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Abstract. Inefficient utilization of the authorized spectrum emerges cognitive 

radio (CR) as a hopeful technology for both present and future telecommunica-

tions. It is owing to the potency to leverage the obtainable bandwidth of other 

wireless communication networks and thereby increase its occupancy. The key 

feature for the cognitive radio system for distinguishing the blank spectrum is 

spectrum sensing. This paper is intended to establish a hybrid sensing model for 

spectrum detection in CR to enhance sensing efficiency of traditional techniques 

of spectrum sensing, which consists of two parallel paths of hybrid detectors. The 

first path is formed from two sequential detector stages; in the first phase, energy 

detector is used to recognize the PU signal existence where the signal has not 

been identified. Maximum-Minimum Eigenvalue (MME) is used as a second 

stage to detect the PU signal presence. The second path consists of two parallel 

stage detectors employing separate ED and MME to detect the PU signal indi-

vidually, the two results are gathered to make a decision, and then the final de-

tection decision is determined based on the two paths’ detection combined re-

sults. The proposed hybrid sensing approach adopted for enhancing the sensing 

performance is validated with conventional methods. Simulation results show 

that the proposed approach outperforms various traditional and hybrid ap-

proaches in terms of maximizing the detection probability on the specified limi-

tations on the false alarm probability, as it can increase the detection probability 

to 94% instead of 79% for the parallel detector at SNR= -10 dB and Pfa=0.1. 

Keywords: Cognitive radio, Spectrum sensing, Hybrid spectrum sensing, En-

ergy Detection, MME Detection. 

1 Introduction 

Inefficient utilization of bandwidth across various spectrum ranges has been recently 

recognized as a significant disadvantage in conventional wireless networks with fixed 

bandwidth deployment regulations. However, cognitive radio technology gives an ex-

traordinary solution to the spectrum usage problem for satisfying the constant rising 

need for bandwidth [1]. 

Cognitive radios are intelligent communication technology capable of recognizing 

their wireless environment and making choices about how and when to use the obtain-
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able spectrum (white space), not being utilized by the authorized user. Therefore, cog-

nitive radios must be qualified for scanning vast frequency ranges and locating unused 

bands to prevent primary users from suffering harmful interference [2]. 

A cognitive radio executes three essential functions during its employment in radio 

surroundings: spectrum sensing, spectrum analysis and spectrum decision. In spectrum 

sensing, the CR frequently monitors the radio spectrum surroundings with the main 

intention of locating spectrum gaps. However, the spectrum analysis requires an esti-

mate of the obtainable channel capacity. Finally, the CR chooses and changes its oper-

ational conditions in spectrum decision such as transmission data rate and bandwidth.  

The spectrum sensing is the main function on which the entire existence of cognitive 

radio lays, and is identified as the challenge of locating unused holes of spectrum by 

scanning the radio spectrum of the surrounding cognitive receiver in an unsupervised 

way. Various methods for spectrum sensing are determined, including feature detection 

(FD), energy detection (ED), and matched filtering (MF) [2]. ED is simpler compared 

with FD and MF and it also has a fewer computational complexity as well, whereas FD 

requires more computations but has a preferable performance especially at small signal 

to noise ratio (SNR). On the other hand, MF offers a good performance but needs com-

plete prior information about the primary user, which might not be available. In addi-

tion, there are many other methods for detecting the spectrum such as maximum-mini-

mum eigenvalue detectors, which could also obtain both high detecting probability and 

low false-alarm probability at the same time without demanding PU prior knowledge 

[2]. 

The performance of spectrum sensing is determined by both the sensitivity and se-

lectivity, which are presented by the detection rate and the false alarm probability. Ac-

curate probability of detection improves primary users (PUs) security and decreases the 

risk of false alarm that results in increasing the secondary users (SUs) channels’ utili-

zation [2].  In this paper, a multi-path hybrid sensing model for spectrum detection is 

proposed to enhance sensing efficiency by maximizing the detection probability on the 

specified limitations on the false alarm probability. 

