The potential gonadoprotective effects of grape seed extract against the histopathological alterations elicited in an animal model of cadmium-induced testicular toxicity

Authors: A. A. Morsi, L. M. Shawky, E. A. El Bana

DOI: 10.5603/FM.a2020.0003

Article type: ORIGINAL ARTICLES

Submitted: 2019-11-03

Accepted: 2019-12-30

Published online: 2020-01-07

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
The potential gonadoprotective effects of grape seed extract against the histopathological alterations elicited in an animal model of cadmium-induced testicular toxicity

Cadmium-induced testicular toxicity

A.A. Morsi¹, L.M. Shawky², E. A. El Bana³
¹Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
²Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
³Department of Anatomy, Faculty of Medicine, Benha University, Benha, Egypt

Address for correspondence: Dr. Ahmed Abdel-Rahman Morsi, Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Fayoum Governorate, Egypt, E-mail: ahmed_saqr4@yahoo.com

Abstract

Background: Grape seed extract (GSE) is a powerful antioxidant containing high levels of bioflavonoids, vitamin C and vitamin E. The aim of the work is to study the possible protective and ameliorative effects of grape seed extract in an animal model of cadmium (Cd)-induced testicular toxicity in rats.

Materials and Methods: A thirty-day oral gavage study in adult male albino rats was performed using 32 animals, randomly divided into 4 equal groups; negative control, cadmium (5 mg/k/day), grape seed extract (100 mg/k/day), and cadmium + GSE. Testicular weights were measured. Hematoxylin & eosin (H&E) staining and proliferating nuclear cell antigen (PCNA) immunohistochemistry, as a marker for proliferation were done. Morphometric parameters were assessed and subjected to statistical analysis.
Results: The H&E results showed atrophy and distortion of the seminiferous tubules (STs) with sloughing of the spermatogenic epithelium in cadmium group. The interstitial spaces were widened and showed edema and mononuclear cell infiltrations. No remarkable changes were observed in the grape-seed-only group when compared to the control group. In both combined group, maintaining of the STs and their lining cells was evident. The immunohistochemical results showed marked positive PCNA immunoreactivity in both control and GSE groups, while negative immunoreaction was noticed in Cd group. Limited positive PCNA immunoreactivity was ameliorated in Cd+GSE group.

Conclusions: GSE protected against cadmium-induced testicular toxicity in rats, reducing induced histopathological changes, and maintaining testicular histoarchitecture.

Key words: cadmium, grape seed extract, testis, seminiferous tubules, PCNA

INTRODUCTION
The burden of disease and death caused by environmental pollution is becoming a public health challenge worldwide, particularly in developing countries [36]. Cadmium (Cd) is a heavy metal, globally spread environmental toxicant due to its varied industrial applications [17]. Apart from the occupational exposure of workers; diet is generally recognized as being the main source of exposure to trace elements [15]. In its latest report, WHO established a provisional tolerable monthly intake for cadmium of 25 µg/kg body weight. It reported variable Cd concentrations in food but generally the kidney & liver of mammals and certain species of oysters, scallops, mussels, and crustaceans are major sources of Cd. However, lower concentrations of Cd are found in vegetables, cereals, and starchy roots [35]. Tobacco smoking is another important source for Cd exposure [7]. About 1-3 µg of Cd is absorbed by smoking one pack of cigarettes per day and, consequently, heavy smokers have more than double of the Cd body burden, compared to non-smokers [31].

Occupational exposure to Cd usually occurs during metal smelting or purifying, making batteries, and plastics. Atmospheric pollution with Cd could result from volcano activities.
on earth, human activities like melting and using fossil fuels, in addition to industrial processes such as smelting and refining of metals [24].

Cd toxicity is encountered in different body systems resulting in damage to various organs, particularly the testis, in both humans & animals [4]. Rodent testis, in particular, is sensitive to the toxic effects of Cd leading to severe testicular degeneration, seminiferous tubule damage and necrosis in rats [8].

Grape seed extract (GSE) is a natural product, recently identified to have an antioxidant property. GSE is a powerful antioxidant, which contains high levels of bioflavonoids, vitamin C and vitamin E [23]. The protective effect of GSE is attributed to regulating cell oxidative stress [18], reducing organ injury, improving the balance between oxidants and antioxidants [30], and reducing the release of inflammatory mediators. In addition, anticarcinogenic effects have been reported [21].

