Lecture Outline:

1. Introduction.

2. Fixed V_i, Fixed R_L.

3. Fixed V_i, Variable R_L.
Table of Contents

1 Introduction.

2 Fixed V_i, Fixed R_L.

3 Fixed V_i, Variable R_L.
The Zener diode has three regions of operations. Each region has its own approximation model.

It can be used as a part of protection circuit or as a voltage regulator.

The use of the Zener diode as a regulator is so common that three conditions surrounding the analysis of the basic Zener regulator are considered:

1. Fixed load and fixed supply voltage.
2. Fixed supply voltage and variable load.
3. Variable supply voltage and fixed load.

The first case is already studied in the previous semester and will briefly reviewed.
Table of Contents

1 Introduction.

2 Fixed V_i, Fixed R_L.

3 Fixed V_i, Variable R_L.
Fixed V_i, Fixed R_L:

Example

For the Zener diode regulator,

2. If the load is changed to $R_L = 3 \, k\Omega$, repeat the above problem.
Fixed V_i, Fixed R_L:

Solution:

1. Determine the voltage across the Zener diode to determine its state:

$$V_{zener} = V_L = \frac{V_i R_L}{R_L + R} = 16 \frac{1.2}{1 + 1.2} = 8.73 \text{ V}$$

Since the voltage across the Zener is smaller than V_Z and the diode is reverse, then the Zener is OFF.

$$V_L = V_{zener} = 8.73 \text{ V}$$

$$V_R = V_i - V_L = 16 - 8.73 = 7.27 \text{ V}$$

$$I_Z = 0$$

$$P_Z = 0 \text{ Watts}$$
Fixed V_i, Fixed R_L:

Solution:

2. If $R_L = 3 \, k\Omega$

\[
V_{\text{zener}} = V_i \frac{R_L}{R + R_L} = \frac{16 \times 3}{1 + 3} = 12 \, V
\]

Since the voltage across the zener is greater than V_Z then the zener is operating in the zener region and can be approximated as battery with V_Z:

\[
V_L = V_Z = 10 \, V
\]

\[
V_R = V_i - V_L = 16 - 10 = 6 \, V
\]

\[
I_R = \frac{V_R}{R} = \frac{6 \, V}{1 \, k\Omega} = 6 \, mA
\]
Fixed V_i, Fixed R_L:

Solution:

$$I_L = \frac{V_L}{R_L} = \frac{10\, \text{V}}{3\, \text{k}\Omega} = 3.33\, \text{mA}$$

$$I_Z = I_R - I_L = 6 - 3.33 = 2.67\, \text{mA}$$

The power dissipated by the Zener diode is:

$$P_Z = I_Z \times V_Z = 26.7\, \text{mW}$$
Table of Contents

1 Introduction.

2 Fixed V_i, Fixed R_L.

3 Fixed V_i, Variable R_L.
Fixed V_i, Variable R_L:

- The load resistance R_L determines the state of the Zener (on or off).
- Too small a R_L will result in a voltage V_L across the load resistor less than V_Z, and the Zener device will be in the “off” state.
- We need to find the range of load resistance that ensure the on state for the zener diode.

$$V_L = V_i \frac{R_L}{R + R_L}$$
Fixed V_i, Variable R_L:

To determine the minimum load resistance, R_{Lmin}:

It is the resistance that will result in a load voltage $V_L = V_Z$:

$$V_L = V_Z = V_i \frac{R_L}{R + R_L}$$

$$R_{Lmin} = \frac{R \ V_Z}{V_i - V_Z}$$

So, if a load resistance is greater than R_{Lmin} then the Zener will be on and:

$$I_{Lmax} = \frac{V_L}{R_L} = \frac{V_Z}{R_{Lmin}}$$
Fixed V_i, Variable R_L:

To determine the maximum load resistance, $R_{L_{\text{max}}}$:

Once the diode is ON, the voltage across R is fixed at:

$$V_R = V_i - V_Z$$

and,

$$I_R = \frac{V_R}{R}$$

The Zener current is:

$$I_Z = I_R - I_L$$

I_Z is limited to the maximum zener current $I_{Z_{\text{M}}}$ from the data sheet.

$$I_{L_{\text{min}}} = I_R - I_{Z_{\text{M}}}$$

$$R_{L_{\text{max}}} = \frac{V_Z}{I_{L_{\text{min}}}}$$
Fixed V_i, Variable R_L:

Example:

1. For the shown network, determine the range of R_L and I_L that will result in V_L being maintained at 10 V.
2. Determine the maximum wattage rating of the diode.
Fixed \(V_i \), Variable \(R_L \):

Solution:

\[
R_{Lmin} = \frac{R \ V_Z}{V_i - V_Z} = \frac{1 \ k\Omega \times 10\ V}{50\ V - 10\ V} = 250 \ \Omega
\]

\[
I_{Lmax} = \frac{V_L}{R_L} = \frac{V_Z}{R_{Lmin}} = \frac{10}{250} = 40mA
\]
Fixed V_i, Variable R_L:

Solution:

$$V_R = V_i - V_Z = 50 - 10 = 40 \text{ V}$$

$$I_R = \frac{V_R}{R} = \frac{40 \text{ V}}{1 \text{ k}\Omega} = 40 \text{ mA}$$

$$I_{L_{\text{min}}} = I_R - I_{Z_{\text{M}}} = 40 - 32 = 8 \text{ mA}$$

$$R_{L_{\text{max}}} = \frac{V_Z}{I_{L_{\text{min}}}} = \frac{10 \text{ V}}{8 \text{ mA}}$$
Fixed V_i, Variable R_L:

- **Graph 1:**
 - V_L: 10 V
 - R_L: 0 to 1.25 kΩ

- **Graph 2:**
 - V_L: 10 V
 - I_L: 0 to 40 mA

Diagram:
- $V_i = 50$ V
- $V_Z = 10$ V
- $I_{ZM} = 32$ mA
Fixed V_i, Variable R_L:

Solution:

$$P_{Z_{\text{max}}} = V_Z I_{Z_{\text{M}}} = (10 \text{ V})(32 \text{ mA}) = 320 \text{ mW}$$
End of Lecture

Best Wishes

haitham.elhussieny@gmail.com