five

metrics are defined below:

Acc ¼ TPþ TN
TPþ TNþ FPþ FN

ð1Þ

Sens ¼ TP
TPþ FN

ð2Þ

Spec ¼ TN
TNþ FP

ð3Þ

Precision ¼ TP
TPþ FP

ð4Þ

F1� score ¼ ð2� Sens� PreÞ
Sensþ Pre

ð5Þ

Where TP, TN, FP and FN are the true positive, true negative,

false positive and false negative rates of classification, in that

order.

3. Results

In this section, the performance of the proposed methods are

presented and validated on 4248 1-s LFP signals from 17 PD

patients. Specifically, the proposed two recurrent CNNmodels

are validated via three feature extraction techniques (i.e. see
Section 2.3). Therefore, three feature groups (HHT, Power

and WPD) were extracted, followed by 10 ML classifiers for

classification. As mentioned, the developed CNN network

was embedded with two recurrent layers (LSTM and GRU) to

produce two end-to-end models, LSTM CNN and GRU CNN.

Comparative experiments were held to compare between

the three feature groups as well as to compare the perfor-

mance of the proposed methods with the ML classifiers on

LFP signals for STN region detection.

Fig. 4 illustrates the variations of statistical parameters

namely, standard deviation and energy of three representa-

tive wavelet packet scales with corresponding frequencies of

(0–11.875 Hz), (11.875–23.75 Hz) and (118.75–130.625 Hz) in

the regions of STN and Non-STN. It can be seen that, the stan-

dard deviation of the wavelet packet coefficients in (0–

11.875 Hz) is higher in STN region than Non-STN region

(STN median: 0.11068, Non-STN median: 0.06424). Similarly,

the energy of the coefficients is higher in the clinically esti-

mated region of STN than the region of Non-STN. However,

for the other two wavelet packet scales, an increasing trend

can be seen in the median values of the statistical parameters

of the wavelet packet coefficients in Non-STN region com-

pared to STN region. The standard deviation of the wavelet

packet coefficients in (11.875–23.75 Hz) is higher in Non-STN

region than STN region (STN median: 0.01657, Non-STN med-

ian: 0.01858). The distributions of STN and Non-STN are sim-

ilar for the energy of wavelet packet coefficients, as it is

higher in the region of Non-STN than the region of STN.

The standard deviation of the coefficients in (118.75–

130.625 Hz) is higher in the region of Non-STN than the region

of STN (STN median: 0.00303, Non-STN median: 0.00340).The

energy of the coefficients is also found to have similar pattern

of standard deviation. It is clear that WPD could maintain sig-

nificant signatures for localizing the STN. Ten ML classifiers

were utilized to gauge the applicability of WPD in comparison

with two existing features. The average and standard devia-

tion of performance metrics of the ML classifiers with the

three feature groups in the classification problem, Non-STN

vs. STN, are presented in Table 3. Also, Fig. 5 and Fig. 6 display

precision and F1-score performances of all ML classifiers for

separating LFP signals into two classes using the three feature

groups. Overall, WPD outperformed HHT and Power. HHT

obtained higher results compared to Power.

Using WPD, it is found that GentleBoost performed better

than the other ML classifiers. It yielded an average Acc of

92.64%, Sens of 91.79%, Spec of 94.52%, precision of 96.81%

and F1-score of 93.54%. Therefore, among the boosting classi-

fiers, GentleBoost achieved the highest performance, followed

by AdaBoostM1 with 92.56% Acc. Between the SVM kernels,

Poly2 obtained the highest Acc of 92.04%, which signify that

the LFP signals are non-linear in nature. Likewise, in the case

of using HHT, LogitBoost achieved higher performance than

other classifiers. It obtained an average Acc of 86.08%, Sens

of 85.80%, Spec of 86.56%, precision of 91.81% and F1-score

of 87.69%. Similarly, the experimental results show that Logit-

Boost classifier achieved the highest performance with Power.

