The possible hepatoprotection promoted by melatonin and alpha-tocopherol in acrylamide-induced liver injury in male albino rats: a histological and immunohistochemical study

Abstract

Background: Acrylamide (ACR) is commonly polluting the nearby environment as it is formed during the high-temperature food cooking conditions. Several previous studies have confirmed its toxic potential on different body organs.

Aim: The current study aims to investigate the possible hepatoprotection elicited by vitamin E (vit E), alpha-tocopherol, melatonin (MT), and combined vit E/MT in a rat model of ACR-induced liver toxicity. The putative mechanisms involved in such protection were also examined using histological and immunohistochemical studies.

Material and methods: Forty-nine male Wistar albino rats were divided into seven equal groups; control, vit E alone (100 mg/kg/d), MT alone (10 mg/kg/d), ACR-exposed (5 mg/kg/day), ACR/vit E-treated, ACR/MT-treated, and ACR/vit E/MT-treated groups. All treatments were given daily via oral gavage for 8 weeks. At the end of the study, blood samples were collected for measurement of the liver enzymes. Liver lobes were collected for preparation of the tissue homogenates to measure the hepatic concentrations of the oxidative/antioxidative markers. Also, liver samples were prepared for paraffin microtechniques and stained by Hematoxylin & Eosin (H & E) and Masson trichrome staining. Immunohistochemical assays for detection of Bax, Bcl2, and iNOS immunoexpression were performed.

Results: ACR-exposed rats showed marked disruption of the biochemical assays, in addition to the hepatocytes disorganization and vacuolar degenerative changes observed in the H & E findings associated with fibrotic tendency in the Masson-stained sections and the disturbed
immunoexpressed proteins. Either vit E and/or MT treatment improved the histological and biochemical parameters with normalization in the combined therapy group.

Conclusion: Vit E and or MT protected against ACR-mediated liver toxicity by reestablishment of the oxidant/antioxidant balance, downregulation of pro-apoptotic proteins, upregulation of anti-apoptotic proteins, and suppression of the inflammatory pathways. Both combined had synergistic action.

Keywords

Acrylamide, high-temperature processed food, antioxidant, rat liver, Bax, Bcl2, iNOS.

Introduction

Acrylamide (ACR) is a common environmental pollutant characterized by being white, crystalline, water-soluble, and odorless. ACR doesn’t exist in nature under normal conditions; however, it is formed during high-temperature cooking conditions (≥120 °C) such as roasting, frying and baking, through Maillard reaction. A chemical change occurs in protein and carbohydrate food stuffs exposed to high-temperature characterized by brown crust formation on food surfaces due to the formation of harmful byproducts such as acrylamide and 5-hydroxymethylfurfural. So, it is extensively found in several food products including oven-baked, deep-fried foods, biscuits, chips, bread, and coffee \(^1\). Moreover, it is used in industrial processes e.g. gel electrophoresis, papers and dyes manufacturing, wastewater treatment and tertiary oil recovery \(^2\).
Owing to its water solubility and low molecular weight, ACR has the capability to cross the biological tissue membranes such as placental and blood-milk barriers, hence its neurotoxic, reproductive, genotoxic, carcinogenic, and hepatotoxic effects \[3\].

Alpha-tocopherol, vitamin E (vit E) is a plant-derived lipid soluble antioxidant compound naturally found in biological systems. It provides cellular protection against cell membrane peroxidation caused by reactive oxygen species (ROS) overproduction. Being a “chain breaker”, alpha-tocopherol breaks the lipid peroxidation chain reactions by giving its phenolic hydrogen to a lipid peroxyl radical (LOO) leading to the formation of non-reactive lipid hydroperoxide (LOOH) and \(\alpha\)-tocopheroxyl radical \[4\]. Recent studies \[5,6,7\] demonstrated a cytoprotective effect for vit E in various animal models of acute and chronic liver toxicity indicating that vit E may have a potential efficacy in ameliorating ACR-mediated liver injury.

Melatonin (MT) is a powerful natural antioxidant hormone released by the pineal gland, has a vital role in sleep and circadian rhythms regulation, immune system function, and elimination of oxygen free radicals \[8\]. Melatonin could enhance the upregulation of antioxidants and antioxidant enzymes such as superoxide dismutase, and glutathione reductase, so neutralizes the effects of both nitrogen and oxygen-reactive molecules. Furthermore, anti-inflammatory, anti-apoptotic, and anti-cancer activities have been reported for MT \[9\].

Based on these literature data, the exogenous administration of MT might be a beneficial strategy to manage the liver damage induced by ACR. However, the therapeutic efficacy of MT and its related molecular mechanism on liver injury caused by chronic ACR exposure need to be further studied. Given these considerations, it was agreed that further research on the therapeutic potential of vitamin E versus melatonin against ACR hepatotoxicity would be interesting.
Therefore, the present study aimed to elucidate whether Vitamin E and melatonin can ameliorate the hepatic damage induced by ACR using histopathological and biochemical approaches.