The rest of the paper is arranged as below. Section 2 shows the related work of this 

problem. In Section 3, the system model of the sensing scheme, the proposed multi-

path hybrid spectrum sensing model, and all the mathematical analysis carried out are 

introduced. In section 4, simulation results for evaluating the performance of the pro-

posed model, ED, MME detection and two-stage i.e. combination of ED and MME 

detection technique are presented. Lastly, the final section is a conclusion for the paper. 

2 Related work 

In early 1990s, Joseph Mitola introduced the concept of software-defined radios (SDRs) 

[3]. Hardware requirements were minimized using SDR, which introduced a reliable 

and cheap solution to the users. In this work, an early version of the CR, known later 

as the SDR new version in 2000, was implemented and the dynamic spectrum sensing 

concept was also investigated.  
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S. Haykins in 2005 introduced the CR as a new concept for spectrum efficient usage 

[4]. Later in 2008, S. Haykins defined the Spectrum sensing as the task upon the entire 

operation of cognitive radio rests and introduced a lot of sensing techniques as Cy-

clostationary detector and the multi-taper method (MTM) for spectral estimation [5]. 

The most used technique; named energy detection was introduced by H. Urkowitz in 

1967 for the first time [6], then A. Sahai and D. Cabric in [7] and plenty of researchers 

used it in CR for the spectrum sensing purpose with numerous number of attempts for 

enhancing the ED technique performance. Moreover, two classical techniques i.e. the 

matched filtering (MF) and Eigenvalue -based spectrum sensing were introduced in [7] 

and  [8] respectively. 

Considering the spectrum sensing performance enhancement, many methods were 

developed and introduced. A simple sequential spectrum sensing was introduced in 

2009 by Yan Xin and Honghai Zhang [9]. In 2010, Konstantinos Plataniotis introduced 

two-stage spectrum detection in cognitive radio networks [10]. Then, in 2012, Minny 

Bhola, Rinkoo Bhatia presented a two-stage spectrum sensing for cognitive radio using 

cyclostationary detection and energy detection [11].  After that, in 2015, Min Jia, Xue 

Wang, Fang Ben, Qing Guo and Xuemai Gu developed the concept of energy detection 

and covariance detection [12].  In 2017, Awani S. Khobragade, R. D. Raut demon-

strated a hybrid spectrum sensing method for cognitive radio which has utilized five 

different techniques for spectrum sensing and combined them to establish a hybrid sens-

ing system based on the principle of Centralized Organization in which the installation 

of infrastructure has been intended for CR users [2]. In 2019 Mahua Bhowmik, P. Mal-

athi offered and showed a hybrid model for energy efficient spectrum sensing in cog-

nitive radio based in neural network prediction model [1]. 

In this paper and in the light of the continuous effort to improve the performance of 

spectrum sensors in terms of seeking to obtain a higher probability of detection and low 

probability of false alarm, a new multi-path hybrid sensing model for spectrum detec-

tion is proposed.  This new multi-path hybrid sensing model overcomes the limitations 

of both hybrid and conventional sensing methods and gives better performance in terms 

of probability of detection at low SNR, as well as better performance when compared 

with each method's detection performance. 

3 System Model 

3.1 Spectrum sensing model 

To perform spectrum sensing, the following hypotheses have been tested by the detec-

tor: under H0, the signal of the primary user is absent and, there is just noise at the 

receiver input, however, under H1, the primary user signal and noise are existed at the 

input of the receiver. Assuming that bandwidth B and the center frequency fc of the 

primary user signal are known, input signal is to be down converted and sampled at the 

Nyquist rate, fs = 2B. The hypothesis test discrete time model is [13]: 

 H0: y[m] = w[m], m = 1, ..., n (1) 



4 

 H1: y[m] = x[m] + w[m], m = 1, ..., n (2) 

Where n samples represent period of observation which is equivalent to the sensing 

time, the secondary user received signal y[m], both of noise w[m] and signal x[m] sam-

ples are modeled as independent random variables of Gaussian with zero mean and 

variance σ𝑤
2  andσ𝑠

2, respectively. 

