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ABSTRACT

Modern power systems are currently operating under heavily loaded conditions
due to various economic, environmental, and regulatory changes. Consequently,
maintaining voltage stability has become a growing concern for electric power
utilities. With the increased loading and exploitation of the power transmission system,
the problem of voltage stability and voltage collapse attracts more and more attention.
A voltage collapse can take place in systems and subsystems, and can appear quite
abruptly. There are different methods used to study the voltage collapse phenomenon,
such as the Jacobian method, the voltage instability proximity index (VIPI) and the
voltage collapse proximity indicator method. This paper is concerned with the problem
of voltage stability, and investigates a proposed voltage collapse proximity indicator
applicable to the load points of a power system. Voltage instability is early predicted
using artificial neural networks on the basis of a voltage collapse proximity indicator.
Different system loading strategies are studied and evaluated. Test results on a sample
and large power system demonstrate the merits of the proposed approach. The
objective of this paper is to present the application of ANN in estimating the voltage
collapse proximity indicator of a power system.

KEYWORDS: Power Systems, Voltage Security, Voltage Instability, Voltage collapse

and Neural Networks

INTRODUCTION

Progressive energy demands associated with shortage in installed capacities

have resulted in the power systems to be operated at or close to their security limits.
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These limits are, generally, related to the problems of thermal loading and
transient stability. Modern control and protection equipment have raised the transfer
limits in stability limited systems. However, as the operating conditions for large
power systems have evolved, a new type of problem has been observed. This
phenomenon is referred to as voltage instability or voltage collapse [1-5]. It is
characterized by a continuous decline of voltage, which can occur due to the inability

of the network to meet the increasing demand for reactive power.

Available methods for voltage stability assessment are usually classified into
static and dynamic methods [4]. Static methods assume a steady state model or a
linearized dynamic model to investigate the state of the equilibrium point of a
specified operating condition of the power system. For Dynamic methods, the solution
of the governing equations is carried out in the time domain and the study period is in
the order of several minutes. Dynamic simulations are time consuming and do not
readily provide sensitivity information and degree of stability. A number of indices of
static voltage stability have been proposed in literature to quantify the proximity of the
power system to voltage collapse. Among the most widely used voltage stability
indices are the voltage collapse proximity indicator [3,5], the minimum singular value

of the power flow Jacobian matrix [6], and loading margin [7].

Voltage collapse proximity indicators are usually considered as useful measures
of the closeness of the power system to the collapse point. For a particular operating
point, the value of the indicator provides information of each bus voltage and its
proximity to the voltage collapse limits. However, as the operating condition of a
power system continuously changes, it is difficult to use these methods to provide real
time information due to the significant computational requirements of such methods.
Artificial Neural Networks (ANN) computational schemes have been successfully
applied in loading margin estimation [7], optimization of electrode contour [8] and
security assessment [9]. ANN with their ability to provide non-linear input/output

mapping, generalization, and abstraction [10] have the potential to estimate the voltage

Created with

PDF’

n mtro 3 it tp rof

essional

. d,prc;pfeﬁ;

k

Qm,al




collapse proximity indicator of a power system without solving the governing power

system equations.

The objective of this paper is to present the application of ANN in estimating
the voltage collapse proximity indicator of a power system. The multilayer
feedforward ANN with the backpropagation method is utilised. With the input /output
patterns being known apriori, supervised learning is employed for training the
network. Some of the methods available for estimating the proximity-to-collapse
indicator of a power system are briefly summarised. The structure of the proposed
neural network is also presented. Test results based on a simple power system are

presented to illustrate the suitability of the proposed method.
2. METHODS TO ESTIMATE VOLTAGE COLLAPSE INDICATORS

Different indicators have been proposed to assess the proximity of the system to

voltage collapse.

2.1 The Jacobian Method

This method was the first to relate power system stability to the load flow
Jacobian. In this work, it is shown that, with some assumptions (P and V are specified
for all generator buses, neglecting damping for all of the generators) and using
Newton-Raphson method in the polar form, the determinant of the load flow Jacobian
becomes equal to the product of the eigenvalues of the system. This means that when a
change takes place in the sign of the determinant, at least one of the Eigen values has

crossed the imaginary axis from the stable to the unstable side [1,6].

