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ABSTRACT

Modern power systems are currently operating under heavily loaded conditions
due to various economic, environmental, and regulatory changes. Consequently,
maintaining voltage stability has become a growing concern for electric power
utilities. With the increased loading and exploitation of the power transmission system,
the problem of voltage stability and voltage collapse attracts more and more attention.
A voltage collapse can take place in systems and subsystems, and can appear quite
abruptly. There are different methods used to study the voltage collapse phenomenon,
such as the Jacobian method, the voltage instability proximity index (VIPI) and the
voltage collapse proximity indicator method. This paper is concerned with the problem
of voltage stability, and investigates a proposed voltage collapse proximity indicator
applicable to the load points of a power system. Voltage instability is early predicted
using artificial neural networks on the basis of a voltage collapse proximity indicator.
Different system loading strategies are studied and evaluated. Test results on a sample
and large power system demonstrate the merits of the proposed approach. The
objective of this paper is to present the application of ANN in estimating the voltage
collapse proximity indicator of a power system.

KEYWORDS: Power Systems, Voltage Security, Voltage Instability, Voltage collapse

and Neural Networks

1. INTRODUCTION

Progressive energy demands associated with shortage in installed capacities

have resulted in the power systems to be operated at or close to their security limits.
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These limits are, generally, related to the problems of thermal loading and

transient stability. Modern control and protection equipment have raised the transfer

limits in stability limited systems. However, as the operating conditions for large

power systems have evolved, a new type of problem has been observed. This

phenomenon is referred to as voltage instability or voltage collapse [1-5]. It is

characterized by a continuous decline of voltage, which can occur due to the inability

of the network to meet the increasing demand for reactive power.

Available methods for voltage stability assessment are usually classified into

static and dynamic methods [4]. Static methods assume a steady state model or a

linearized dynamic model to investigate the state of the equilibrium point of a

specified operating condition of the power system. For Dynamic methods, the solution

of the governing equations is carried out in the time domain and the study period is in

the order of several minutes. Dynamic simulations are time consuming and do not

readily provide sensitivity information and degree of stability. A number of indices of

static voltage stability have been proposed in literature to quantify the proximity of the

power system to voltage collapse. Among the most widely used voltage stability

indices are the voltage collapse proximity indicator [3,5], the minimum singular value

of the power flow Jacobian matrix [6], and loading margin [7].

Voltage collapse proximity indicators are usually considered as useful measures

of the closeness of the power system to the collapse point. For a particular operating

point, the value of the indicator provides information of each bus voltage and its

proximity to the voltage collapse limits. However, as the operating condition of a

power system continuously changes, it is difficult to use these methods to provide real

time information due to the significant computational requirements of such methods.

Artificial Neural Networks (ANN) computational schemes have been successfully

applied in loading margin estimation [7], optimization of electrode contour [8] and

security assessment [9]. ANN with their ability to provide non-linear input/output

mapping, generalization, and abstraction [10] have the potential to estimate the voltage



collapse proximity indicator of a power system without solving the governing power

system equations.

The objective of this paper is to present the application of ANN in estimating

the voltage collapse proximity indicator of a power system. The multilayer

feedforward ANN with the backpropagation method is utilised. With the input /output

patterns being known apriori, supervised learning is employed for training the

network. Some of the methods available for estimating the proximity-to-collapse

indicator of a power system are briefly summarised. The structure of the proposed

neural network is also presented. Test results based on a simple power system are

presented to illustrate the suitability of the proposed method.

2. METHODS TO ESTIMATE VOLTAGE COLLAPSE INDICATORS

Different indicators have been proposed to assess the proximity of the system to

voltage collapse.

2.1  The Jacobian Method

This method was the first to relate power system stability to the load flow

Jacobian. In this work, it is shown that, with some assumptions (P and V are specified

for all generator buses, neglecting damping for all of the generators) and using

Newton-Raphson method in the polar form, the determinant of the load flow Jacobian

becomes equal to the product of the eigenvalues of the system. This means that when a

change takes place in the sign of the determinant, at least one of the Eigen values has

crossed the imaginary axis from the stable to the unstable side [1,6].