Materials and methods

Drugs and chemicals

Acrylamide (ACR) powder (product number: A3553, ≥ 99% purity), alpha-tocopherol liquid (product number: T3251, ≥ 96% purity), and melatonin powder (product number: M5250, ≥ 98% purity) were purchased from Sigma Aldrich (St. Louis, Missouri, USA).

Preparation of acrylamide, alpha-tocopherol, and melatonin

Acrylamide powder was dissolved in distilled water and was given via oral gavage to the animals, 5 mg/kg/day for 8 weeks \(^{[10]}\). Alpha-tocopherol (1 ml) was diluted in olive oil (19 ml) to reach a final concentration of 50 mg/ml and was given in a dose of 100 mg/kg/d \(^{[6]}\). Melatonin (25 g) was freshly dissolved in 100% ethanol (5 ml) and diluted in normal saline (4.995 L) to reach a final concentration of 5 mg/ml and was given in a dose of 10 mg/kg/d. The volume of saline (4.995 L) was used to make the final ethanol concentration, in the prepared solution, was not exceeding 0.1% \(^{[11]}\).

Animals and experimental groups

Forty-nine adult male Wistar albino rats (200±20 gm, 5-week-old) were purchased from the experimental animal breeding farm (Helwan, Cairo, Egypt). The animals were maintained in a well-ventilated room under standard living conditions (25±2 °C temperature, 40–60% humidity, 12-h dark/light cycle). During the study, a commercial solid pellet diet and tap water were made available for the rats, *ad libitum*. The experiment was conducted in the Anatomy
Department, Faculty of Medicine, Benha University, Egypt. The study was performed in accordance with the scientific research ethics committee, Faculty of Medicine, Benha University, Egypt. During the experiment, the animals were managed and treated in accordance with the animal handling policy of Benha University’s Faculty of Medicine and complies with the Guide for Care and Use of Laboratory Animals published by the US National Institutes of Health [12]. Ten-day-adaptation period was allowed for the animals before the start of the experiment. The rats were randomly divided into 7 groups, seven rats each: Control (received 2 ml/kg of the corresponding vehicle of each treatment (distilled water (2 rats), olive oil (2 rats), and normal saline containing ethanol 0.1% (3 rats), vit E, Melatonin, acrylamide alone, acrylamide/vit E, acrylamide/MT, and acrylamide/vit E/MT groups. All treatment were given via oral gavage for 8 weeks.

Blood and tissue sampling

At the end of the experiment, the abdomen was incised longitudinally under intramuscular xylazine-ketamine anesthesia and blood samples were obtained directly from the heart. Next, the anaesthetized rats were killed via cervical decapitation. The liver was dissected, removed, and washed with normal saline. Portions of the liver lobes were placed in 10% formaldehyde for histopathological examination. Other portions were stored at −20 °C for later biochemical analyses.

Biochemical analysis

The frozen liver tissue samples were collected in Ultra-Turrax homogenizer (IKA, Germany) and phosphate buffered saline (PBS) was added, both were homogenized at 12000 rpm for 2 minutes in ice. The tissue homogenates were centrifuged (5000 g for 30 min, at 4°C) and the supernatants
were collected for measurements of Malondialdehyde (MDA) level, catalase (CAT), and superoxide dismutase (SOD) for evaluation of the lipid peroxidation and the oxidative status of the liver. The estimation of CAT (catalog #. EIACATC) and SOD (catalog #. EIASODC) activities was done by using commercially relevant kits based on the manufacturer’s instructions (Thermofisher Scientific) and as previously stated by Aebi [13] and Sun et al. [14] respectively. Results were expressed as mmol/min/mg tissue. MDA was measured as described by Grotto et al. [15] following the manufacturer’s protocol using the relevant kits (Abcam, catalog #. ab118970). Results were presented as nmol/mg tissue. From blood samples, alanine transaminase (ALT) (catalog #. TR71121), aspartate transaminase (AST) (catalog #. TR70121), and alkaline phosphatase (ALP) (catalog #. TR11320) levels were measured according to manufacturer’s (Thermofisher Scientific) protocol.

Histological examination

The liver portions assigned for histopathological examination were fixed in 10% formol formalin solution for 2 days at room temperature, then dehydrated, cleared in xylol, infiltrated, and embedded in melted paraffin wax blocks. The prepared paraffin blocks were cut at 5 µm thickness, mounted on glass slides, then deparaffinized, hydrated in descending grades of ethanol and stained with hematoxylin and eosin and Masson trichrome according to Bancroft and Layton [16].