It yielded an average Acc of 84.61%, Sens of 85.16%, Spec of

82.38%, precision of 89.73% and F1-score of 86.10%. Between

the different SVM kernels, RBF attained the highest Acc of

77.06%



Fig. 4 – Standard deviation and energy of three wavelet packet coefficients in STN and Non-STN regions: (a), (b) for

(0–11.875 Hz), (c), (d) for (11.875–23.75 Hz) and (e), (f) for (118.75–130.625 Hz). The box plots indicate the minimum and the

maximum values. Boxes start from the 25th percentile and end at the 75th percentile. Red lines inside the boxes specify the

median values.
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The performance results of the proposed DL models are

reported in Table 4. It is clear that the proposed recurrent

CNN models outperformed the classical ML classifiers. LSTM

CNN achieved the highest mean Acc of 96.79%, Sens of

97.91%, Spec of 93.68%, precision of 97.23% and F1-score of

97.48%, while GRU CNN obtained mean Acc of 96.59%, Sens

of 96.80%, Spec of 95.47%, precision of 97.76% and F1-score

of 97.01%. Performance measures encompassing Sens and

Spec, which denote that the developed model can actually

differentiate between STN and Non-STN classes, are espe-

cially pertinent. Therefore, Fig. 7 shows the plot of different

measure criteria of the proposed LSTM CNN and GRU CNN

alongside all ML classifiers with WPD. For STN class, LSTM

CNN was able to accurately classify 97.91% of the LFP signals
stem from the STN region. On the other hand, for Non-STN

class, GRU CNN was able to accurately classify 95.47% of the

LFP signals originate from the Non-STN region. Fig. 8 displays

box plot of the Acc of ML classifiers with WPD as well as the

proposed recurrent CNN models. These results suggest that

the recurrent CNN models are efficient for all patients. The

average training time of each epoch for LSTM CNN and GRU

CNN is 4.566 and 4.524 s, in that order. While the average test-

ing procedure for all the LFP signals of a patient has a roughly

estimated time cost of 200 and 201 ms. The estimated time

can be further decreased by fully optimized codes, high-end

computers and GPUs. Moreover, usage of a language embed-

ded in the working system, will dramatically reduce the com-

putational time.



Table 3 – Mean values (� standard deviation) of classification measures of WPD in comparison to HHT and power. The
validation is implemented using leave-one-patient-out strategy. Mean characterizes the average value of 17 patients.

Features Classifier Acc (%) Sens (%) Spec (%) Precision F1-score

HHT Tree 85:13� 9:26 85:19� 14:31 85:71� 12:11 90:86� 8:11 87:05� 9:29
AdaBoostM1 85:98� 9:34 85:90� 14:88 85:70� 13:25 91:44� 7:75 87:65� 9:66
LogitBoost 86:08� 9:34 85:80� 15:33 86:56� 12:98 91:81� 7:60 87:69� 9:70
Bagging 84:23� 10:05 83:40� 17:51 85:48� 15:57 91:11� 8:52 85:75� 11:02
GentleBoost 85:85� 9:27 85:99� 15:24 85:75� 13:47 91:43� 7:78 87:58� 9:56
RobustBoost 85:09� 9:34 85:47� 14:67 84:19� 12:95 90:21� 8:49 86:90� 9:82
KNN 70:42� 17:15 95:39� 3:12 29:68� 40:52 71:63� 17:98 80:63� 11:52
SVM RBF 71:05� 18:26 98:80� 1:53 25:36� 48:31 71:29� 18:54 81:59� 12:15
SVM Poly2 69:47� 16:29 86:36� 22:68 44:25� 29:44 73:18� 13:24 76:11� 18:23
SVM Linear 71:14� 18:45 99:68� 0:69 24:18� 50:85 71:07� 18:38 81:77� 12:23