2.2  Voltage Instability Proximity Index

  Power flow equations typically present multiple solutions, with one of these

solutions corresponding to an “operable” point of a power system [5]. It is known that

the number of existing solution decreases as operating point approaches the collapse

point and only a pair of solutions remain near the collapse point and then coalesces on



it. The Voltage Instability Proximity Index (VIPI) is used to predict proximity to

voltage collapse using this solution pair.

2.3  Voltage Collapse Proximity Indicator

The Voltage Collapse Proximity Indicator (VCPI) was introduced by Kessel

and Glavitch [3] for a two-bus system model and was generalized for a multi node

system using a hybrid model for the power system. This indicator utilizes the

information obtained from a normal load flow solution. The method can be used to

determine local indicators corresponding to each load bus. The indicator L varies in

the range between 0 (no load of system) and 1 (voltage collapse) values close to one

indicate proximity to power flow divergence. Based on the concept, various models

are derived which allow the predicting of voltage instability or the proximity of a

collapse under various contingencies such as loss of generators or lines as well as load

variations. The advantage of the method lies in the simplicity, reliability and it can

give a good indication about the critical power a system can maintain before collapse

over the whole region and for all the cases studied. A local indicator jL for each node j

can be calculated [3] by:
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And L is the set of consumer nodes.

 Therefore jV  is affected by the nodal power jS  and an equivalent power cor
jS ,

which stems from the other loads of the system.



For stable situations the condition jL  1 must not be violated for any of the nodes j.

Hence a global indicator L describing the stability of the complete subsystem is given

by Eq. (3)
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Where L : set of load buses, G : set of generator buses, jV : complex voltage at load

bus j, iV : complex voltage at generator bus I, and jiC : element of matrix C

determined by:

][1][][ LGYLLYC                                          (5)

 Where ][ LLY and ][ LGY are submatrices of the Y bus matrix.

The important outcome of the presented theory is L< 1 for stability to be guaranteed.

This theory is exact when two conditions are fulfilled:

1- All generator voltages remain unchanged, amplitude and phase wise.

2- The nodal currents respond directly proportional to the current jI and indirectly

proportional to the voltage jV at the node j under consideration. The drawback of

this method is that it fails to consider the operating constraints of system

equipment, such as the VAR limits of the generators. This is an important

consideration because when a generator reaches its VAR limit the terminal voltage

can no longer be controlled. Under this condition, the machine model has to be

modified resulting in a change in the system performance pattern [12].

In order to determine the voltage collapse proximity indicators, several alternate

loading strategies were suggested in literature [3,7]. These include, either increasing



all real/reactive power generation and load of the system by a constant factor [3], or

increasing real and reactive power of all loads and only the active power of the

generators [7]. In this work, all possible alternatives of increasing the system loading

are studied and assessed. It was found that when the load is increased on only load

buses, the system becomes closer to voltage instability than any other case; i.e. the

voltage collapse proximity indicator is the highest of all other cases. Accordingly, this

strategy is followed in the neural network application. The loads are increased by a

constant Loading Factor (LF) in accordance with the following expressions:

LFLoPLP .                                                     (6)

LFLoQLQ .                                                     (7)

Where LF is the Loading Factor,
0LP

, 0LQ , LP  and LQ are the initial and increased

active and reactive powers of a load bus.

3. THE ARTIFICIAL NEURAL NETWORK MODEL

In recent year ANN’s have been proposed as an alternative method for solving

certain difficult power system problems where the conventional techniques have not

achieved the desired speed, accuracy, and efficiency. The ANN consists of an input

layer, an output layer, and at least one hidden layer; each layer consists of a set of

neurone similar to Fig.1. The neurones are interconnected. It is a feedforward network

composed of an organized topology of interconnected processing elements (PE) called

neurones or nodes. Nodes of each layer are fully connected to those of the succeeding

layer through connection weights. The input layer serves only to transfer the input

information without processing to the next layer. The PE, of any other layer, transfers

its input according to:
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iW  are weight connections between k-1 and k-th layer. The

transfer function f can be a sigmoid or hyperbolic tangent function. With supervised

learning, pairs of input – output data are present to the network at both the input and

output layers. The input data flow from the input to the output layer through the hidden

layers. At the output layer the error between the desired and computed value is

determined. The error is back propagated and weights adjusted according to the

gradient decent technique [10].

