ECE447: Robotics Engineering

Lecture 6: Forward Kinematics

Dr. Haitham El-Hussieny

Electronics and Communications Engineering Faculty of Engineering (Shoubra)

Benha University

Spring 2017

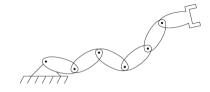
Lecture Outline:

- Introduction.
- 2 Basic Assumptions and Terminology.
- 3 Denavit-Hartenberg Convention.
- Assignment of Coordinate Frames.

Table of Contents

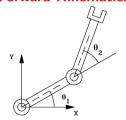
- Introduction.
- 2 Basic Assumptions and Terminology
- 3 Denavit-Hartenberg Convention.
- Assignment of Coordinate Frames.

A manipulator is a kinematic chain composed by a series of rigid bodies, the **links**, connected by **joints** that allow a **relative motion**.

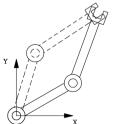


In robotic manipulation we are concerned with two common **kinematic** problems:

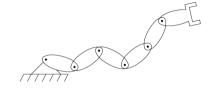
Forward Kinematics



Inverse Kinematics

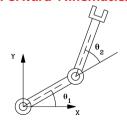


A manipulator is a kinematic chain composed by a series of rigid bodies, the **links**, connected by **joints** that allow a **relative motion**.



In robotic manipulation we are concerned with two common kinematic problems:

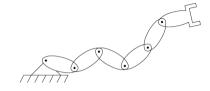
Forward Kinematics



Given: Joint Variables \mathbf{q} (θ or d) **Required**: Position and orientation of end-effector, \mathbf{p} .

$$\mathbf{p} = f(q_1, q_2, \dots, q_n) = f(\mathbf{q})$$

A manipulator is a kinematic chain composed by a series of rigid bodies, the **links**, connected by **joints** that allow a **relative motion**.



In robotic manipulation we are concerned with two common kinematic problems:

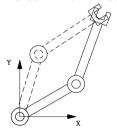
Given: Position and orientation of

end-effector, **p**.

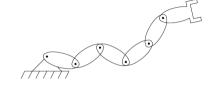
Required: Joint Variables \mathbf{q} (θ or d) to get \mathbf{p}

$$\mathbf{q}=f(\mathbf{p})$$

Inverse Kinematics



A manipulator is a kinematic chain composed by a series of rigid bodies, the **links**, connected by **joints** that allow a **relative motion**.

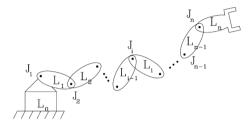


In robotic manipulation we are concerned with two common kinematic problems:

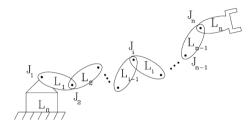
In this lecture, we will show how to find the **Forward Kinematics** of a rigid manipulator. Given the joints values and the pose of the end-effector is required.

Table of Contents

- Introduction.
- 2 Basic Assumptions and Terminology.
- Oenavit-Hartenberg Convention.
- 4 Assignment of Coordinate Frames.

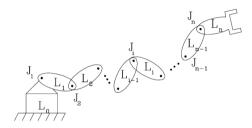


- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
 - revolute joint (a rotation by an angle about fixed axis).
 - prismatic joint (a displacement along a single axis).



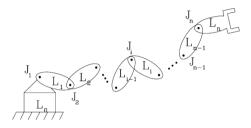
- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
 - revolute joint (a rotation by an angle about fixed axis).
 - prismatic joint (a displacement along a single axis).
- A robot manipulator with n joints will have n+1 links.

Dr. Haitham El-Hussieny



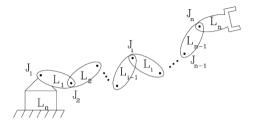
- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
 - revolute joint (a rotation by an angle about fixed axis).
 - prismatic joint (a displacement along a single axis).
- A robot manipulator with n joints will have n+1 links.
- We number joints from 1 to n, and links from 0 to n. So that joint i connects links i-1 and i.