3.2 Energy Detector 

Energy measurement is the main method of signal detection when there is noise and is 

considered the common technique because it could be applied to whatsoever signals. In 

addition, it demands the least amount of information about the signal, i.e., the signal 

bandwidth and carrier frequency. In signal processing communications, detection of 

energy is regarded as a hypothesis testing issue, and evaluating the performance by 

computing the pair of false alarm and detection probabilities (Pfa, Pd). Even though the 

systems of positive SNR performance are understood properly, it is uncertain whether 

identical performance and analysis are valid in the extremely negative systems of SNR. 

The energy detector decision’s statistic measured energy over n samples [13]: 

𝜀(𝑦) = ∑ 𝑦[𝑚]2𝑛
𝑚=1                                 (3) 

To compute Pd and Pfa, we need to determine the probability density function (pdf) of 

decision statistic under both hypotheses. Because the test statistic is the addition of n 

Gaussian random variables then its pdf is chi-square 𝑥𝑛
2. 

The detection is carried out by testing the measured energy threshold. Setting a suit-

able threshold value can be performed by many methods. In cases of spectrum sensing, 

threshold 𝛾 is adjusted to obey the fixed Pfa. Then, 

𝑃𝑓𝑎 = 𝑃𝑟(𝜀(𝑦) >  𝛾|𝐻𝑜) = 𝑄𝑥𝑛
2 (

𝛾

σ𝑤
2
)                                       (4) 

𝑃𝑑 = 𝑃𝑟(𝜀(𝑦) >  𝛾|𝐻1) = 𝑄𝑥𝑛
2 (

𝛾

σ𝑤
2 + σ𝑠

2
)                               (5) 

According to the equation, Q(.) is the complementary distribution functions of Gauss-

ian. Note that Pfa depends only on the noise variance, thus the threshold can be set 

regardless of the primary user signal level. 

For a certain number of samples n, typically larger than 250, 𝑥𝑛
2 can be approximated 

with a Gaussian random variable, i.e. 𝑥𝑛
2 ~ N (n, 2n). Then, we can rewrite Pd and Pfa as 

[13]: 

𝑃𝑓𝑎 = 𝑄 (

𝛾
σ𝑤

2 − 𝑛

√2𝑛
)                                                               (6) 
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𝑃𝑑 = 𝑄 (

𝛾
σ𝑤

2 + σ𝑠
2 − 𝑛

√2𝑛
)                                                       (7) 

The samples number is a critical value, where if the samples number used in sensing is 

unlimited, an energy detector is capable of fulfilling any required Pd and Pfa at the 

same time. The least desired samples number is a function of SNR = σ𝑠
2/σ𝑤

2 : 

 n = 2[(Q−1 (Pfa) − Q−1 (Pd)) SNR−1 − Q−1 (Pd)]
2                                  (8) 

In systems with low SNR << 1, the detection needs sufficient samples numbers that 

fulfill identified Pfa and Pd, asymptotically scales as 1/SNR2. This scaling law is a non-

coherent detection characteristic, i.e. detectors whose sensing time scale as 1/SNR2 will 

be named as non-coherent. 

Practically to implement a detector of energy, it requires a band-pass filter (BPF), an 

integrator, a digital-to-analog converter, and a square law device. At first, the band-

width of input signals is bounded to focus through a BPF. After that squaring, the fil-

tered signal make integration over the observation period T. Lastly, a comparison is 

made between the integrator output and a threshold to decide whether the primary sig-

nal is present or not. Figure 1 shows a typical energy detection block diagram: 

 

Fig. 1. Energy Detector Block Diagram. 

Taking into consideration the previous points, the energy detection drawbacks could be 

concluded as follows: 

• The energy detection performance is very sensitive to the changing noise level. 

• It needs longer time than matched filter detection.  

• This technique is incapable of distinguishing noise, modulated signals, and interfer-

ence. 

• Spread spectrum signals detection is not possible with energy detection techniques. 

On the other hand, energy detection method has several advantages that motivate us 

to study. For example: 

• It is more common as receivers do not require information about the signal of the 

primary user. 

• It has much simpler implementation with respect to other sensing techniques. 