Immunohistochemical assay for detection of iNOS, Bax, and Bcl2 protein expression

Immunohistochemistry was performed to identify the protein expression of iNOS (inflammatory marker), Bax (pro-apoptotic marker), and Bcl2 (anti-apoptotic protein) for evaluation of the inflammatory status and pro-apoptotic/anti-apoptotic balance in the examined liver sections. For
immunohistochemical (IHC) assay, 5 µm-cut-sections were mounted on positive charge glass slides, then deparaffinized, rehydrated, and cleared with xylol. The primary antibodies were rabbit polyclonal antibodies against iNOS, Bcl-2 (Lapvision corporation, catalog #: PA1-036, PA5-27094 respectively), and Bax (Sigma Aldrich, USA, catalog #: SAB4502549). Rabbit-specific HRP/DAB (ABC) detection IHC kits (Abcam, Cambridge, United Kingdom, Catalog #: ab64261) were used as secondary kits. The IHC technique was followed as described by Kiernan [17]. The sections were boiled in citrate buffer, pH 6 to retrieve antigen. The kits’ hydrogen peroxide solution was used to block the endogenous peroxidase activity, then kit protein was blocked to minimize non-specific background staining. Each step was followed by PBS (pH 7.4) washing. The sections were incubated with the diluted primary antibody (1:500 for Bcl2, 1:200 for iNOS and Bax antibodies) in PBS for one hour. Biotinylated Goat secondary antibody was used and streptavidin peroxidase for another 30 min. The coloration was enhanced by using 3,3-diaminobenzidine (DAB) as a chromogen and hematoxylin solution for counterstaining. The positive reaction appeared as brownish cytoplasmic reaction. The positive control for iNOS, Bcl2, and Bax was human heart, mouse spleen, and human lung cancer respectively. For the negative control, the step of the primary antibody was skipped. The stained slides were examined and photographed in the Anatomy Department, Faculty of Medicine, Benha University, Egypt. Nikon Eclipse 80i light microscope (Nikon Corporation, Japan) equipped with ToupCam™ Xcam full HD camera (ToupTek Europe, Ultramacro Ltd., UK) was used for visualization and photography purposes.

Morphometric study

Image analysis was performed by an expert blind to the study groups. JPG file format-photomicrographs were obtained by ToupCam™ Xcam digital camera and were subjected to
image analysis using VideoTesT-Master (Morphology) software provided by Argussoft Ltd. company, Saint Petersburg, Russia. At magnification x200, the image analyzer was used for measurement of the area percent of collagen fibers, Bax, and Bcl2 immunostaining as well as the optical density of iNOS immunoexpression.

Statistical analysis

All research data were subjected to initial check of normality and even distribution using Shapiro’s test. One way ANOVA was used to detect significance followed by post hoc Tukey’s test for comparison between the groups, using GraphPad prism, Version 8 for windows (San Diego, California, USA). The results were expressed as mean ± SD and statistical significance was considered at $P< 0.05$.

Results

Biochemical findings

Biochemical analysis of the liver enzymes (Table 1) revealed a significant increase ($p<0.05$) in ALT, AST, and ALP in acrylamide (ACR)-exposed group when compared to control parameters. Separate treatment of either vit E or MT revealed a significant decrease ($p<0.05$) in the blood levels of liver enzymes when compared to ACR-exposed animals. Both vit E/MT combination resulted a significant further decrease ($p<0.05$) with normalization of the measured liver enzymes.

Liver tissue homogenates analysis (Table 1) revealed an obvious increase ($p<0.05$) in MDA in the ACR-exposed rats when compared to the control group. Single and combined treatments
showed a significant reduction ($p<0.05$), in relation to ACR group. The tissue levels of CAT and SOD were significantly decreased ($p<0.05$) in ACR group which were reversed ($p<0.05$) in the single and combined treatment with restoration of the control values in the combination group.

Table 1: The effect of vitamin E and or melatonin on serum levels of liver enzymes and liver tissue concentrations of the oxidative/antioxidative parameters.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Vit E</th>
<th>MT</th>
<th>ACR</th>
<th>ACR/Vit E</th>
<th>ACR/MT</th>
<th>ACR/Vit E+MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>75.13±9.27</td>
<td>73.96±10.01</td>
<td>76±8.78</td>
<td>97.98±7.56</td>
<td>80.45±8</td>
<td>79.54±9.5</td>
<td>74.34±9.67</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>101.28±15.56</td>
<td>97.48±10.56</td>
<td>98.34±9.04</td>
<td>205.78±18.27</td>
<td>170.67±12.78</td>
<td>150.63±14.34</td>
<td>115.22±12.7</td>
</tr>
<tr>
<td>ALP(U/L)</td>
<td>135.23±9.7</td>
<td>137.09±10</td>
<td>134.17±11.1</td>
<td>249.56±15.68</td>
<td>154.23±8.7</td>
<td>144.24±9.3</td>
<td>129±8.98</td>
</tr>
<tr>
<td>MDA (nmol/mg)</td>
<td>40.9±3.21</td>
<td>37.65±2.5</td>
<td>42.16±3.56</td>
<td>95±8.71</td>
<td>71.54±7.71</td>
<td>60.23±6.05</td>
<td>48.87±5.34</td>
</tr>
<tr>
<td>CAT (mmol/min/mg)</td>
<td>32.79±1.5</td>
<td>29±2.67</td>
<td>33.65±3</td>
<td>14.01±0.97</td>
<td>21.91±4.09</td>
<td>27.2±2.63</td>
<td>33.3±3.4</td>
</tr>
<tr>
<td>SOD (mmol/min/mg)</td>
<td>25.11±3.7</td>
<td>24.45±5.78</td>
<td>27.25±3.8</td>
<td>8.89±3.78</td>
<td>14±2.89</td>
<td>20.23±3</td>
<td>26.39±4.6</td>
</tr>
</tbody>
</table>