Dr. Haitham El-Hussieny ECE447: Robotics Engineering 6 / 24

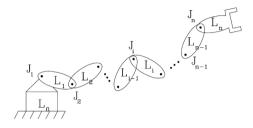


- A robot manipulator is composed of a set of links connected together by joints.
- Joints can be either:
 - revolute joint (a rotation by an angle about fixed axis).
 - prismatic joint (a displacement along a single axis).
- A robot manipulator with n joints will have n+1 links.
- We number joints from 1 to n, and links from 0 to n. So that joint i connects links i-1 and i.
- The location of joint i is fixed with respect to the link i-1.

Dr. Haitham El-Hussieny ECE447

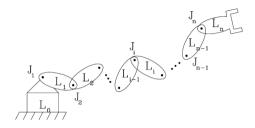


ullet When joint i is actuated, the link i moves. Hence the link 0 is fixed.



- When joint i is actuated, the link i moves. Hence the link 0 is fixed.
- ullet With the i^{th} joint, we associate joint variable:

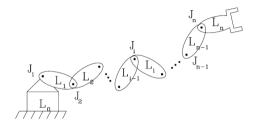
$$q_i = \left\{ \begin{array}{ll} \theta_i, & \text{if joint } i \text{ is revolute} \\ d_i, & \text{if joint } i \text{ is prismatic} \end{array} \right\}$$



- When joint i is actuated, the link i moves. Hence the link 0 is fixed.
- ullet With the i^{th} joint, we associate joint variable:

$$q_i = \left\{ \begin{array}{ll} \theta_i, & \text{if joint } i \text{ is revolute} \\ d_i, & \text{if joint } i \text{ is prismatic} \end{array} \right\}$$

ullet For each link we attached rigidly the coordinate frame, $o_i x_i y_i z_i$ for the link i.



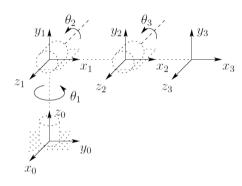
- When joint i is actuated, the link i moves. Hence the link 0 is fixed.
- With the i^{th} joint, we associate joint variable:

$$q_i = \left\{ \begin{array}{ll} \theta_i, & \text{if joint } i \text{ is revolute} \\ d_i, & \text{if joint } i \text{ is prismatic} \end{array} \right\}$$

- For each link we attached rigidly the coordinate frame, $o_i x_i y_i z_i$ for the link i.
- The frame $o_0x_0y_0z_0$ attached to the base is referred to as **inertia frame**.

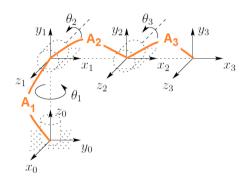
ECE447: Robotics Engineering Dr. Haitham El-Hussienv

• If A_i is the homogeneous transformation that gives the position and orientation of frame $o_i x_i y_i z_i$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.



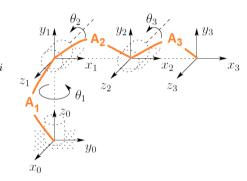
Example of elbow manipulator

• If A_i is the homogeneous transformation that gives the position and orientation of frame $o_i x_i y_i z_i$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.



Example of elbow manipulator

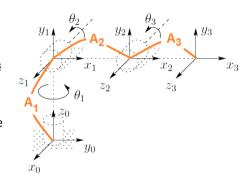
- If A_i is the homogeneous transformation that gives the position and orientation of frame $o_i x_i y_i z_i$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.
- The matrix A_i is changing as robot configuration changes and it is a function of the joint variables q_i i.e. $A_i(q_i)$.