Signals can be detected at low SNRs, as long as the power spectral density is known 

and detection interval is sufficiently long. 
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3.3 Maximum Minimum Eigen value Detector (MME) 

In this technique, more precision and noise robustness are obtained by the development 

of more complex mathematical derivation of the test statistics [15]. The test statistics 

has been defined by the ratio of the maximum πmax to the minimum πmin eigenvalue of 

the covariance matrix ℜπ, which is constructed by performing the following proce-

dures: 

First, the n samples obtained vector is divided into k similar sections (k is the smooth-

ing factor), then a matrix D with shape k×nk is built where nk= n /k, at last ℜπ is gener-

ated: 

ℜπ =
1

𝑛𝑘

 𝐷𝐷∗                                                        (9) 

We can write it in more details as: 

ℜπ(𝑘) =

[
 
 
 
 
      𝑔(0)         𝑔(1)                      ⋯  𝑔(𝑛 − 1)

       𝑔∗(0)         𝑔(1)                     ⋯   𝑔(𝑛 − 1)
       ⋮                   ⋮                         …            ⋮    
    ⋮                   ⋮                         …            ⋮ 

𝑔∗(𝑛 − 1) 𝑔∗(𝑛 − 2)                …           𝑔(0) ]
 
 
 
 

                       (10) 

where  

𝑔(𝑙) =
1

𝑘
∑ 𝑥(𝑚)𝑥(𝑚 − 𝑙)∗

𝑘−1

𝑚=0

 

with 𝑙 = 0,1, …… , 𝑛 − 1. 
  

Based on the calculated eigenvalues, the maximum eigenvalue πmax and minimum ei-

genvalue πmin of the matrix ℜπ is obtained. To employ this statistical test to determine 

the required threshold for detection, it is necessary to analyze the covariance matrix 

statistical distribution when the PU signal is absent, which is the noise sample covari-

ance matrix ℜW (n). According to Random Matrix theory, the MME threshold can be 

defined as [14]: 

𝛾𝑀𝑀𝐸 =
(√𝑘 + √𝑛)

2(𝑘 + 𝑛)
(1 +

(√𝑘 + √𝑛)
−2 3⁄

(𝑘 𝑛)1 6⁄
𝐹1

−1(1 − 𝑃𝑓𝑎))                   (10) 

where 𝐹1
−1 is the cumulative inverse function of the Tracy-Widom first order distribution 

as seen in Table 1, 𝛾𝑀𝑀𝐸  is the MME detection threshold.  

Table 1. Tracy-Widom first order distribution numerical values [5] 

𝑃𝑓𝑎 0.01 0.03 0.05 0.07 0.09 0.1 0.3 0.6 

𝐹1
−1(1 − 𝑃𝑓𝑎) 2.02 1.33 0.97 0.73 0.53 0.45 -0.59 -1.58 

The MME detector decision metric is described as: 

𝑌𝑚= {𝐻1 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠; 𝑀𝑀𝐸𝑇>𝛾𝑀𝑀𝐸

𝐻0 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠; 𝑀𝑀𝐸𝑇≤𝛾𝑀𝑀𝐸                              (11) 
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𝑀𝑀𝐸𝑇 =
πmax

πmin

                                                 (13) 

The PU signal is assumed to be present if the ratio 𝑀𝑀𝐸𝑇exceeds the threshold 𝛾𝑀𝑀𝐸 , 

otherwise, it is assumed to be absent. 

The false alarm and detection probability can be formulated as [14]: 

𝑃𝑓𝑎 = 𝑃𝑟(𝑀𝑀𝐸𝑇 > 𝛾𝑀𝑀𝐸|𝐻𝑜)

= 1 −  𝐹1

(

 
 𝛾𝑀𝑀𝐸  (√𝑘 + √𝑛)

2
− (√𝑘 + √𝑛 − 1)

2

(√𝑘 + √𝑛 − 1) (
1

√𝑛 − 1
+

1

√𝑘
)

1 3⁄

)

 
 

                  (14) 

 

𝑃𝑑 = 𝑃𝑟(𝑀𝑀𝐸𝑇 > 𝛾𝑀𝑀𝐸|𝐻1) 