The value of each group is presented as mean±SD. *significant vs control group, †significant vs acrylamide (ACR) group, ‡significant vs ACR/vitamin E (vit E) group and §significant vs ACR/vit E and ACR/melatonin (MT) groups. One-way ANOVA was used followed by Tukey’s post hoc test for groups’ comparison at $P < 0.05$.

Light microscopic findings

Light microscopic examination of H & E-stained liver sections obtained from the control (Figure 1, 2), vit E (Figure 3), melatonin (Figure 4)-treated groups showed normal hepatic organization. Hepatocytes were polyhedral in shape with acidophilic granular cytoplasm and were arranged in plates radiating from the central vein. The portal tracts were clearly seen and showing branches from portal vein, hepatic artery, and bile duct (Figures 1, 2, 3, 4). Hepatic blood sinusoids were lined by endothelial and Kupffer cells and were observed in-between the radiating plates (Figure 2). Acrylamide-exposed group showed disorganized hepatocyte plates marked by vacuolar degenerative changes mainly affecting the pericentral liver cells (Figure 5). Congested portal veins and detached endothelial lining of central vein were frequent. Mononuclear cellular infiltration was observed in the portal area close to the congested portal vein (Figures 5, 6). The affected hepatocytes showed cytoplasmic vacuolations and small condensed nuclei. The liver sinusoids were dilated and disarranged (Figures 7). Vit E/ACR (Figure 8), ACR/Melatonin (Figure 9), and ACR/Vit E/MT (Figure 10)-treated groups showed restoration of the hepatocyte plates organization. However, few cytoplasmic vacuoles were still observed in ACR/vit E-treated group (Figure 8).

Masson-stained liver sections of the control (Figure 11), vit E (Figure 12), melatonin (Figure 13)-treated groups showed normal fine collagen fibers distributed around central vein and periportal areas. Acrylamide group showed an extensive distribution of coarse collagen fibers in the portal area and in the hepatic background stroma (Figure 14). ACR/vit E-treated (Figure 15) and ACR/MT-treated (Figure 16) groups showed periportal localization of the collagen fibers. ACR/vit E/MT group showed seemingly normal distribution of fine delicate collagen fibers like control (Figure 17).
Fig. 1: H & E-stained photomicrographs of a liver section in the control group (magnification x200) showing normal hepatic architecture. The liver cells are arranged in radiating plates with intervened hepatic blood sinusoids (arrows) draining into the central vein (CV). The portal area (circle) is seen containing branches of the hepatic artery (A) and bile ducts (d).

Fig. 2: High magnification (x400) of H & E-stained control liver section showing hepatocytes arrangement in plates with acidophilic granular cytoplasm and vesicular nuclei (zigzag arrow). Endothelial cells (arrowheads) and Kupffer cells (curved arrows) are seen lining the blood sinusoids.
Fig. 3: H & E-stained photomicrograph of a liver section in the vit E group (magnification x200) showing normal hepatic architecture. The central vein (CV) is seen draining the blood sinusoids (arrows). The portal tract (marked by circle) is seen containing branches of the hepatic artery (A) and a bile duct (d). The hepatocytes are acidophilic and granular with vesicular nuclei (zigzag arrow) and are organized in radiating cords or plates.

Fig. 4: H & E-stained photomicrographs of a liver section in melatonin group (magnification x200) showing normal hepatic architecture. The hepatocytes appear acidophilic with vesicular nuclei (zigzag arrow) and placed in plates radiating from the central vein (CV). The portal area is seen containing
branches of the portal vein (PV). The hepatic blood sinusoids (arrows) are also seen traversing through the hepatocyte’s plates.

Fig. 5: H & E-stained photomicrograph of a liver section in the acrylamide-exposed group (magnification x200) showing disorganized hepatocyte plates with vacuolated cytoplasm (U-shaped arrows). The central vein (CV) shows detached endothelial cell lining (arrowheads).