Example of elbow manipulator

- If A_i is the homogeneous transformation that gives the position and orientation of frame $o_i x_i y_i z_i$ with respect to frame $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$.
- The matrix A_i is changing as robot configuration changes and it is a function of the joint variables q_i i.e. $A_i(q_i)$.
- The matrix T_j^i is the homogeneous transformation that expresses the position and orientation of frame $\{j\}$ with respect to frame $\{i\}$:

$$T_j^i = \left\{ \begin{array}{ll} A_{i+1} A_{i+2} \dots A_{j-1} A_j & \text{if } i < j \\ \mathcal{I} & \text{if } i = j \\ (T_i^j)^{-1} & \text{if } i > j \end{array} \right\}$$



Example of elbow manipulator

 Suppose that the position and orientation of the end-effector with respect to the inertia frame are:

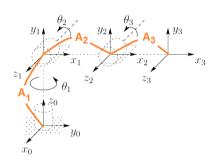
$$o_n^0, \qquad R_n^0$$

• Then the position and orientation of the end-effector in inertia frame are given by homogeneous transformation:

$$T_n^0 = A_1(q_1)A_2(q_2)\dots A_{n-1}(q_{n-1})A_n(q_n) = \begin{bmatrix} R_n^0 & o_n^0 \\ 0 & 1 \end{bmatrix}$$

where,

$$A_i(q_i) = \begin{bmatrix} R_i^{i-1} & o_i^{i-1} \\ 0 & 1 \end{bmatrix}$$



Example of elbow manipulator

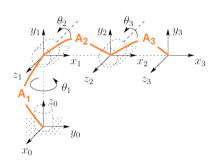
 Suppose that the position and orientation of the end-effector with respect to the inertia frame are:

$$o_n^0, \qquad R_n^0$$

• Then the position and orientation of the end-effector in inertia frame are given by homogeneous transformation:

$$T_n^0 = A_1(q_1)A_2(q_2)\dots A_{n-1}(q_{n-1})A_n(q_n) = \begin{bmatrix} R_n^0 & o_n^0 \\ 0 & 1 \end{bmatrix}$$

• So, to find the forward kinematics of a manipulator, we need to find all $A_i(q_i)$ and multiply them. (Not simple!)



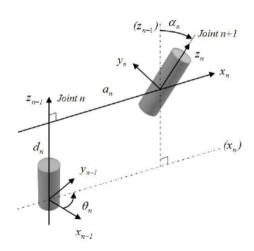
Example of elbow manipulator

Table of Contents

- Introduction.
- 2 Basic Assumptions and Terminology
- Oenavit-Hartenberg Convention.
- 4 Assignment of Coordinate Frames.

• The idea is to represent each homogeneous transform A_i as a product of four basic transformations:

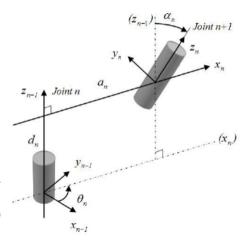
$$A_i = \mathsf{Rot}_{z,\theta_i} \; \mathsf{Trans}_{z,d_i} \; \mathsf{Trans}_{x,a_i} \; \mathsf{Rot}_{x,\alpha_i}$$



• The idea is to represent each homogeneous transform A_i as a product of four basic transformations:

$$A_i = \mathsf{Rot}_{z,\theta_i} \; \mathsf{Trans}_{z,d_i} \; \mathsf{Trans}_{x,a_i} \; \mathsf{Rot}_{x,\alpha_i}$$

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- ② α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- $oldsymbol{0}$ d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- $oldsymbol{0}$ $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})



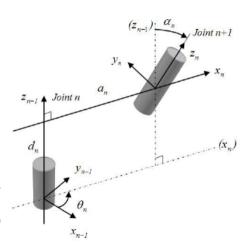
• The idea is to represent each homogeneous transform A_i as a product of four basic transformations:

$$A_i = \mathsf{Rot}_{z,\theta_i} \; \mathsf{Trans}_{z,d_i} \; \mathsf{Trans}_{x,a_i} \; \mathsf{Rot}_{x,\alpha_i}$$

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- ② α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- $oldsymbol{0}$ d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- \bullet θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

Three of these DH parameters are constant while the forth is variable θ_i or d_i .



- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- $lacktriangleq d_i$: link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- \bullet θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

$$\begin{split} A_i &= \text{Rot}_{z,\theta_i} \text{Trans}_{z,d_i} \text{Trans}_{x,a_i} \text{Rot}_{x,\alpha_i} \\ &= \begin{bmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \begin{bmatrix} c_{x_i} & -s_{x_i}c_{x_i} & s_{x_i}s_{x_i} & a_{x_i}c_{x_i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

$$= \begin{bmatrix} c_{\theta_i} & -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_ic_{\theta_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_is_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
If we found the DH parameter, it will be easy to fill this directly

Four DH parameters are required:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- 2 α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- 3 d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- \bullet θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

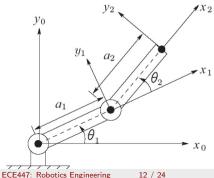
The Task:

- ullet Given a robot manipulator with n revolute and/or prismatic joints and (n+1) links,
- We need to define coordinate frames for each link so that transformations between frames can be written in DH-convention.

Example: Suppose the coordinate frames are assigned.

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- ② α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- δ d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- \bullet θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

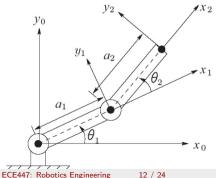
link	a _i	α_{i}	d _i	θ_{i}
1				
2				



Example: Suppose the coordinate frames are assigned.

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- ② α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- δ d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- \bullet θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

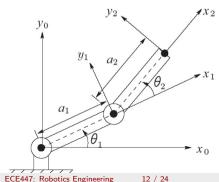
link	a _i	α_{i}	d _i	θ_{i}
1	a ₁	0	0	θ_1
2	a ₂	0	0	θ_2



Example: Suppose the coordinate frames are assigned.

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- \bullet d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- \bullet θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

$$A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & a_1c_1 \\ s_1 & c_1 & 0 & a_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_2 = \begin{bmatrix} c_2 & -s_2 & 0 & a_2c_2 \\ s_2 & c_2 & 0 & a_2s_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Example: Suppose the coordinate frames are assigned.

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- \bullet d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- \bullet θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

$$T_2^0 = A_1 A_2 = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_1 c_1 + a_2 c_{12} \\ s_{12} & c_{12} & 0 & a_1 s_1 + a_2 s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

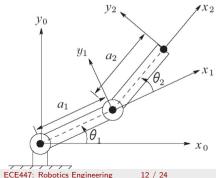
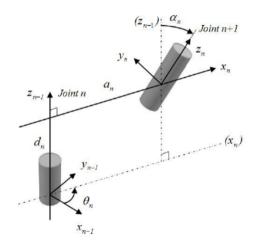


Table of Contents

- Introduction
- 2 Basic Assumptions and Terminology
- 3 Denavit-Hartenberg Convention.
- 4 Assignment of Coordinate Frames.

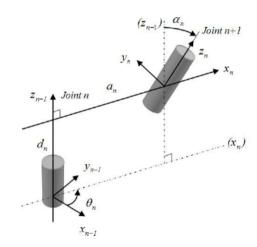
Assignment of Coordinate Frames:

- Given a robot manipulator with:
 - n revolute and/or prismatic joints,
 - (n+1) links.



Assignment of Coordinate Frames:

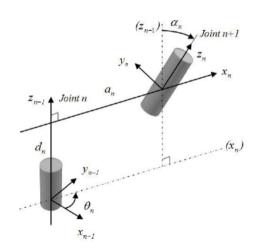
- Given a robot manipulator with:
 - n revolute and/or prismatic joints,
 - (n+1) links.
- For a given robot manipulator, we need to assign the n+1 frames from 0 to n in such a way to satisfy two conditions:
 - 1 The axis x_1 is perpendicular to the axis z_0 ,
 - 2 The axis x_1 intersects the axis z_0 .