Power Tree 83:80� 8:53 85:62� 14:04 78:14� 20:60 88:15� 9:59 85:96� 9:61
AdaBoostM1 84:14� 9:96 85:01� 16:64 81:72� 16:91 89:00� 9:89 85:74� 11:62
LogitBoost 84:61� 10:05 85:16� 16:95 82:38� 17:81 89:73� 9:63 86:10� 11:75
Bagging 81:68� 10:64 84:65� 16:41 76:57� 19:53 86:67� 11:43 84:29� 11:12
GentleBoost 84:15� 9:91 85:05� 16:91 81:85� 16:44 89:27� 10:14 85:78� 11:55
RobustBoost 82:88� 11:03 84:64� 17:53 79:43� 15:58 87:27� 10:94 84:68� 12:80
KNN 75:34� 13:82 87:52� 12:13 55:47� 31:44 78:05� 16:18 81:33� 11:53
SVM RBF 77:06� 12:73 84:95� 13:76 63:79� 30:23 81:06� 15:59 81:68� 11:38
SVM Poly2 76:33� 10:04 83:23� 14:47 64:79� 24:84 81:09� 13:52 80:76� 9:78
SVM Linear 75:34� 13:85 90:48� 11:88 49:64� 35:03 77:08� 16:47 81:89� 11:21

WPD Tree 89:13� 8:65 91:15� 11:69 86:12� 16:99 91:72� 8:63 90:78� 8:23
AdaBoostM1 92:56� 9:05 91:58� 13:60 94:63� 10:35 96:98� 5:23 93:50� 8:55
LogitBoost 92:11� 8:98 91:47� 13:66 93:78� 11:81 96:40� 6:20 93:09� 8:53
Bagging 90:26� 9:6738 88:22� 15:46 94:38� 8:90 96:47� 4:80 91:22� 9:60
GentleBoost 92:64� 8:67 91:79� 13:33 94:52� 10:03 96:81� 5:17 93:54� 8:35
RobustBoost 90:29� 9:82 90:49� 13:80 90:89� 14:63 94:69� 7:44 91:69� 8:85
KNN 89:23� 9:28 91:32� 12:97 85:97� 15:06 91:92� 8:51 90:85� 8:90
SVM RBF 91:49� 7:86 92:29� 12:15 87:21� 23:65 94:57� 6:61 92:73� 7:79
SVM Poly2 92:04� 6:71 94:93� 4:32 86:09� 17:26 92:94� 7:64 93:77� 5:07
SVM Linear 85:96� 18:99 87:15� 25:02 86:29� 19:02 92:41� 8:92 86:21� 23:46

Fig. 5 – The bar plot of performance comparison of each

classifier using the three feature groups in terms of

precision.

Fig. 6 – The bar plot of performance comparison of each

classifier using the three feature groups in terms of F1-

score.
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4. Discussion

Stereotactic electrode implantation accuracy is a key compo-

nent of DBS surgery, to obtain highest therapeutic benefit and

evade counter complexities from stimulation. Imaging

modalities have cited prominent patient comfort and very

likely few brain insertions. Despite the advancements in
these modalities [38], they possess inherent limitations, can-

not relieve the underlying structures of interest and pinpoint

the final target inside the STN region alone [39]. Therefore,

additional intraoperative fine-tuning tool in surgeon’s arma-

mentarium to confirm the final electrode trajectory as a pre-

operative plan is pivotal. MER has been significantly proved

to be a tool to discriminate between the sub-cortical struc-



Table 4 – Mean values (� standard deviation) of classification measures of DL classifiers using STN and Non-STN LFP signals
based on leave-one-patient-out strategy.

Classifier Acc Sens Spec Precision F1-score

LSTM CNN 96:79� 6:15 97:91� 5:48 93:68� 14:46 97:23� 5:87 97:48� 5:04
GRU CNN 96:59� 7:15 96:80� 9:56 95:47� 11:84 97:76� 5:30 97:01� 6:92

Fig. 7 – The average of performance measures of ML

classifiers using WPD and the proposed recurrent CNN

methods across 17 patients cross-validation set.