Due to the toxic effects of Cd upon different body systems and organs including testis, the present work was designed to study the potential ameliorative and protective effects of a natural product, grape seed extract against the testicular histopathological changes induced in an animal model of Cd intoxication. Most of the latest studies evaluated the cadmium induced testicular toxicity, in regards to the degenerative and apoptotic changes seen in seminiferous tubules epithelium. Herein, we focused on the proliferative capacity of spermatogenic cells, hence the efficiency of spermatogenesis, during the Cd toxicity and the effect of GSE on retaining such capacity.

MATERIALS AND METHODS

Animals

Thirty-Two adult male albino rats, weighing about 200-250 g were used in the present study. The animals were locally bred in the animal house of Kasr El-Aini Faculty of Medicine, Cairo University, Egypt, housed at an ambient temperature of 27 ± 1 °C, maintained under a natural daily light/dark cycles and received free access to food & water ad libitum. For acclimatization, the rats were handled manually for one week prior to the experiment. All ethical issues regarding animal handling and procedures were followed and complies with the Guide for Care and Use of Laboratory Animals published by the US
National Institutes of Health [9]. Whenever possible, the procedures in the current study were conducted to avoid or minimize suffering, distress, and pain to animals.

Drugs

Cadmium, in the form of cadmium chloride (CdCl$_2$, 96% pure), was purchased from Sigma-Aldrich Corporation of industrial chemistry and biotechnology (St. Louis, Missouri, USA). Grape seed extract was purchased from herbal and medicinal plant store, Benha governorate, Egypt. The drugs were dissolved in normal saline.

Experimental design

The rats were randomly divided into four groups, eight rats each:

Group 1: Negative control group (normal saline was given daily for 30 days by gastric gavage)

Group 2: The animals were given grape seed extract (100 mg/kg/d) dissolved in normal saline for 30 days by gastric gavage [32]. A concentration of 100 mg was dissolved in 10 ml normal saline and shook to obtain a solution of 10 mg/ml.

Group 3: The animals were given cadmium (5mg/kg/d) dissolved in normal saline for 30 days by gastric gavage [14]. A concentration of 5mg was dissolved in 10 ml normal saline and shook to obtain a solution of 0.5 mg/ml.

Group 4: The animals were given cadmium (5mg/kg/d) + grape seed extract (100 mg/kg/d) for 30 days by gastric gavage.

In order to avoid possible drug interactions and drug absorption, the drugs were given in the same time of the day, in two different time intervals. Cadmium was given in the morning (10 AM) while, grape seed extract was given in the afternoon (4 PM).

Regarding cadmium, the determination of dose & route of administration depended on previous experiments [14], in order to produce a target organ toxicity via frequently repeated exposure without induction of animal mortality. The LD$_{50}$ of CdCl$_2$, anhydrous, when given orally to rats, was reported to be about 88 mg/kg body weight according to previous work [25], so the dose of cadmium utilized in this study is approximately 1/18 LD$_{50}$.
The dose of grape seed extract in experimental animals was 100 – 400 mg/kg/day according to the previously published studies [32,14, 2]. The selected dose, in the current study was 100 mg/kg/d according to the regimen of Sönmez and Tascioglu [32], which was the least effective dose.

At the end of the experiment, animals were euthanized by decapitation under anesthesia (ketamine + xylazine 75, 10 mg/kg respectively, IP) and the testes were immediately removed and weighed in each group.

Histological procedures

Testes were removed from the scrotum, dissected from adherent tissues and weighed. They were fixed in Bouin’s solution and processed for paraffin sections. Five-micrometer sections were cut and stained with hematoxylin and eosin, based on previously stated protocols [5]. Immunohistochemical staining was done for the detection of expression of PCNA (proliferating cell nuclear antigen) Ab-1, mouse monoclonal antibody (Labvision, Thermo Scientific, USA). The sections were incubated with the primary antibody diluted to a concentration of 1:200 in PBS for one hour, followed by a reaction with biotinylated secondary antibody. After conjugation with streptavidin–biotin–peroxidase complex, 3,3-diaminobenzidine (DAB) was used as a chromogen, and hematoxylin solution was used as a counterstain. The reaction was nuclear and the positive control was small intestine as shown by Labvision corporation data sheet of PCNA Ab-1. The PCNA immunohistochemistry procedures were done according to the previous protocols [22].