2.2 Voltage Instability Proximity Index

Power flow equations typically present multiple solutions, with one of these
solutions corresponding to an “operable” point of a power system [5]. It is known that
the number of existing solution decreases as operating point approaches the collapse

point and only a pair of solutions remain near the collapse point and then coalesces on
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it. The Voltage Instability Proximity Index (VIPI) is used to predict proximity to

voltage collapse using this solution pair.

2.3 Voltage Collapse Proximity Indicator

The Voltage Collapse Proximity Indicator (VCPI) was introduced by Kessel
and Glavitch [3] for a two-bus system model and was generalized for a multi node
system using a hybrid model for the power system. This indicator utilizes the
information obtained from a normal load flow solution. The method can be used to
determine local indicators corresponding to each load bus. The indicator L varies in
the range between 0 (no load of system) and 1 (voltage collapse) values close to one
indicate proximity to power flow divergence. Based on the concept, various models
are derived which allow the predicting of voltage instability or the proximity of a
collapse under various contingencies such as loss of generators or lines as well as load
variations. The advantage of the method lies in the simplicity, reliability and it can
give a good indication about the critical power a system can maintain before collapse

over the whole region and for all the cases studied. A local indicator Lj for each node j

can be calculated [3] by:

L.o=sty vt y? 1
J ](YJJ J) ()

Where Y]‘.; ( Transformed admittance )= (1/ ij), Vj: consumer node voltage ,
ST transformed power= S .+8§ cor

J J J
And S;Or is given by :

cor *
S =l X (Z /ij)'(Si/Vi)]'Vj 2)

J
lGOlL

And « I 1s the set of consumer nodes.

Therefore Vj is affected by the nodal power Sj and an equivalent power Sjor ,

which stems from the other loads of the system.
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For stable situations the condition Lj < 1 must not be violated for any of the nodes j.

Hence a global indicator L describing the stability of the complete subsystem is given

by Eq. (3)

L= .Max (L ) (3)
jea;
One way of determining
i EZC:ZG CJl i .
sz\Lj\zl_V_j e, @

Where o - set of load buses, « G set of generator buses, Vj: complex voltage at load

bus j, Vz complex voltage at generator bus I, and le.: element of matrix C

determined by:
[Cl=—4Y,, 17 'Y, ] (5)
Where [Y I Jand [Y G ] are submatrices of the Y bus matrix.

The important outcome of the presented theory is L <1 for stability to be guaranteed.
This theory is exact when two conditions are fulfilled:
1- All generator voltages remain unchanged, amplitude and phase wise.

2- The nodal currents respond directly proportional to the current / ; and indirectly
proportional to the voltage Vj at the node j under consideration. The drawback of

this method is that it fails to consider the operating constraints of system
equipment, such as the VAR limits of the generators. This is an important
consideration because when a generator reaches its VAR limit the terminal voltage
can no longer be controlled. Under this condition, the machine model has to be

modified resulting in a change in the system performance pattern [12].

In order to determine the voltage collapse proximity indicators, several alternate

loading strategies were suggested in literature [3,7]. These include, either increasing
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all real/reactive power generation and load of the system by a constant factor [3], or
increasing real and reactive power of all loads and only the active power of the
generators [7]. In this work, all possible alternatives of increasing the system loading
are studied and assessed. It was found that when the load is increased on only load
buses, the system becomes closer to voltage instability than any other case; i.e. the
voltage collapse proximity indicator is the highest of all other cases. Accordingly, this
strategy is followed in the neural network application. The loads are increased by a
constant Loading Factor (LF) in accordance with the following expressions:

N (6)

I N ™

Where LF is the Loading Factor, p and Q ; are the initial and increased

10> %000 P

active and reactive powers of a load bus.