= 1 − 𝐹1

(

 
 𝛾𝑀𝑀𝐸  𝑛 + 𝑛(𝛾𝑀𝑀𝐸𝛿𝑚𝑖𝑛 − 𝛿𝑚𝑎𝑥)/σ𝑤

2 − (√𝑘 + √𝑛 − 1)
2

(√𝑘 + √𝑛 − 1) (
1

√𝑛 − 1
+

1

√𝑘
)

1 3⁄

)

 
 

(15) 

where 𝛿𝑚𝑎𝑥, 𝛿𝑚𝑖𝑛 are the maximum and minimum eigenvalues, respectively, of the PU 

signal covariance matrix, which are all calculated in the same way as the received sam-

ples covariance matrix.  

Figure 2 illustrates the Maximum-Minimum-Eigenvalue-Detector block diagram, where 

the covariance matrix is constructed, eigen values and threshold are calculated then the sta-

tistical test is performed. 

 

Fig. 2. Maximum Minimum Eigen value Detector Block Diagram. 

3.4 Proposed Model 

In this paper, we examine the proposed hybrid model in the following system model. 

A single non-co-operated secondary user is used to detect the primary user signal, while 

the prime spectrum access links are the authorized band PU connection, and the oppor-

tunistic spectrum is the SU link [16,17,18]. 

The proposed Multi-path hybrid sensing model for spectrum detection that consists 

of two parallel paths of hybrid detectors is shown in Fig.3. The first path is formed from 

two sequential detector stages, in the first phase, energy detector is used to recognize 
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the PU signal existence and if the signal was not identified, Maximum-Minimum Ei-

genvalue (MME) is used as a second stage to detect the PU signal presence. While the 

second path consists of two parallel stage detectors employing separate ED and MME 

to detect the PU signal individually then the two results are gathered to make a decision. 

Next, the final detection decision is determined based on the two paths combined de-

tection results as illustrated in the process flow chart shown in Fig.4. 

 

Fig. 3. Block diagram for the proposed multi-path hybrid sensing model. 

 

Fig. 4. Process flow chart for the proposed multi-path hybrid sensing model. 
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4 Simulation Results and Discussion 

In this section, MATLAB has been used for evaluating the proposed multi-path hybrid 

spectrum sensing technique detection performance in comparison with the typical en-

ergy detector, MME detector, sequential detector of two stages from ED & MME and 

the parallel detector of two parallel stages from ED & MME.  We carried out different 

scenarios, for example studying Pd for different techniques, the number of samples ef-

fect on Pd, the change in Pfa effect on Pd and the mean detection time for different 

techniques. All of these scenarios used for evaluating the detection performance for the 

proposed method.  

Figure 5 illustrates the detection probability for the proposed multi-path hybrid spec-

trum sensing technique and compares sensing schemes against signal to noise ratio at 

simulation parameters Pfa =0.1 and, N = 1000. The obtained results in Fig. 5 indicate 

that the proposed model detection probability exceeds the other sensing schemes. For 

example, at SNR=-15 dB, the detection probability Pd for ED = 0.07, MMED =0.228, 

sequential=0.254, parallel=0.283 and proposed model= 0.465. From the previous ex-

ample, the proposed model achieves a great enhancement in the probability of detection 

reaches more than 1.5 of parallel detector, which is the most accurate scheme compared 

with the other schemes. 

 

Fig. 5. Performance comparison between the proposed multi-path hybrid sensing model and other 

sensing techniques, at Pfa = 0.1 and samples no. N=1000 sample. 
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Figure 6 illustrates the samples number effect on the probability of detection for the 

proposed multi-path hybrid spectrum sensing technique against SNR curve at Pfa 

=0.1and various samples number. It shows that the increase in the samples number 

leads to an increase in the detection probability, but also an increase in the complexity 

of computations that is a critical cost. So as a result, a tradeoff between the samples 

number and detection probability computational complexity is held to choose an ade-

quate samples number in order to achieve acceptable detection probability based on the 

system design. 

 

Fig. 6. Performance comparison of different no of samples for the proposed multi-path hybrid 

sensing model. 