Assignment of Coordinate Frames:

- Given a robot manipulator with:
 - n revolute and/or prismatic joints,
 - (n+1) links.
- For a given robot manipulator, we need to assign the n+1 frames from 0 to n in such a way to satisfy two conditions:
 - The axis x_1 is perpendicular to the axis z_0 ,
 - 2 The axis x_1 intersects the axis z_0 .
- ullet This will help to represent each transformation A_i between frame i and frame i-1 by the four DH parameters:

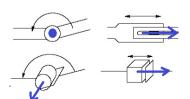
$$A_i = \mathsf{Rot}_{z, heta_i} \; \mathsf{Trans}_{z,d_i} \; \mathsf{Trans}_{x,a_i} \; \mathsf{Rot}_{x,lpha_i}$$

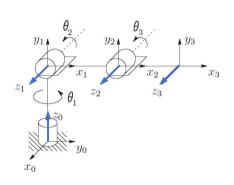


Algorithm for Assigning the Coordinate Frames:

① Step 1: Choose z_i -axis along the actuation line of joint i+1 for frame 0 to n-1:

- If joint i + 1 is revolute, z_i is the axis of rotation of joint i + 1.
- If joint i+1 is prismatic, z_i is the axis of translation for joint i+1
- z_n is chosen parallel to z_{n-1} and O_n in the center of the end-effector.

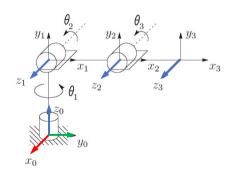




Algorithm for Assigning the Coordinate Frames:

Step 2: Write the inertia coordinate frame 0:

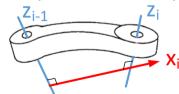
- The origin O_0 of the base frame can be any point along z_0 .
- x_0 and y_0 are chosen arbitrary that follow the right hand coordinate systems.

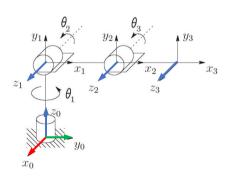


Algorithm for Assigning the Coordinate Frames:

3 Step 3: Assignment of axes x_i for frame 1 to frame n:

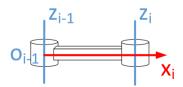
- To meet the DH conditions, the x_i -axis should intersects z_{i-1} and $x_i \perp z_{i-1}$ and $x_i \perp z_i$.
 - CASE 1: z_i and z_{i-1} are **not coplanar**: then the x_i will be on the common normal to z_i and z_{i-1} and O_i is the intersection of x_i and z_i .

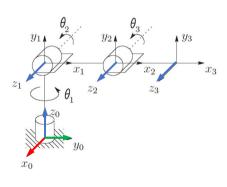




Algorithm for Assigning the Coordinate Frames:

- **3** Step 3: Assignment of axes x_i for frame 1 to frame n:
- To meet the DH conditions, the x_i -axis should intersects z_{i-1} and $x_i \perp z_{i-1}$ and $x_i \perp z_i$.
 - CASE 2: z_i and z_{i-1} are **parallel:** $\overline{x_i}$ is along any of the many normals between z_i and z_{i-1} . However, if x_i is along the normal that intersects at o_{i-1} , d_i will be zero (simple). O_i is the intersection of x_i and z_i .

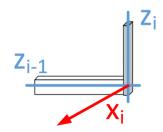


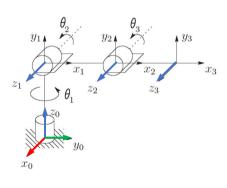


Algorithm for Assigning the Coordinate Frames:

3 Step 3: Assignment of axes x_i for frame 1 to frame n:

- To meet the DH conditions, the x_i -axis should intersects z_{i-1} and $x_i \perp z_{i-1}$ and $x_i \perp z_i$.
 - CASE 3: z_i and z_{i-1} intersect: Choose x_i to be normal to the plane defined by z_i and z_{i-1} O_i is the intersection of z_{i-1} and z_i .