Fig. 6: H & E-stained photomicrograph of a liver section in the acrylamide-exposed group (magnification x200) showing mononuclear inflammatory cell infiltrates (stars) close to the congested portal vein (PV).
Fig. 7: High magnification (x400) of H & E-stained liver section in acrylamide-exposed group showing disorganized hepatocytes showing cytoplasmic vacuoles (U-shaped arrows). Some hepatocytes show small dark nuclei (arrows with tails). The liver blood sinusoids (arrows) are disarranged and dilated.
Fig. 8: H & E-stained photomicrograph of a liver section in the acrylamide/vit E-treated group (magnification x200) showing reorganization of the hepatocyte plate arrangement around the central vein (CV). Less abundant cytoplasmic vacuolation (U-shaped arrows) are still present.

Fig. 9: H & E-stained photomicrograph of a liver section in the acrylamide/melatonin-treated group (magnification x200) showing an improved histological structure of the liver with very few vacuolar changes (U-shaped arrows). The liver cells appear acidophilic with vesicular nuclei (zigzag arrows) radiating from the central vein (CV).
Fig. 10: H & E-stained photomicrograph of a liver section in the acrylamide/vit E/melatonin-treated group (magnification x200) showing restoration of the hepatic microstructure. Hepatocytes show acidophilic granular cytoplasm with vesicular nuclei (zigzag arrow). The portal tract is seen containing branches of the Hepatic artery (A), portal vein (PV), and bile duct (d).
Fig. 11: Masson-stained photomicrograph of a liver section in the control group (magnification x200) showing pericentral (CV) and periportal (PV) distribution of normal, green-colored delicate collagen fibers (arrows).

Fig. 12: Masson-stained photomicrograph of a liver section in the vit E group (magnification x200) showing the normal pericentral (CV) and periportal (PV) distribution of delicate collagen fibers (arrows).
Fig. 13: Masson-stained photomicrograph of a liver section in the melatonin group (magnification x200) showing the normal periportal (PV) distribution of delicate collagen fibers (arrow).

Fig. 14: Masson-stained photomicrograph of a liver section in the acrylamide-exposed group (magnification x200) showing extensively distributed coarse collagen fibers in portal area around portal vein (PV) and bile ducts (bd) (arrows) and in the background stroma of the vacuolated hepatocytes (stars) around central vein (CV).
Fig. 15: Masson-stained photomicrograph of a liver section in the ACR/vit E-treated group (magnification x200) showing periportal localization of coarse collagen fibers.

Fig. 16: Masson-stained photomicrograph of a liver section in the ACR/MT-treated group (magnification x200) showing coarse collagen fibers (arrows) located around portal area (marked by its contents, portal vein (PV) and hepatic artery (HA)).
Fig. 17: Masson-stained photomicrograph of a liver section in the acrylamide/vit E/MT-treated group (magnification x200) showing apparently normal distribution and intensity of delicate collagen fibers (arrows) around central vein (CV).
Immunohistochemical observations

Anti-Bax immunohistochemical assay of liver sections in the control (Figure 18), vit E (Figure 19), and melatonin (Figure 20)-treated groups showed a negative anti-Bax immunoreaction. However, the acrylamide-exposed group showed a diffuse positive anti-Bax immunoreaction, markedly prominent in the hepatocyte’s cytoplasm and the limiting boundaries of the liver blood sinusoids (Figure 21). ACR/vit E (Figure 22) and ACR/MT ((Figure 23)-treated groups showed a moderate decrease in the Bax immunoreactivity. Meanwhile, the ACR/ vit E/MT-treated group displayed a very mild anti-Bax immunoreactivity restricted to the limiting boundaries of hepatic blood sinusoids (Figure 24).

On the other hand, anti-Bcl2 immunohistochemical assay of the control (Figure 25), vit E (Figure 26), and melatonin (Figure 27)-treated groups demonstrated a widely distributed strong positive hepatocytes cytoplasmic immunoreaction. Meanwhile, the acrylamide-exposed group (Figure 28) showed very minimal Bcl2 immunoreactivity. ACR/vit E (Figure 29) and ACR/MT (Figure 30), and ACR/vit E/MT (Figure 31)-treated groups revealed a moderate increase in the Bcl2 immunostaining.

The anti-iNOS immunohistochemical assay viewed a negative anti-iNOS immunoreaction in the control (Figure 32), vit E (Figure 33), and melatonin (Figure 34)-treated groups. Acrylamide-exposed group (Figure 35) showed a diffuse intense iNOS immunostaining in hepatocytes cytoplasm. ACR/vit E (Figure 36) and ACR/MT (Figure 37)-treated groups revealed less intense immunoreactivity. However, ACR/Vit E/MT-treated group showed hepatocytes with partial resolve of the anti-iNOS immunoreaction (Figure 38).
Fig. 18: Anti-Bax immunoassay photomicrograph in the control group (magnification x400) showing negative anti-Bax immunoreaction.