Morphometric study

The data were obtained using the image analyzer computer system (Leica Qwin 500, Leica, England). The image analyzer was first calibrated automatically to convert the measurement units (pixels) produced by the image analyzer program into actual micrometer units. It was used to measure the area percent of PCNA immunoreactions, the diameter of the seminiferous tubules (STs), and the number of normal & abnormal STs. The normal and abnormal STs were evaluated according to their appearance in H & E stained sections. The normal ones were rounded in transverse section, 150-250 um in diameter, lined by apparently normal stratified spermatogenic epithelium lying on a clear basement membrane and surrounding a narrow lumen. Those that did not show the previously mentioned features were abnormal. For each group, ten measuring fields in
each specimen were randomly selected, using low power magnification during the measurement of the diameter of STs, number of the normal STs, and the high power for the area % of PCNA immunoreaction. Also, the testicular weight of the paired testes of the experimental animals was measured and analyzed.

Statistical analysis
The values obtained were expressed as mean ± SD for each group. Statistical comparison among different groups was evaluated using one-way analysis of variance (ANOVA) and post hoc LSD test. Calculations were done with SPSS software for windows, version 20. Statistical significance was defined as P value less than 0.05.

RESULTS
Mortality and clinical observations
The dose of cadmium, administered in the current study, caused no mortality among the animals of the different studied groups. No behavioural changes were noticed. Also, no remarkable signs of major system affection were apparent, such as diarrhoea, salivation, oliguria…. etc.

Histomorphological results
Hematoxylin & Eosin (H & E) findings
Both negative control and grape-seed-only groups showed a normal testicular architecture with crowded, closely packed seminiferous tubules (STs). Each seminiferous tubule showed apparently normal cellular associations, in the form of stratified arrangement of spermatogenic cells in different stage of developments (spermatogonia, primary & secondary spermatocytes, and spermatids). The spermatogenic cells were seen lying upon a basement membrane occupying most of the tubular thickness. Active releasing spermatozoa were seen within the tubular lumen. Leydig cells and blood capillaries were seen in the interstitial spaces, in-between the STs (Figs.1A, 1B, and 2).

Regarding the administration of cadmium in Cd-only-group, all specimens obtained from all animals of the same group showed disorganization & distortion of the STs. Numerous STs were sloughed and atrophic. The tunica albuginea was thickened and showed subtunical congestion and edema (Figs. 3A and 3B). Degenerated spermatogenic
epithelium was seen lining the sloughed STs with thickening of the underlying basement membrane. Only few spermatogonia with many intercellular vacuolations were seen lining the atrophic STs (Figs 4A, 4B and 4C). Other tubules were severely affected with near-total depletion of their germ cells (Figs 3C). Pyknotic nuclei of the spermatogenic series were observed (Figs 3B and 4C). The interstitial spaces were widened and showed congested blood vessels, accumulation of eosinophilic vacuolated fluid (edema) and mononuclear cellular infiltrations. The Leydig cells were atrophic, vacuolated or even depleted (Figs. 4A and 4B and 4C).

In Cd + grape seed group, the testicular sections obtained from all animals showed relatively normal histoarchitecture, where STs showed more or less normal cellular associations and maintained spermatogenesis. The interstitial cells of Leydig were seen seemingly normal (Figs. 5A and 5B).

Immunohistochemical observations

In both negative control and grape-seed-only groups, positive nuclear PCNA immunoreactivity was observed in the vast majority of the spermatogenic cells of almost all seminiferous tubules (Figs.6A and 6B). In cadmium group, widely distributed negative PCNA immunoreactivity was noticed in all specimens obtained from all animals of such group (Fig. 6C). Similarly, in cadmium + grape seed group, all the obtained specimens showed an amelioration of the positive PCNA immunoreactivity which was limited to the basally located spermatogonia in the vast majority of the STs. However, few STs showed diffuse positive PCNA immunoreaction (Fig. 6D).

Histomorphometric evaluation of the area percent of PCNA immunoreactivity

The statistical data, summarized in table 1, revealed that the mean area percent (%) of PCNA immunostaining in Cd group was significantly low ($P<0.05$) when compared to control group and grape-seed-only group. However, no significant difference was present in grape-seed-only group compared to control group. In Cd + grape seed group, the mean area percent (%) of PCNA immunostaining was significantly high ($P<0.05$), compared to
Cd group. Comparing to either the control or grape-seed-only groups, the mean area percent of PCNA immunoexpression was significantly low ($P<0.05$).