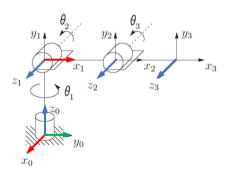


Algorithm for Assigning the Coordinate Frames:

3 Step 3: Assignment of axes x_i for frame 1 to frame n:

In this example:

• z_0 and z_1 are perpendicular, x_1 is normal to both of them.

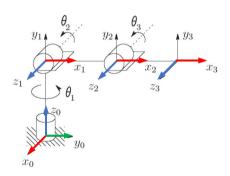


Algorithm for Assigning the Coordinate Frames:

3 Step 3: Assignment of axes x_i for frame 1 to frame n:

In this example:

- z_0 and z_1 are perpendicular, x_1 is normal to both of them.
- z_1 and z_2 are parallel, x_2 is normal to both of them along line passing from O_1 .

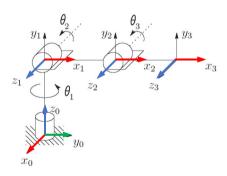


Algorithm for Assigning the Coordinate Frames:

3 Step 3: Assignment of axes x_i for frame 1 to frame n:

In this example:

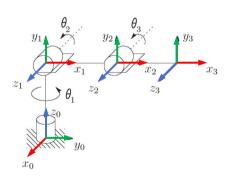
- z_0 and z_1 are perpendicular, x_1 is normal to both of them.
- z_1 and z_2 are parallel, x_2 is normal to both of them along line passing from O_1 .
- z_2 and z_3 are parallel, x_3 is normal to both of them along line passing from O_2 .



Algorithm for Assigning the Coordinate Frames:

3 Step 4: Assignment of axes y_i for frame 1 to frame n:

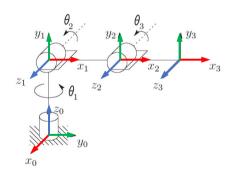
• y_i are not useful in finding the DH parameters, but we choose them in the direction that follows the RH system.



Algorithm for Assigning the Coordinate Frames:

Step 5: Find the DH parameters and write DH table for links from 1 to n:

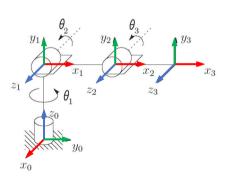
- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- $lpha_i$: link twist, angle between z_{i-1} and z_i (measured around x_i)
- **3** d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- $oldsymbol{\emptyset}$ $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})



Algorithm for Assigning the Coordinate Frames:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- ② α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- **3** d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- $oldsymbol{0}$ $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

Link	a _i	α_{i}	d _i	θ_{i}
1				
2				
3				

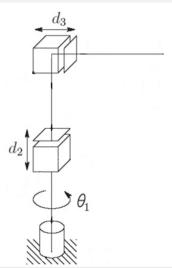


Algorithm for Assigning the Coordinate Frames:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- $oxed{2} lpha_i$: link twist, angle between z_{i-1} and z_i (measured around x_i)
- **3** d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- \bullet θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

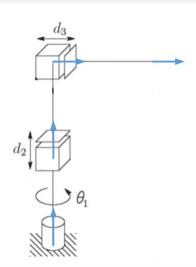
Link	a _i	α_{i}	d _i	θ_{i}
1	0	90	a ₁	θ_1
2	a ₂	0	0	θ_2
3	a ₃	0	0	θ_3



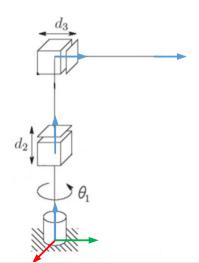


Example:

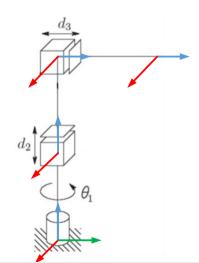
• Assign z_i along the actuation line of joint i.



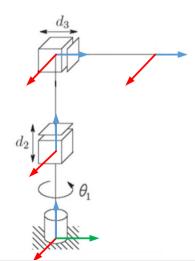
- Assign z_i along the actuation line of joint i.
- ② Choose x_0 and y_0 for frame 0.



