EFFECT OF KALOBIN (PELARGONIUM REINFORME/SIDOIDES EXTRACT) ON MURINE INTESTINAL TRICHINELLA SPIRALIS

By
NAGAT AHMED SOLIMAN¹, ASMAA ABDELMONIEM EL-KHOLY¹,
LINA ABDEL-HADY MOHAMED² AND DINA ABD EL-HADY MOHAMED¹

¹Departments of Medical Parasitology and ²Medical Biochemistry and Molecular Biology, Benha Faculty of Medicine, Benha University, Egypt

(*) Correspondence: drnagatahmed@yahoo.com

Abstract

Trichinellosis is a worldwide risky zoonotic nematode infecting people particularly in pig-raising countries. The goal of this investigation was to evaluate the effectiveness of Kalobin (Pelargonium reinorme/sidoides) as a therapeutic and a prophylactic treatment of experimental intestinal T. spiralis infection. Consequently, one hundred Swiss albino male mice were divided into five groups of 20 each. GI: untreated, uninfected mice (negative control). GII: infected untreated mice (positive control). GIII: infected treated with Albendazole (ABZ) started three days after infection and continued for three successive days. GIV: infected and treated with Kalobin began 24 hours after infection and went on for 6 consecutive days since infection. GV: infected mice and Kalobin treated started 15 day before infection up to 6 successive days (pretreated group). Two hundred T. spiralis larvae were given orally to all groups except GI and evaluated parasitological, histopathological, and biochemical of the efficacy of treatment. The results showed that both GIII and GV caused substantial decrease in intestinal adults' count than other ones (94.4%, & 52.1% respectively). These results were supported by the enhancement of histology and biochemistry findings.

Keywords: Trichinellosis, Mice, Kalobin, Albendazole, GSH, IL-4, IL-10, MDA.

Introduction

Trichinella spiralis annually infected about 11 million people worldwide through consumption of raw or undercooked flesh of diseased livestock (Rózycki et al, 2022). In general, not less than 55 countries have reported zoonotic trichinosis (CDC, 2016).

In the Mediterranean and African regions, human trichinellosis was rare, and stems mostly from the religious practices and food habits but, sylvatic one was reported (Pozio, 1991). In Egypt, trichinosis was reported in man and animals (Morsy et al, 2022). Dyab et al. (2019) reported that prevalence of T. spiralis larvae in slaughtered pigs; from Governmental Basatin Slaughterhouse were 2/184 (1.08%). Mohammed et al. (2022) concluded that to have effective preventive and control measures for trichinosis pigs must not feed on garbage and preventing pigs slaughtering outside the slaughterhouses.

Tissue damage in trichinellosis is a result of numerous variables in addition to the direct harm brought on by the parasite itself. The increased production of different stress markers, such as superoxide dismutase and malondialdehyde (MDA), indicates that the oxidative stress condition that comes along with Trichinella infection is one of the primary sources of this harm (Mido et al, 2012). Also, recruitment of inflammatory cells that, when activated, release an overabundance of nitrogen species, the reactive oxygen species (ROS) and the other free radicals (Chiumiento and Bruschi, 2009). T-helper cells are needed for immunological reaction against T. spiralis in the intestinal phase, Th1 and Th2 cells were stimulated during this process, with Th1 type initially predominating to achieve protection and parasite elimination (Ilic et al, 2021). IL-4, IL-5, IL-10, & IL-13 cytokines and IgE were secreted during this process (Bruschi and Chiumiento, 2012). Thus, IL4 and IL13 resulted in production of tumor necrosis factor (TNF) and interferon (INF-γ) to localize inflammation (Akiho et al, 2011). Nitric oxide is produced as a consequence of TNF release stimulating iNOS enzyme (NO). T. spiralis enteropathy is accelerated by inflammatory reaction.
established by TNF-α and NO (Wink et al., 2010). Anti-inflammatory and antioxidants medications aid in the protection of humans (Kazemzadeh et al., 2014). However, widely used non-steroidal or steroidal medications have side effects restricted their use (Oray et al., 2016).