Histomorphometric evaluation of the diameter of the STs

As shown in table 1, the mean diameter of the STs in Cd group was significantly low when compared to control rats. No significant difference was observed in grape-seed-only group when compared to group 1. In Cd + grape seed group, the mean diameter of STs was significantly high when compared to Cd group, but no difference of statistical significance was present when compared to control and GSE groups.

Histomorphometric evaluation of the percent (%) of the normal STs

Similarly, the % of the normal STs was significantly low in Cd group when compared to control rats. No significant difference was observed in grape-seed-only group when compared to the control. In Cd + grape seed group, the % of the normal STs was significantly high when compared to Cd group, but still significantly low when compared to control group (Table 1).

Testicular weight

Table 1 showed that the mean weight of the paired testes in Cd group was significantly low when compared to control rats and grape-seed-only group. No significant difference was present in GSE-only group compared to control group. In Cd + grape seed group, the mean testicular weight was significantly high when compared to Cd group but still significantly less than that of control and GSE groups.

Table 1. Different histomorphometric parameters and testicular weight (gm) of control, GSE, Cd, Cd + GSE groups.

<table>
<thead>
<tr>
<th>Mean ± SD</th>
<th>Control group (G1)</th>
<th>Grape seed group (G2)</th>
<th>Cd group (G3)</th>
<th>Cd + grape seed group (G4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area % of PCNA</td>
<td>21.21 ± 1.81</td>
<td>21.08 ± 1.79</td>
<td>0.69 ± 1.26a</td>
<td>17.09 ± 1.26b</td>
</tr>
<tr>
<td>Diameter of STs (μm)</td>
<td>243.70 ± 9.18</td>
<td>243 ± 8.81</td>
<td>178.5 ± 12.02a</td>
<td>235.61 ± 9.30c</td>
</tr>
<tr>
<td>Percent of the normal</td>
<td>STs</td>
<td>88 ± 5.75</td>
<td>87.7 ± 5.31</td>
<td>19.4 ± 2.88<sup>a</sup></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Testicular weight (gm)</td>
<td>3.07± 0.18</td>
<td>3.05 ± 0.17</td>
<td>1.5 ± 0.12<sup>a</sup></td>
<td>2.43 ± 0.15<sup>b</sup></td>
</tr>
</tbody>
</table>

The data were expressed as mean ± SD (n=8). ^a significantly different when compared to G1 & G2. ^b Significantly different when compared to G3 & G1 & G2. ^c Significantly different when compared to G3, using post hoc ANOVA (LSD), P value < 0.05.

DISCUSSION

Cadmium is a highly toxic heavy metal and has spread widely in the environment in recent decades due to its varied industrial applications [17]. The current study aimed at studying the cadmium-induced testicular histopathological alterations and its counteracting and amelioration by grape seed extract.

The present work showed that oral cadmium (CdCl₂) administration in rats (group 3) induced major structural alterations in the testis, which were ameliorated by the administration of grape seed extract in group 4. CdCl₂ toxicity produced significant structural changes in the testis in the form of distortion of the seminiferous tubules (STs), with cellular disorganization, edema, and sloughing of the seminiferous epithelium which was accumulated in the center of the STs in the form of degenerated tissue. Many STs showed widely spaced spermatogenic cells and decreased sperm count. These results were consistent with that of other investigators [26] who reported a similar finding. Active spermatogenesis was affected which was denoted by the absence or decreasing of the releasing spermatozoa within the STs lumen.

In agreement with the results of another study [13], the present work showed widening of interstitial spaces due to vascular congestion, diffuse infiltrations of mononuclear cells, and accumulation of eosinophilic vacuolated fluid (edema) in-between the STs. Moreover, the results of the current study showed pyknosis of the nuclei of the spermatogenic series in Cd group (group 3) which was similar to the findings of other authors [12] who studied the toxic effects of Cd on different organ systems of rodents and revealed pyknotic nuclear changes, particularly in the testis.
Furthermore, many STs showed marked atrophy with degeneration & loss of the seminiferous epithelium, which was confirmed by the mean diameter of STs and the percent of the normal STs. The mean tubular diameter and the percent of the normal STs of Cd group were significantly low when compared to that of the control rats. These results were in accordance with other authors [1] who reported atrophy of the seminiferous epithelium and decrease in the tubular lumen 36 hours after intraperitoneal Cd injection in rats. In Cd + grape seed extract group, both the mean tubular diameter and the percent of the normal STs were markedly high, which was significantly different when compared to Cd group. No statistical significance was present comparing to control or grape-seed-only rats, which means complete maintaining of the tubular diameter but still the number of the normal STs.