Fig. 8 – Acc performance for ML classifiers using WPD and

the proposed recurrent CNN methods across 17 patients

cross-validation set (boxes extend from the 25th to the 75th

percentile, median in red).
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tures in the BG region during the DBS surgery [12,24]. As a

result, till now the majority of DBS centers adopt MER for

intraoperative refinement of the target localization in addi-

tion to optimal trajectory selection [40,17]. In spite of being

effective and offers significant neuronavigation [18], MER car-

ries the risk of intracranial hemorrhage [22,23] as well as

expanding the surgery time, crucial subjective judgment

[24], keeping the patient in awake condition [2] and laborious

clinical process that entails high expertise in MER auditory as

previously alluded [15]. Indeed, during typical DBS surgery,

the neurosurgeon may need to adjust the electrode trajectory
2 or 3 times, which could result further damage to the

patient’s brain. Therefore, the presented study is tailored

towards considering a more robust guidance tool for accurate

insertion of the DBS electrode while the patient in an uncon-

scious state.

LFP signals which provide the activity of neuronal popula-

tions, instead of single neurons could be more advantageous

and robust than MER for optimal target confirmation in PD.

Besides, LFP signals are typically sensitive to oscillatory firing

patterns and quantitative, while MER is qualitative and open

to inter-subject diversity [32]. Also, several researchers indi-

cated that LFP signals show correlation with motor and

non-motor symptoms of PD disease [41,42]. Furthermore,

Feldmann et al. [43] analyzed incidence and infection charac-

teristics of a group of more than 380 patients who took part in

LFP recordings. They demonstrated that LFP is a safe proce-

dure and encourages the evolution of adaptive stimulation

protocols. Moreover, to establish the functional role of LFP sig-

nals intraoperatively and investigate whether they can con-

tribute to STN localization during DBS surgery, ozturk et al.

[29] have performed the first double-blinded pilot study to

compare between the clinical outcomes of using either

guided MER or LFP for randomly implanting 10 PD patients

in both hemispheres of STN. The electrophysiologist relied

on visual and auditory inspection of MER signals to provide

the final decision about STN localization, while intraoperative

signal processing and ML algorithms were employed to give

LFP-based decisions. The performance of each modality was

gauged three months later by a neurologist. They reported

same or higher clinical outcomes when using LFP for target-

ing. Consequently, DBS surgery based on LFP might possibly

lend itself to a significant computerized system for decoding

complicated intraoperative neurophysiology as an alternative

solution to the current scenario [27]. Accordingly, in the pre-

sent study, a deep recurrent convolutional neural networks

model is developed to automatically assist the decision mak-

ing in localizing the dorsal and ventral borders of STN in LFP

signals. GRU and LSTM were employed individually as the

recurrent layer so as to assemble two models. Both layers

were used due to their ability to remember either short or

long sequences.

Meanwhile, researchers reported that LFP signals can

expose pivotal characteristics regarding electrophysiological

neural rhythms of STN region [26,28]. In their contribution,

authors in [28] presented an implementation of a divisive

hierarchical clustering algorithm, capable of differentiating

between the functional regions along the electrode trajectory

in DBS. They concluded that the features extracted from the

neurophysiological LFP signals are legitimate and indicative

to detect the boundaries of the STN. Kostoglou et.al [35]

employed a number of neurophysiological interpretable fea-
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tures with an ensemble of decision trees (i.e. Random Forests)

to predict subject-specific DBS response with regards to the

associated clinical improvement gauged by unified Parkin-

son’s disease rating scale. In [32], several spectral features

were extracted from LFP to predict the optimal track for

STN localization. For classification, they employed linear dis-

criminant analysis classifier and obtained highest prediction

accuracy of 80%.

It is clear that previous studies concerning LFP signals,

have exploited specially-designed techniques to extract, nor-

malize and select engineered features capable of maintaining

vital neuronal bio-markers relating to various structures

[22,23,26,33]. Then, supervised and unsupervised ML models

were employed for training in order to aid the electrode

implantation inside the STN during the clinical practice as

enumerated earlier [28,35]. Although with their own merits,

the reported traditional ML models might be less effective.