THE ARTIFICIAL NEURAL NETWORK MODEL

In recent year ANN’s have been proposed as an alternative method for solving
certain difficult power system problems where the conventional techniques have not
achieved the desired speed, accuracy, and efficiency. The ANN consists of an input
layer, an output layer, and at least one hidden layer; each layer consists of a set of
neurone similar to Fig.1. The neurones are interconnected. It is a feedforward network
composed of an organized topology of interconnected processing elements (PE) called
neurones or nodes. Nodes of each layer are fully connected to those of the succeeding
layer through connection weights. The input layer serves only to transfer the input
information without processing to the next layer. The PE, of any other layer, transfers

its input according to:
K= rem it - e ®)
Where x. is the output of the i-th PE in the k-th layer.
are n outputs form preceding layer and
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WiLk] are weight connections between k-1 and k-th layer. The
transfer function f can be a sigmoid or hyperbolic tangent function. With supervised
learning, pairs of input — output data are present to the network at both the input and
output layers. The input data flow from the input to the output layer through the hidden
layers. At the output layer the error between the desired and computed value is
determined. The error is back propagated and weights adjusted according to the

gradient decent technique [10].

The whole procedure is repeated until the Root Mean Square error (RMS) at the
output layer falls below a small-prespecified value, usually between 0.1 and 0.01. The
RMS error is obtained by summing squares of the errors for each PE in the output
layer, dividing it by the number of PE, and taking the square root of the average.
Weight connections are randomly generated between — 0.1 and 0.1 at the initiation of
the learning phase. Learning and momentum coefficients, nand y are incorporated in
weight adjustment to speed up the convergence process while reducing error
oscillations. Input —output data are usually scaled between 0 and 1 or —1 and 1
depending on the type of the transfer function employed. To test the trained network
generalization ability, the Mean Absolute Error (MAE) defined below, is used [8]

MAE:(I/NmNK)ZZ{‘tPK o 1100 9)

PK‘/tPK

Where p varies between 1 and N, and N, is the number of patterns, N % is the

number of neurons in the output layer, ¢ PK is the target output of neuron k and

0 p 18 its calculated output.

PROPOSED METHOD

The purpose of the neural network proposed in this research is to map the
relationship between the operating conditions of a power system and the
corresponding voltage collapse proximity indicator. The employed neural network

consists of an input layer, one hidden layer, and output layer. The input to the network
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1s measurable parameters of the power system like generator terminal voltage and real
and reactive power generation/load. The outputs of the neural network are the
voltages; and indicators of all load buses. As mentioned earlier, such indicators
provide early detection of a possible voltage collapse of the power system. Numerous
simulations using developed load flow software are carried out to obtain the training
data required for the neural networks. For this study, the real and reactive power limits
of the generator have been set to the maximum values. The loads have been modeled
as constant power loads. It is assumed that all the loads increase by a constant loading
factor, maintaining the same power factor as in the base case. However, the proposed
method is general such that suitable models for generators, converters, regulating
transformers, phase shifters etc., and their limits can be used and the training data can
be generated. Similarly, only the maximum voltage collapse indicator can also be used
as the output of the neural network instead of specifying the load voltages with their

corresponding indicators.