The whole procedure is repeated until the Root Mean Square error (RMS) at the

output layer falls below a small-prespecified value, usually between 0.1 and 0.01. The

RMS error is obtained by summing squares of the errors for each PE in the output

layer, dividing it by the number of PE, and taking the square root of the average.

Weight connections are randomly generated between – 0.1 and 0.1 at the initiation of

the learning phase. Learning and momentum coefficients,  and  are incorporated in

weight adjustment to speed up the convergence process while reducing error

oscillations. Input –output data are usually scaled between 0 and 1 or –1 and 1

depending on the type of the transfer function employed. To test the trained network

generalization ability, the Mean Absolute Error (MAE) defined below, is used [8]

100}/{)/1( PKtPKoPKtKNmNMAE                       (9)

Where p varies between 1 and mN  and mN is the number of patterns, KN  is the

number of neurons in the output layer, PKt  is the target output of neuron k and

PKo is its calculated output.

4. PROPOSED METHOD

The purpose of the neural network proposed in this research is to map the

relationship between the operating conditions of a power system and the

corresponding voltage collapse proximity indicator. The employed neural network

consists of an input layer, one hidden layer, and output layer. The input to the network



is measurable parameters of the power system like generator terminal voltage and real

and reactive power generation/load. The outputs of the neural network are the

voltages; and indicators of all load buses. As mentioned earlier, such indicators

provide early detection of a possible voltage collapse of the power system. Numerous

simulations using developed load flow software are carried out to obtain the training

data required for the neural networks. For this study, the real and reactive power limits

of the generator have been set to the maximum values. The loads have been modeled

as constant power loads. It is assumed that all the loads increase by a constant loading

factor, maintaining the same power factor as in the base case. However, the proposed

method is general such that suitable models for generators, converters, regulating

transformers, phase shifters etc., and their limits can be used and the training data can

be generated. Similarly, only the maximum voltage collapse indicator can also be used

as the output of the neural network instead of specifying the load voltages with their

corresponding indicators.

5. APPLICATION TO A SAMPLE POWER SYSTEM AND RESULTS

The proposed method has been tested using a 5-bus system shown in Fig.2. The

system has two generators on buses 1, 2 and loads on buses 2, 3, 4, and 5 [11]. For

different sets of input parameters, numerous simulations are performed to generate the

necessary training data. For each distinct operating condition, the corresponding load

buses voltages as well as their indicators have been determined. Specifically, for the 5-

bus system, the input to the neural network consists of real/reactive power generation

and load and the generator terminal voltage. The input/output training patterns used for

the learning phase of the ANN are given in Table 1. A total of 26 patterns with 0.1 step

loading factor started with LF equal 1 and ended at 3.18, are used for training the

network. All data are in per unit on a base of 100 MVA. The training data input/output

patterns are presented to the ANN during the learning phase. Commercially available

ANN software implementing the back-propagation method is used. The neural

network has 12 inputs (the net real and reactive power at buses 2, 3, 4 and 5 and

voltage magnitudes at buses 1 and 2), 9 hidden neurons, and 6 outputs (the voltage



magnitudes at the load buses V3, V4 and V5, and their corresponding indicators L3,

L4 and L5) as tabulated in Table1. It is obvious from the output vector in Table1, that

bus 5 is the weakest bus where the indicator L5 has the highest value for different

values of loading factor, as it is equal to 0.076 at unity LF, while L3 and L4 values at

the same LF are 0.062 and 0.065 respectively. At 3.18 LF, L5 is 0.802 while L3 and

L4 are 0.469 and 0.517. Therefore for this sample system, weakest buses ranked as bus

5, then bus 4 and finally bus 3. Convergence of the learning process is shown in Fig.3.

Both the coefficients of learning   and momentum   have the same value (0.84) for

accurate and fast results. The RMS error is less than 0.01% as the number of iteration

reaches 5527. In order to test the trained network generalization ability, 12 new

patterns are generated and presented to the network. It is found that the

misclassification is almost 0% if the results are compared with the actual results (Table

2). Also it is found that the accuracy obtained with the ANN is quite reasonable. The

ANN correctly predicted the highest voltage collapse indicator corresponding to the

weakest bus (bus 5). Fig. 4 and Fig. 5 shows the performance of the ANN in predicting

the highest indicator as well as the decline in the voltage associated with bus-5.