The atrophy and degeneration of the STs may be the cause of weight loss of the testes of Cd intoxicated rats (group 3). The mean testicular weight of the animals of group 3 was significantly low when compared with other groups. This finding was parallel to that of another study [25] which revealed a marked decrease in the testicular weight 28 days after oral Cd administration in rats. In Cd + GSE group, the mean testicular weight was significantly high when compared to Cd group, but still significantly less than those in control and GSE groups. This means that the co-administration of grape seed extract with Cd, in group 4 attenuated the Cd-induced histopathological changes in the testes and hence had fewer effects on the testicular weight.

Cadmium toxicity has been encountered in several organs such as kidney, brain, pancreas, blood, and immune system [6]. Cd-induced testicular damage was dose-dependent. Low dose Cd affects no organs, other than the testis [10]. The underlying mechanism of testicular toxicity remains obscure. One explanation supposed that Cd toxicity induced vascular damage, mainly in the testis, which may result in the inability to metabolize zinc, with its subsequent replacement by Cd in the testicular blood circulation [3, 27]. The dose utilized in this study was optimal to induce testicular toxicity without lethal effects.

The previously mentioned structural alterations in the testis could be explained by the accumulation of cadmium in different organs, and hence the testis [16] where it caused testicular damage. The accumulated Cd stimulated the overproduction of reactive oxygen species (ROS) through depletion of the reduced glutathione and reacting with the
sulfhydryl groups of proteins. Furthermore, Cd inhibited the activity of antioxidant enzymes such as catalase and superoxide dismutase [28]. Subsequently, the resulting oxidative stress induced DNA fragmentation and apoptotic changes as reported by other authors [34].

In the Cd + grape seed extract treated rats, marked improvement was noticed in the testes, in the form of well organization of the STs and more or less normal cellular associations of the seminiferous epithelium. This protective effect of grape seed extract might be attributed to, not only its potential effects against oxidative stress but also the inhibition of the free radical production with subsequent maintaining of the affected antioxidant protection system. This explanation was in agreement with that of other authors [11].

Regarding the immunohistochemical results, PCNA is a nuclear protein, used as a marker for cell proliferation [19]. So, the detection of any PCNA immunostained spermatogenic cell refers to the activity and the efficiency of spermatogenesis. Administration of cadmium to the animals of the current study (in group 3) revealed very few positive immunostained cells for PCNA or even negative in most of the testicular sections, which was significant when compared to the control group. These findings could refer to that the oxidative damage induced in the testis by Cd is associated by depletion of the active DNA contents in the dividing spermatogenic cells. No significant changes were detected in the rat group that received grape seed extract alone. However, the co-administration of grape seed extract (in group 4) showed a significantly high number of PCNA immunoreactive spermatogenic cells, but still significantly less than those in control and GSE groups. These results were consistent with the finding of the other authors [2] who reported similar results when they used Ki 67 as a marker of proliferation.

The results of the current study were parallel to that of Sönmez and Tascioglu [32] who reported an increase in the number of immunostained apoptotic cells and hence, decrease in the number of the proliferating cells in Cd intoxicated rats which were protected against by grape seed extract.

When correlating the results of the PCNA immunoreactivity and the mean testicular weight in Cd + grape seed group (group 4), both parameters were significantly high compared to Cd group, but still significantly less than those of control and GSE groups. This means that the grape seed extract could protect against Cd-induced testicular
alterations which had fewer effects on testicular weight and on the proliferative activity of spermatogenic cells, as confirmed by PCNA immunohistochemistry.

In human studies, there was a wide safety margin of the grape seed dosage. The adjustment of the dose was an effect dependent. The dose was variable according to the indicated usage i.e antioxidant, anti-inflammatory, blood capillary improving effect…etc [20]. In a safety assessment study [29] for 4 weeks oral intake of grape seed extract in healthy individuals, a dose up to 2500 mg was reported to be safe.

Limitations and areas for future research
There are two major limitations in the current study that could be addressed in future research. First, the study focused mainly on the microscopic structure of the testes of the experimental animals. Should more resources have been made available; we should have studied the correlation of the testicular structure with other parameters like oxidative status and the endocrine & exocrine functions of the testis. However, this study was self-funded without any external support.