Fig. 19: Anti-Bax immunoassay photomicrograph in the vit E group (magnification x400) showing negative anti-Bax immunoreaction.
Fig. 20: Anti-Bax immunoassay photomicrograph in the melatonin group (magnification x400) showing negative anti-Bax immunoreaction.

Fig. 21: Anti-Bax immunoassay photomicrograph in the acrylamide-exposed group (magnification x400) showing hepatocytes with strong positive reaction staining the cytoplasm (arrows) and the limiting boundaries of hepatic blood sinusoids (arrowheads).
Fig. 22: Anti-Bax immunoassay photomicrograph in the acrylamide/vit E-treated group (magnification x400) showing positive anti-Bax immunoreaction (arrows) with a moderate decrease in the intensity and distribution of the immunoreaction.

Fig. 23: Anti-Bax immunoassay photomicrograph in the acrylamide/MT-treated group (magnification x400) showing positive anti-Bax immunoreaction (arrows) with a remarkable decrease in the intensity and distribution of the immunoreaction.
Fig. 24: Anti-Bax immunoassay photomicrograph in the acrylamide/vit E/MT-treated group (magnification x400) showing very mild anti-Bax immunoreactivity limited to the boundaries of the hepatic blood sinusoids (arrowheads).
Fig. 25: Anti-Bcl2 immunohistochemical assay of a liver section in the control group (magnification x400) showing diffuse strong positive hepatocytes cytoplasmic immunoreaction (arrows).

Fig. 26: Anti-Bcl2 immunohistochemical assay of a liver section in the vit E group (magnification x400) showing diffuse strong positive hepatocytes cytoplasmic immunoreaction (arrows).
Fig. 27: Anti-Bcl2 immunohistochemical assay of a liver section in the melatonin group (magnification x400) showing diffuse strong positive hepatocytes cytoplasmic immunoreaction (arrows).

Fig. 28: Anti-Bcl2 immunohistochemical assay of a liver section in the acrylamide-exposed group (magnification x400) showing very minimal Bcl2 immunoreactivity (arrows).
Fig. 29: Anti-Bcl2 immunohistochemical assay of a liver section in the acrylamide/vit E-treated group (magnification x400) showing a mild increase in the Bcl2 immunostaining (arrow).

Fig. 30: Anti-Bcl2 immunohistochemical assay of a liver section in the acrylamide/melatonin-treated group (magnification x400) showing a moderate increase in the Bcl2 immunostaining (arrows).
Fig. 31: Anti-Bcl2 immunohistochemical assay of a liver section in the acrylamide/vit E/MT-treated group showing a moderate increase in the Bcl2 immunoreaction (arrows).
Fig. 32: Anti-iNOS immunohistochemical assay of a liver section in the control group (magnification x400) showing negative anti-iNOS immunoreaction.

Fig. 33: Anti-iNOS immunohistochemical assay of a liver section in the vit E group (magnification x400) showing negative anti-iNOS immunoreaction.
Fig. 34: Anti-iNOS immunohistochemical assay of a liver section in the melatonin group (magnification x400) showing negative anti-iNOS immunoreaction.

Fig. 35: Anti-iNOS immunohistochemical assay of liver sections in the acrylamide-exposed group (magnification x400) showing diffuse strong positive hepatocyte cytoplasmic immunoreaction (arrows).
Fig. 36: Anti-iNOS immunohistochemical assay of a liver section in the acrylamide/vit E group (magnification x400) showing diffuse less intense positive hepatocyte cytoplasmic immunoreaction (arrows).

Fig. 37: Anti-iNOS immunohistochemical assay of a liver section in the acrylamide/MT-treated group (magnification x400) showing diffuse less intense positive hepatocyte cytoplasmic immunoreaction (arrow).
Fig. 38: Anti-iNOS immunohistochemical assay of a liver section in the acrylamide/vit E/MT-treated group (magnification x400) showing some hepatocytes with positive hepatocyte cytoplasmic immunoreaction (arrows), however many others showed a remarkable resolve of the iNOS-immunoreactivity (arrowheads).
Morphometric result
The morphometric measurements of the area percent of collagen fibers distribution, Bax, Bcl2 immunostaining and the optical density of iNOS immunoexpression were shown in Figure 39. The control, vit E, and melatonin alone-treated groups showed a non-significant change when compared to each other. In comparison with the control group, the acrylamide-exposed group displayed a significant increase (p<0.05) in the mean iNOS optical density and the mean area percent of both collagen distribution and Bax immunoreactivity, meanwhile a significant decrease (p<0.05) in Bcl2 immunoexpression was noted. Either vit E or MT treatment resulted in a significant reversal (p<0.05) of the altered parameter with complete improvement in the combination group, when compared to the control animal group.