Comparison of the ANN and actual results for bus 5 and the behavior of the associated

indicator demonstrate the efficiency and accuracy of the proposed approach.  The

calculated value of MAE in the test results is about 0.0174 for 9 neurons of the hidden

layer. And for 6 neurons of the hidden layer the MAE is 0.0106, while for 12 neurons

this value is reduced to 0.0103.

6. ANALYSIS OF EXPECTED METHOD PERFORMANCE UNDER

COMPLEXITY OF LARGE PRACTICAL POWER SYSTEM

The proposed large practical power system has been tested using a 14-bus system. The

system has 4 generators on buses 2, 3, 6, 8 and from bus 2 to bus 14 are load buses.

For different sets of input parameters, numerous simulations are performed to generate

the necessary training data. For each distinct operating condition, the corresponding

load buses voltages as well as their indicators have been determined. The input to the

neural network consists of real/reactive power generation and load and the generator



terminal voltage. A total of 18 patterns with 0.05 step loading factor started with LF

equal 1 and ended at 1.85, are used for training the network. All data are in per unit on

a base of 100 MVA. The training data input/output patterns are presented to the ANN

during the learning phase. The neural network has 35 inputs, 33 neurons in the hidden

layer, and 26 outputs. Bus 14 is the weakest bus where the indicator L14 has the

highest value for different loading conditions. The coefficient of learning   is (0.5)

and momentum   is (0.7) for accurate and fast results. The RMS error is less than

0.07% as the number of iteration reaches 3686. In order to test the trained network

generalization ability, 17 new patterns were generated and presented to the network. It

is found that the accuracy obtained with the ANN is quite reasonable. The ANN

correctly predicted the highest voltage collapse indicator corresponding to the weakest

bus (bus 14). Fig.6 show the comparison of actual voltage and ANN voltage. The

calculated value of MAE in the test results is about 0.0008.

7. CONCLUSIONS

In this paper ANN approach for early prediction of the proximity to voltage collapse in

a power system has been proposed. The ANN is trained based on the data obtained

from numerous simulations. This technique is applicable to use for on-line estimation

of stability margin from system voltage collapse. The indicator L has a very simple

structure, can be handled easily and can be extended to multi-node system. The data as

well as the results presented indicate the possibility of using the technique for on-line

voltage stability prediction especially for practical power system in comparison with

real simulation where large computation time is required. The information delivered

by the trained network should be useful in early prediction of the voltage collapse

phenomena in a power system. The proposed approach has the potential to be a useful

tool for fast real time voltage security assessment in a power system.
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حساب مؤشر انهيار الجهد باستخدام شبكات الخلايا العصبية
ومع زيادة نظم القوى الكهربية الحديثة مصممة للعمل تحت ضغط عالى نتيجة للتغيرات الاقتصادية ،

تتركز مشكلة هذا البحث على ظاهرة      لك  ذالأحمال تظهر مشكلة هامة وهى ظاهرة انهيار الجهد ، ول         
انهيار الجهد فى نظم القوى الكهربية ، لذا تم استعراض بعض الطرق المستخدمة لحساب اسـتقرار                

.قيم معينة استخدام مصفوفة نيوتن رافسون فى دراسة تتبع الأحمال لإيجاد -1: الجهد وهى 
.     مؤشر ظاهرة انهيار الجهد -3.               مبين عدم استقرار الجهد -2

وتم استخدام شبكات الخلايا العصبية فى دراسة ظاهرة انهيار الجهد وذلك بتطبيقها على نظام مبـسط                

وأخر كبير وتم تحليل النتائج المستخلصة وعمل المقارنات المختلفة بين الطريقة المقترحـة والطـرق               

ى النظام المبـسط  فالأخرى المستخدمة من قبل ، ووجد أن النتائج تكاد تكون متطابقة وان نسبة الخطأ



وبالتالى تم الحصول على صورة كاملة لحالة الجهد بطريقة % 0.083وفى النظام الكبير % 0.0174

.مبسطة مع الوقاية اللازمة لمنع هذا الانهيار فى الجهد قبل حدوثه