Figure 7 illustrates the detection probability for the proposed multi-path hybrid spec-

trum sensing technique versus signal to noise ratio at N = 1000 samples, for different 

values of false alarm probability, Pfa. It also indicates different values for false alarm 

probability Pfa.  The detection probability rises when Pfa has increased as illustrated in 

the graph, at SNR=-15 dB, the detection probability Pd =0.2162 when Pfa = 0.01, when 

Pfa =0.05 the detection probability Pd = 0.3611 and for Pfa =0.1 the detection probability 

Pd = 0.4513, but the maximum acceptable Pfa in common wireless medium is 0.1, so it 

cannot be exceeded. 
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Fig. 7. Performance comparison of different values of false alarm probability for the proposed 

multi-path hybrid sensing model. 

Figure 8 illustrates the mean detection time for the proposed multi-path hybrid spectrum 

sensing technique and compares sensing schemes against signal to noise ratio at simu-

lation parameters Pfa =0.1 and, N = 1000. The obtained results clearly indicate that ED 

has the lowest mean detection time for all SNR values despite having less detection 

probability compared with other schemes.  

The sequential method has two different time behaviors according to the SNR value, 

as shown in Fig. 8, due to the working sequence of that approach, which has an ED 

detector in the first stage and MME detector as a second stage. If the first stage detects 

the PU correctly, it will end the process; otherwise, it uses the second stage. Noting that 

the ED has good performance in high SNR environments and typically does not need 

the second stage, results in taking short detection time.  On the other hand, the ED 

performance degrades in low SNR environments forcing the system to use the MME 

stage after using the ED results in taking a long detection time. In this case, therefore, 

this technique has two different time behaviors. 

To evaluate the proposed technique versus other sensing methods, we select two 

points for the comparison sake, one point at small SNR value, i.e. -15dB, and another 

one at higher SNR, i.e. -4 dB, to include the two extremes of the sequential behavior. 

Table 2 shows the performance-complexity tradeoff at these two SNR values, for ex-

ample at SNR=-15dB the proposed model enhances Pd than ED with factor 10, while it 

takes about quadruple mean detection time than that of ED, which leads to a clear result 

that the cost of higher detection probability is the longest mean detection time. 
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Fig. 8. Mean detection time comparison between the proposed multi-path hybrid sensing model 

and other sensing techniques. 

Table 2. Performance tradeoff between techniques at two SNR values. 

 ED MME Sequential Parallel Hybrid 

SNR (dB) -15  -4  -15  -4  -15  -4  -15  -4  -15  -4  
Detection 

probability 
0.038 1 0.181 1 0.181 1 0.211 1 0.355 1 

Mean detection 
time(sec) 

0.2 0.2 0.54 0.54 0.78 0.2 0.54 0.54 0.85 0.85 

 

Figure 9 illustrates the ROC curves for the proposed hybrid model under AWGN, 

Rayleigh channel, and Rician channel for various SNR values. The detection probabil-

ity is found to decrease when the SNR decreases for both AWGN and fading channels. 
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Fig. 9. ROC curves for Proposed hybrid model under AWGN, Rayleigh channel with m = 10 and 

Rician channel with Rice factor K=10 dB. 

5 Conclusions and Future work 

In this paper, we proposed a multi-path hybrid spectrum sensing scheme for cognitive 

radio to enhance the sensing efficiency. The proposed scheme is a hybrid combination 

of traditional sensing schemes, namely energy detection and maximum minimum eigen 

value detector. In addition, performance analysis in terms of its detection performance 

and mean detection time are carried out which shows the performance trade-offs for the 

proposed sensing scheme. Maximizing the detecting probability on the given con-

straints of false alarm probability and does not increase the computational cost is the 

major aim of this achieved and evaluated work. Moreover, we focus on demonstrating 

the efficiency of the proposed hybrid model to enhance the sensing performance to 

solve the problem of spectrum bad utilization. Based on this research, some opportuni-

ties for future work could be performed such as examining the proposed hybrid model 

in a cooperative sensing situation and investigating its impact on the performance of 

cooperative sensing. Adapting the proposed hybrid model to examine its behavior in 

the MIMO sensing scenario and evaluate its impact on the sensing performance is an-

other future direction that could be considered. 
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