![Fig. 39: Effect of vit E and or melatonin on the mean area percent of collagen fiber, Bax, Bcl2 immunoreactivities and the mean optical density of iNOS immunostaining. The findings are expressed as mean ± SD. a significant versus control, Vit E, and MT. b significant versus ACR group. c significant versus ACR/Vit E & ACR/MT groups. One-way ANOVA followed by Post hoc Tukey’s test for comparison between groups was used. Statistical significance was considered at p<0.05.](image-url)
Discussion

The present study investigated the effect of 2 natural agents, vitamin E and melatonin on acrylamide (ACR)-induced liver injury in adult male albino rats. Although their separate curative potential, in different organs with other toxicities, has been reported in the literary data, this work investigated both vit E and melatonin in combination. The results confirmed the toxic effect of ACR on the rat liver when given orally in a dose of 5 mg/kg for 2 months. Moreover, the study showed an ameliorative effect of Vit E and melatonin (MT) on such liver damage by regulating iNOS, Bax, and Bcl2 expressions and resetting collagen synthesis and turnover, hence anti-inflammatory, anti-apoptotic, antifibrotic mechanisms.

The control, vit E, and MT alone-treated groups showed the same biochemical, histological, and immunohistochemical findings. Acrylamide (ACR) exposure resulted in major changes in biochemical analyses and hepatic histoarchitecture. ACR significantly elevated the liver enzymes when compared to the control group. Also, disorganization of the hepatic histoarchitecture, hepatic vascular congestion, and cellular infiltrates were the major findings in H & E staining. Similarly, Hamdy et al. \cite{10} reported biochemical and histological liver affection in the same rat model of ACR-induced liver injury. Taken in mind the elevated liver enzymes in correlation with imbalanced SOD/MDA in liver tissues, the authors could suggest hepatocytes’ inflammatory and oxidative stress as a reason for the H & E changes and iNOS, Bax, Bcl2 immunohistochemical alterations leading to elevation of ALT, and AST. Histomorphometric evaluation of the immunohistochemical assays could imply an upregulation of pro-apoptotic proteins (Bax) and pro-inflammatory mediators (iNOS) and down regulation of anti-apoptotic proteins (Bcl2) as mechanistic aspects for ACR-induced liver damage. In accordance, Guo et al. \cite{18} reported pro-inflammatory status and upregulation of apoptosis in a rat model of ACR-induced neurotoxicity.
Evaluation of the Mallory-stained liver sections displayed accumulation of collagen fibers in ACR-intoxicated rats. The authors assumed hepatic stellate cells (HSCs) activation (not investigated herein) facilitated by the inflammatory and oxidative stress microenvironment with subsequent myofibroblast transformation and excess fibrous tissue formation. The authors’ suggestion was emphasized by the findings of Shaker et al. [19] who reported TNF-α/IL-6-mediated HSCs activation in a rat model of thioacetamide-induced hepatic fibrosis.

Either vitamin E-alone or MT-alone treatment in ACR- exposed rats led to a significant improvement in the biochemical and histological alterations of the liver, however still mild degenerative hepatocyte changes were observed in ACR/vit E-treated rats. These results were consistent with other studies focusing on the protective potential of vit E and melatonin. Several studies have reported counteraction of ACR-induced toxicity by vit E in different organ toxicities e.g. striated muscles [20], fetal liver [21], and testis [22]. Moreover, Oleshchuk et al. [23] confirmed a hepatoprotective effect for melatonin on a rat model of carbon tetrachloride (CCl4)-induced liver injury.

The reversal of oxidant/antioxidant imbalance in the liver tissue by both vit E and melatonin might ameliorate the hepatic histoarchitecture and cellular functions with a decrease in liver enzymes. Actually, both agents’ treatment decreased MDA, and increased catalase/SOD concentrations in liver, coupled with a decrease in liver enzymes. Parallel, Bicer et al. [24] and Kopańska et al. [25] reported antioxidant and anti-inflammatory effects for melatonin and α-tocopherol in different animal modeling. Hence, the anti-inflammatory, and antioxidant capabilities of melatonin and tocopherol might be an explanation for the improved histological and biochemical findings in both agents treated groups. The counteraction to apoptosis, exerted by tocopherol and MT could be attributed to the downregulation of pro-apoptotic Bax and
upregulation of anti-apoptotic protein, Bcl2. Also, the downregulated iNOS immunoexpression exerted by tocopherol and melatonin might be correlated with interference with Bax expression. This assumption was coincident with the finding of Famurewa et al. [26] who reported iNOS/NF-κB/caspase-3 signaling downregulation mediated by zinc treatment in a rat model of cyclophosphamide-induced cystitis.