Such as they are exposed to several immanent shortcomings

related to the model training on limited datasets, among

others, biasing, design errors and lower performance when

validated on a bigger and unknown datasets.

Individual performance of each feature does not simply

imply the optimal combinations of features due to important

feature interactions. Also, addition of more features does not

necessarily contribute to improving the classification accu-

racy owing to the presence of redundant features. Therefore,

exhaustive search is crucial to find the finest combination of

features and classifiers [44]. Unlike previous studies, this work

is focused on developing a minimalist end-to-end DL model

capable of uncovering the optimal feature subsets. This is

done without any information reduction by designing feature

extraction, normalization and selection in addition to classifi-

cation protocols. Moreover, to avoid any sort of biasing, Leave

CV was used to gauge the classification performance of the

proposed methods. This validation technique is used particu-

larly with smaller datasets, similar to ours, wherein distinct

patients are used for training and testing, in contrast to n-

fold cross validation which combine the data from all the

patients in both the training and testing sets. Therefore, Leave

CV is applicable to real-time scenarios in which a model must

be applied on a patient for whom no training data is at hand.

Meantime, DL techniques have shown to significantly

increase the efficiency of classification tasks in comparison

with traditional ML techniques due to the advancement in

computing power and graphics processing unit. Lately, focus

on MER signals classification using DL in an attempt to detect

the STN anatomical boundaries has similarly been on the rise

[2,30]. However, to the best of our knowledge, this is the first

study to explore the ability of DL to extract high level signa-

tures from LFP signals regarding the STN region. Three fea-

ture groups namely, Power, HHT and WPD were extracted

and fed to 10 ML classifiers in order to confront the perfor-

mance of the proposed DL models against the existing meth-

ods in STN detection. Power and HHTwere reported in [28] as

informative and able to reveal essential biomarkers from LFP

signals about STN. While WPT is established to produce

higher frequency resolution than the traditional WT. There-

fore, WPT demonstrates further information of low and high

frequency components which provide complete representa-

tions of the frequency profile of LFPs. In WPT, for five level
decomposition, the spectral bandwidth of all sub-bands is

11.875 Hz. These fixed-frequency bandwidth features could

improve the performance. The experimental results signify

difference between WPT coefficients of LFP signals from

STN and Non-STN regions in the beta and gamma frequency

sub-bands. These findings are inline with previous studies

[22,23,26,32,33].

Despite that the calculation of WPD is considered to be

less computationally expensive than HHT and Power, WPD

is found to be the most representative feature group to deter-

mine the neurophysiological boundaries of STN. Such as,

WPD accomplished mean F1-score between 86.21% and

93.77%, while Power yielded mean F1-score between 80.76%

and 86.10% and HHT obtained mean F1-score between

76.11% and 87.69% (see Table 3). Although the results indicate

that most of these features, especially WPD, demonstrate dis-

tinctive differences in STN and Non-STN, no single feature is

able to differentiate between the two regions on its own

attributed to the overlap between these regions and matching

electrophysiological characteristics of structures such as, STN

and SNR. The proposed two recurrent CNN models outper-

formed all the ML classifiers with the three feature groups.

LSTM CNN and GRU CNN achieved mean F1-score of 97.48%

and 97.01% which is encouraging for automated STN detec-

tion (see Table 4). It is evident that the proposed 19-layered

DL models are effective to learn the subtle changes regarding

STN region from the non-linear and non-stationary LFP sig-

nals without any information reduction. Whereas, manual

feature extraction and selection steps, which are required in

the traditional ML models, are computationally intractable

and raise the potential for loss of critical high-frequency com-

ponents and neural activity characteristics. These results

manifest an evidence that LFP can be strategically combined

with DL in the operating room for chronic DBS STN

localization.