Second, given the cross-sectional design that we have used, the current study was not conclusive regarding the therapeutic effects of grape seed extract on the testicular histopathological alterations induced by Cd toxicity. Future research should aim at a more comprehensive assessment of Cd toxicity on the hormonal, reproductive, and oxidative status of the testes. This assessment could be based on the measurement of the hormonal profile e.g serum testosterone, FSH, and LH, evaluation of semen parameters via epididymal semen analysis, and measurement of the testicular level of oxidative enzymes like superoxide dismutase. Needless to say that a more comprehensive study design is needed to assess the therapeutic effects of grape seed extract.

CONCLUSIONS
Finally, administration of grape seed extract reduced the histopathological testicular changes induced by cadmium chloride. This effect may be related to the antioxidant property of grape seed extracts as confirmed by maintaining the histological architecture of the testes and retaining of the proliferative activity of the spermatogenic cells. The potential antioxidant property of grape seed extract recommends its use in those men with known high risk of cadmium exposure, such as workers in battery factories, to protect
against the oxidative stress elicited in the testes due to chronic asymptomatic occupational exposure.

Acknowledgments
Great consideration and deep gratitude were expressed to all our colleagues in the Histology Departments, Faculties of Medicine in Benha and Fayoum Universities for their support. Special thanks to Dr. Ghaiath Hussien who has read the article and revised it for further editing.

Conflict of interest: The authors have no conflicts of interest to declare.

REFERENCES

20. Kappagoda CT, Burton-Freeman B, Edirisinghe I. Modulation of oxidative stress, inflammation, and impaired insulin sensitivity with grape seed extract. June 2017.

Figure 1. H & E stained testicular section of a control rat showing crowded, closely packed seminiferous tubules (STs) (double-headed arrows). STs are lined by stratified spermatogenic epithelium (bracket) with releasing spermatozoa (Z) seen within the lumen. The interstitial spaces show Leydig cells (L) (a X 40; b X 400).

Figure 2. H & E stained testicular section of a rat in grape seed group (group 2) showing numerous packed STs (double-headed arrows) lined by stratified spermatogenic epithelium (bracket) resting on an underlying basement membrane. Interstitial cells of Leydig are seen (L). Tunica albuginea (arrowhead) is seen (X 40).

Figure 3. H & E stained testicular section of a rat in the cadmium group (group 3) showing disorganized widely spaced seminiferous tubules (STs). Numerous STs (double-headed arrows) are atrophic and sloughed with nearly totally depleted germ cells. The
spermatogenic cells show pyknotic nuclei (short arrows). The interstitial spaces show eosinophilic vacuolated fluid (edema) (dollar sign) & congestion (BV). Tunica albuginea (arrowhead) is thickened and show subtunical congestion (BV) & edema (dollar sign) (a, b X 40; c X 200).

Figure 4. H & E stained testicular section of a rat in the cadmium group (group 3) showing degenerated spermatogenic epithelium (brackets) and loss of the releasing spermatozoa. The majority of STs show sloughing & numerous intraepithelial empty spaces (vaculations) and cellular detachment. Pyknotic nuclei of the spermatogenic cell are seen (short arrows). The peritubular basement membrane (thick arrows) is thickened with numerous flat myoid cells. The interstitial space is widened and shows accumulation of eosinophilic vacuolated fluid accumulation (edema) (dollar signs) & infiltration of mononuclear cells (stars). Leydig cells (L) are more or less small sized & vacuolated (a, b, c X 200).

Figure 5. H & E stained testicular section of a rat in cadmium + grape seed group (group 4) showing normal shaped STs (double-headed arrow) with more or less normal cellularity. The releasing spermatozoa (Z) are seen within the lumen. The interstitial space is wide and shows accumulation of eosinophilic vacuolated fluid (dollar sign). Leydig cells (L) are seen. The tunica albuginea (arrowhead) appears more or less normal (a X 40; b X 200).

Figure 6. PCNA immunostained photomicrographs of testicular sections taken from control rats (a), group 2 (b), group 3 (c) and group 4 (d). Marked positive PCNA immunostaining of nuclei (arrows) of all the spermatogenic series is evident in groups 1 & 2 while, limited to the basally located spermatogonia (arrows) in group 4. Negative nuclear PCNA immunoreactivity is observed in group 3 (PCNA immunostaining, a and d X100; b and c X 200).