In the authors’ regard, the subsidence of the inflammatory and oxidative status and hence, possible HSCs inactivation might explain the decreased amount of collagen in Mallory-stained sections of the tocopherol- and melatonin-treated groups. This notion was supported by Hamid et al. [27] who reported amelioration of inflammation and oxidative stress and HSCs inactivation by selenized Astragalus polysaccharides in rat model of CCl4-induced liver injury.
In vit E/MT combination group, the hepatic structural organization was restored which was in harmony with the improved liver enzymes and the reestablished oxidative balance. Morphometric evaluation of the immunoassay slides confirmed better findings than single treatments. These findings referred to summative actions of both vit E and MT combined due to the further addition of the antioxidant and anti-inflammatory effects as confirmed by the remarkable amelioration of inflammation/oxidative stress biomarkers. Similarly, Erdemli et al. [28] reported a synergistic action of both vit E/MT combination in a mouse model of pesticide-induced nephrotoxicity.

Conclusion

Acrylamide hepatotoxicity was proven in the current rat model of acrylamide exposure. The histopathological and biochemical findings referred to a significant alteration in the hepatic tissues, leading to precipitation of inflammation and oxidative stress. Single tocopherol and melatonin treatment exhibited robust antioxidant and anti-inflammatory effects. Co-administration of both exhibited more powerful synergistic effects coupled with increased the antioxidant capacity. Hence, Vit E/MT combined administration is recommended as a daily supplementation, in particular, for those who are exposing to acrylamide e.g. fast food-lovers individuals.

Conflict of interest

The authors have no conflict of interest to declare.
References

[26] Famurewa AC, Edeogu CO, Offor FI, Besong EE, Akunna GG, Maduagwuna EK. Downregulation of redox imbalance and iNOS/NF-κB/caspase-3 signalling with zinc

الملخص العربي

الحماية المحتملة للكبد المعزز بالميلاتونين و الفا-توكوفيرول في إصابة الكبد المحدثة بالأكريلاميد في ذكور الجرذان البيضاء: دراسة نسيجية وكيميائية مناعية

المقدمة: عادة ما يلوث الأكريلاميد البيئة المحيطة لأنها تتكون في الأطعمة التي تطهى تحت ظروف خاصة من الحرارة العالية. أكدت العديد من الدراسات السابقة سمية الأكريلاميد على أعضاء الجسم المختلفة.

الهدف: تهدف الدراسة الحالية إلى التحقق من مدى الكفاءة المحتملة لكلا من فيتامين هـ والميلاتونين في حماية الكبد من السمية المحتملة بالأكريلاميد في ذكور الجرذان البيضاء. أيضاً، تم فحص الآليات المقترحة المساهمة في هذه الحماية باستخدام الدراسات النسيجية والكيميائية المناعية.

المواد والطرق المستخدمة: تم تقسيم 49 من ذكور الجرذان البيضاء إلى سبع مجموعات متساوية.

المجموعة الضابطة، مجموعة فيتامين هـ (100 مجم / كجم / يوم)، مجموعة الميلاتونين (10 مجم / كجم / يوم)، مجموعة الاكريلاميد (5 مجم / كجم / يوم)، مجموعة الاكريلاميد/فيتامين هـ، مجموعة الاكريلاميد/ميلاتونين، مجموعة الاكريلاميد/فيتامين هـ/ميلاتونين، ومجموعة الاكريلاميد/فيتامين هـ/ال밀اتونين. ثم إعطاء العلاج لجميع المجموعات يومياً عن طريق الفم لمدة 8 أسابيع. في نهاية التجربة، تم سحب عينات الدم لقياس إنزيمات الكبد. تم استئصال الكبد وتجهيزه لقياس تركيزات العوامل المؤكسدة ومضادات الأكسدة في أنسجة الكبد. كما تم تحضير عينات نسيجية بسمع البرافين وصبغها بالهييموكسيلين والأيوسين. كما تم استخدام صبغة الماسون.

تم إجراء فحوصات كيميائية مناعية للكشف عن التعبير المناعي لـ iNOS و Bcl2 و Bax.
النتائج: أظهرت الجرذان المعرضة للإكريلاميد تغييراً ملحوظاً في القياسات البيوكيميائية، بالإضافة إلى تغيرات خلايا الكبد والتغيرات التحللي في صورة فجوات خلوية والتي لوحظت في نتائج الهيماتوكسيلين والأيدوسين. كذلك لوحظ زيادة في تراكم النسيج الليلي عند استخدام صبغة الماسون. واختلال ظهور البروتينات التي تم الكشف عنها بالصبغة الكيميائي النسيجي المناعي. أدى العلاج بفيتامين هـ أوالميلاتونين إلى تحسين التغيرات النسيجية والكيميائية الحيوية مع استعادة التركيب الطبيعي عند استخدام العقارين معاً.

الخلاصة: يقوم كلا من فيتامين هـ والميلاتونين مجتمعين بحماية الكبد من السمية الكبدية المحدثة بالإكريلاميد، وقد يتم ذلك عن طريق إعادة التوازن بين عوامل ومضات الأكسدة، تقليل ظهور البروتينات المؤيدة لموت الخلايا المبرمج، وزيادة ظهور البروتينات المضادة لموت الخلايا المبرمج، وتثبيط مسار الالتهاب.