In this work, we are concernedwith an alternative intraop-

erative application of the LFP signals classification instead of

the strict real-time application. We believe that an intraoper-

ative decision support system could be accomplished as fast

post-exploration classification procedure that the surgical

team can exploit after the planned trajectory has been fully

investigated, consequently during the revision phase (i.e., At

each step, once the exploration is completed, LFP signals

can be classified using the proposed DL model as an immedi-

ate information for the surgical team to support the clinical

decision). Also, the computational load for LSTM CNN and

GRU CNN is well suited to real-time implementation, being

nearly 200 ms for each patient. In fact, the proposed methods

are executed in MATLAB software, which is a portable pro-

gram and can be installed in any clinic or hospital as a trusted

tool, helping the surgical team to automate the localization of

STN during DBS surgery. In addition, 1s LFP recordings are

used as the input to the proposed DL model and, therefore,

the surgical team do not need to wait for a long time at each

step to determine whether the electrode in STN or Non-STN

region.

Reducing the necessary listening time at each position

along the electrode trajectory is crucial to improve the patient

comfort. Authors in [45,46,15] reported that 1s signals are

enough to attain discriminating features and obtain accurate
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predictions. Besides, short LFP samples are beneficial to

speed-up the batch normalization step in the LFE part and

decrease the number of parameters that have to be learned

in the first dense layer. In view of this, as a trade-off between

the computing efficiency and capacity, 1s long recordings

were chosen as the length. Since LFP data homogeneity is

affected by inter-subject diversity in neurophysiology as well

as recording characteristics variability which would induce

high variation in amplitude of LFP signals from all the

patients and generate unstable dataset, the first preprocess-

ing technique is to assign the data to a certain range of values

and remove the outliers. As a result, we conclude that the

input LFP data normalization is essential for subsequent anal-

ysis and convenience of DL training. The main limitation of

this study is the demand for larger dataset in order to fabri-

cate a trustworthy STN detection system such as data insuf-

ficiency is important for learnability of DL models.

Nevertheless the proposed methods showed good perfor-

mance, in line with previous studies, on a small dataset from

only 17 PD patients, investigating an offline yet still intraoper-

ative LFP signals based classification.

5. Conclusion

In this work, we have developed two recurrent CNN models

for LFP analysis to identify the neurophysiological borders

of STN, allowing for less subjective interpretation by reducing

the necessary time required for recording electrophysiological

signals at each position along the electrode trajectory. Impor-

tantly, this work shows that integrating recurrent layers into

CNN produces an efficient model which can considerably cat-

egorize the relevant morphological features of LFP signals and

reveal the hidden non-linear signatures about STN region.

The designed recurrent CNN models benefit from the advan-

tages of CNN in terms of local feature extraction without

information reduction, and from the advantages of recurrent

layers in terms of managing individual features by defining

the characteristics of the global vectors. The experimental

results showed that the proposed models outperformed the

state-of-the-art methods (i.e Power, HHTandWPD) in the field

of LFP analysis. As LSTM CNN yielded an average Acc of

96.79%, Sens of 97.91%, Spec of 93.68%, precision of 97.23%

and F1-score of 97.48%, while GRU CNN achieved an average

Acc of 96.59%, Sens of 96.80%, Spec of 95.47%, precision of

97.76% and F1-score of 97.01%. Therefore, the proposed sys-

tem can accurately localize the STN region with 1s LFP signal.

Given the lower computational cost of LFP and the robustness

of the proposed approaches, DBS centers can consider LFP as

a promising path for intraoperative integration of a strategic

feedback modality into the surgical decision support system

for chronic electrode implantation. Besides, an automated

investigation of LFP signals with our recurrent CNN model

could thus greatly ameliorate the patient comfort and

improve the DBS procedure via significantly reducing the sur-

gery time.

For future work, we plan to investigate on the efficiency of

the recurrent CNN models by gauging their performance on

another LFP datasets recorded by different hardware from

other institutions. Finally, we would further extend the DL
model with other optimization and ML algorithms. Currently,

we are employing fully-connected neuron and SoftMax layers

for classification. We hypothesize that replacing them with a

ML classifier to take advantage of its learnability and exploit-

ing technique such as genetic algorithm for optimization of

features and parameters could enhance the classification

efficacy.
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