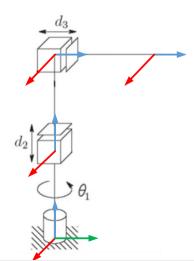
- Assign z_i along the actuation line of joint i.
- ② Choose x_0 and y_0 for frame 0.
- \odot Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .



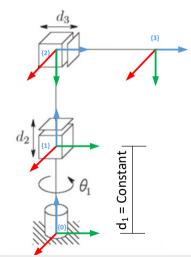
- Assign z_i along the actuation line of joint i.
- ② Choose x_0 and y_0 for frame 0.
- \bullet Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .
 - $z_1 \perp z_2$. So, $x_2 \perp z_1$ and z_2 .



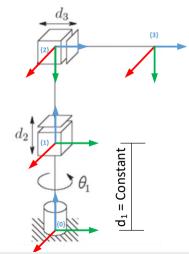
- Assign z_i along the actuation line of joint i.
- ② Choose x_0 and y_0 for frame 0.
- \bullet Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .
 - $z_1 \perp z_2$. So, $x_2 \perp z_1$ and z_2 .
 - z_2 intersect z_3 . So, $x_3 \perp z_2$ and z_3 .



- Assign z_i along the actuation line of joint i.
- ② Choose x_0 and y_0 for frame 0.
- \bullet Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .
 - $z_1 \perp z_2$. So, $x_2 \perp z_1$ and z_2 .
 - z_2 intersect z_3 . So, $x_3 \perp z_2$ and z_3 .
- lacktriangledown Complete the coordinate frames with y_i



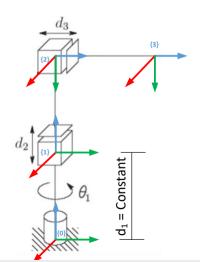
- Assign z_i along the actuation line of joint i.
- ② Choose x_0 and y_0 for frame 0.
- \bullet Find x_i :
 - z_0 intersects with z_1 . So, $x_1 \perp z_0$ and z_1 .
 - $z_1 \perp z_2$. So, $x_2 \perp z_1$ and z_2 .
 - z_2 intersect z_3 . So, $x_3 \perp z_2$ and z_3 .
- **o** Complete the coordinate frames with y_i
- 5 Find DH Table for link 1, 2 and 3.



Example:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- ② α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- **3** d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- $oldsymbol{0}$ $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

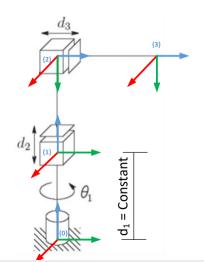
Link	a_i	α_i	d_i	θ_i
1				
2				
3				



Example:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- ② α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- **3** d_i : link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- $oldsymbol{0}$ $heta_i$: joint angle, between x_{i-1} and x_i (measured around z_{i-1})

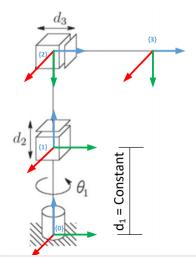
Link	a_i	α_i	d_i	$ heta_i$
1	0	0	d_1	θ_1^*
2	0	-90	d_2^*	0
3	0	0	d_3^*	0



Example:

- **1** a_i : link length, distance between z_{i-1} and z_i (along x_i).
- ② α_i : link twist, angle between z_{i-1} and z_i (measured around x_i)
- d_i: link offset, distance between o_{i-1} and intersection of z_{i-1} and x_i (along z_{i-1})
- $oldsymbol{0}$ θ_i : joint angle, between x_{i-1} and x_i (measured around z_{i-1})

$$T_3^0 = A_1 A_2 A_3 = \begin{bmatrix} c_1 & 0 & -s_1 & -s_1 d_3 \\ s_1 & 0 & c_1 & c_1 d_3 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



End of Lecture

haitham.elhussieny@gmail.com