APPLICATION TO A SAMPLE POWER SYSTEM AND RESULTS

The proposed method has been tested using a 5-bus system shown in Fig.2. The
system has two generators on buses 1, 2 and loads on buses 2, 3, 4, and 5 [11]. For
different sets of input parameters, numerous simulations are performed to generate the
necessary training data. For each distinct operating condition, the corresponding load
buses voltages as well as their indicators have been determined. Specifically, for the 5-
bus system, the input to the neural network consists of real/reactive power generation
and load and the generator terminal voltage. The input/output training patterns used for
the learning phase of the ANN are given in Table 1. A total of 26 patterns with 0.1 step
loading factor started with LF equal 1 and ended at 3.18, are used for training the
network. All data are in per unit on a base of 100 MV A. The training data input/output
patterns are presented to the ANN during the learning phase. Commercially available
ANN software implementing the back-propagation method is used. The neural
network has 12 inputs (the net real and reactive power at buses 2, 3, 4 and 5 and
voltage magnitudes at buses 1 and 2), 9 hidden neurons, and 6 outputs (the voltage
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magnitudes at the load buses V3, V4 and VS5, and their corresponding indicators L3,
L4 and L5) as tabulated in Tablel. It is obvious from the output vector in Tablel, that
bus 5 is the weakest bus where the indicator L5 has the highest value for different
values of loading factor, as it is equal to 0.076 at unity LF, while L3 and L4 values at
the same LF are 0.062 and 0.065 respectively. At 3.18 LF, L5 is 0.802 while L3 and
L4 are 0.469 and 0.517. Therefore for this sample system, weakest buses ranked as bus
5, then bus 4 and finally bus 3. Convergence of the learning process is shown in Fig.3.

Both the coefficients of learning 7 and momentum y have the same value (0.84) for

accurate and fast results. The RMS error is less than 0.01% as the number of iteration
reaches 5527. In order to test the trained network generalization ability, 12 new
patterns are generated and presented to the network. It is found that the
misclassification is almost 0% if the results are compared with the actual results (Table
2). Also it is found that the accuracy obtained with the ANN is quite reasonable. The
ANN correctly predicted the highest voltage collapse indicator corresponding to the
weakest bus (bus 5). Fig. 4 and Fig. 5 shows the performance of the ANN in predicting
the highest indicator as well as the decline in the voltage associated with bus-5.
Comparison of the ANN and actual results for bus 5 and the behavior of the associated
indicator demonstrate the efficiency and accuracy of the proposed approach. The
calculated value of MAE in the test results is about 0.0174 for 9 neurons of the hidden
layer. And for 6 neurons of the hidden layer the MAE is 0.0106, while for 12 neurons
this value is reduced to 0.0103.

ANALYSIS OF EXPECTED METHOD PERFORMANCE UNDER
COMPLEXITY OF LARGE PRACTICAL POWER SYSTEM

The proposed large practical power system has been tested using a 14-bus system. The
system has 4 generators on buses 2, 3, 6, 8 and from bus 2 to bus 14 are load buses.
For different sets of input parameters, numerous simulations are performed to generate
the necessary training data. For each distinct operating condition, the corresponding
load buses voltages as well as their indicators have been determined. The input to the

neural network consists of real/reactive power generation and load and the generator
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terminal voltage. A total of 18 patterns with 0.05 step loading factor started with LF
equal 1 and ended at 1.85, are used for training the network. All data are in per unit on
a base of 100 MVA. The training data input/output patterns are presented to the ANN
during the learning phase. The neural network has 35 inputs, 33 neurons in the hidden
layer, and 26 outputs. Bus 14 is the weakest bus where the indicator L14 has the
highest value for different loading conditions. The coefficient of learning 7 is (0.5)
and momentum y is (0.7) for accurate and fast results. The RMS error is less than
0.07% as the number of iteration reaches 3686. In order to test the trained network
generalization ability, 17 new patterns were generated and presented to the network. It
is found that the accuracy obtained with the ANN is quite reasonable. The ANN
correctly predicted the highest voltage collapse indicator corresponding to the weakest
bus (bus 14). Fig.6 show the comparison of actual voltage and ANN voltage. The
calculated value of MAE in the test results is about 0.0008.

CONCLUSIONS

In this paper ANN approach for early prediction of the proximity to voltage collapse in
a power system has been proposed. The ANN is trained based on the data obtained
from numerous simulations. This technique is applicable to use for on-line estimation
of stability margin from system voltage collapse. The indicator L has a very simple
structure, can be handled easily and can be extended to multi-node system. The data as
well as the results presented indicate the possibility of using the technique for on-line
voltage stability prediction especially for practical power system in comparison with
real simulation where large computation time is required. The information delivered
by the trained network should be useful in early prediction of the voltage collapse
phenomena in a power system. The proposed approach has the potential to be a useful

tool for fast real time voltage security assessment in a power system.
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