Thus, anti-parasitic therapies of plant or herbal extracts were tried. Myrrh and thyme mixtures were tested experimentally on murine T. spiralis (Attia et al., 2015). Spinoso leaf extract showed antitrichinellosis efficiency (Yadav and Temjenmongla, 2012). The immunostimulant and effective remedy for respiratory infections Kalobin is a natural extract of Pelargonium reniforme/sidoides stems (Chuchalin et al., 2005). P. reniforme/sidoides contained significant quantities of calcium, silica, gallic acid, gallic acid methyl ester and tri- and tetra-oxygenated cumarine, among other useful substances (Alos-saimi et al., 2022). Infections of the sinus, pharynx, respiratory system and tonsillo-pharyngitis and bronchitis were successfully treated with polyphenols compounds such as cumarin (Kayser et al., 2001). Besides, Gallic acid was impacted through the activation of the macrophage functions for generation of TNFα, iON, and IFN-γ, converting it as an anti-leishmanial therapy (Kolodziej et al., 2003).

The study aimed to evaluate the efficacy of Kalobin® as a therapeutic and a prophylactic treatment of experimental intestinal T. spiralis infection.

Materials and Methods

Clean laboratory bred male Swiss Albino mice about 25 ~ 30g and 6 to 8 weeks old were purchased from Theodor Bilharz Research Institute (TBRI). By repeated passage, T. spiralis strain was maintained & given about 200 larvae orally to each mouse.

Drugs: 1- Albendazole®: Alzental suspension (EIPICO), a commercially available drug preparation was used in a dose of 20 mg/ml. 2- Kalobin®: A natural extract of Pelargonium reniforme/sidoides roots was purchased as an oral drops in a dose of 200μg/ml (Marcyrl Pharmaceutical Industries, El Obour City, Egypt).

Experimental design: A total of 100 Albino mice were classified into five groups of 20 mice each. GI: Neither infected nor treated mice (negative control). GII: Infected, but untreated mice (positive control). GIII: Infected and Albendazole treated on the third post-infection day as 50mg/kg/day by an intra-esophageal gavage for three days (Li et al, 2012). GIV: Infected and Kalobin treated with dose of 200μg/dl started 24hr post-infection (P.I.) and continued for 6 successive days in a dose of 200μg/dl (Amer et al., 2006). GV: Infected mice and immune-stimulated with Kalobin at a dose of 200μg/dl started 15th day before infection and continued for 6 successive days (pretreated group).

Ethical clearance: The experimental mice were kept in an appropriate animal house. The study was approved by the Scientific Research Ethical Committee Benha Faculty of Medicine (RC: 26-10-2022), which went with the Helsinki’s Declarations (2008).

Histopathological study: Ten mice from every group were sacrificed on the 7th day PI and 1 ml intestinal samples were dissected out. Fixed samples were processed for paraffin sectioning (5μm) and (H & E) staining for histopathological examinations (Fischer et al., 2008).

Counting adult worms in the small intestine required cutting the remaining parts of each group into 2cm to be soaked in physiological saline at 37°C for 3 to 4 hours. Then the intestine was completely shaken in liquid and saline rinsed, the solution was centrifuged at 1500 rpm for five minutes and microscopically examined for the adults’ counting in the sediment of each group (Wakelin and Lioyer, 1976)

For biochemical assays: The intestines of other ten mice of each group were dissected, rinsed in an ice- saline, sliced into numerous tiny fragments, weighed, homogenized in normal buffer phosphate solution before being centrifugation at 12,000g for 20 min at 4°C. The supernatant was subsequently maintained at 80°C until needed (lowry et al.,1951)
For the evaluation of oxidant/anti-oxidant state in intestinal tissue homogenates, Biodiagnostic’s commercial assays were used to measure the levels of MDA and reduced glutathione (GSH), both IL-4 and IL-10 were measured by ELISA (Ray-Biotech Inc., Peachtree Corners, Georgia, USA, and Chongqing Biospes Co., Chongqing, China, respectively), after the manufacturer’s protocols and results were read on a micro-plate reader at 450nm with a correction wavelength marked at 570nm (Stat Fax®2100, Fisher Bioblock Scientific, Strasbourg, France). Statistical analysis: Data were collected, tabulated, computerized and analyzed by the software SPSS (Statistical package for social science) version 25. Data were expressed as mean and standard deviation ±SD. Significant difference was evaluated by ANOVA and/or Kruskal-Wallis as indicated. P value <0.05 was considered significant.

Results

Histologically: By comparing GIII and GV to positive control, small intestine sections demonstrate a substantial reduction in level of inflammation and restored villi architecture. Specifically in lamina propria and core of the villi, GII demonstrated a dense inflammatory cellular infiltrate along with shortening, flatness, and proliferation of goblet cells. Also, core of the villi in the Kalobin-treated mice exhibited moderate inflammation.

Total *T. spiralis* adult count (TAC) in intestinal contents: TAC was performed on 7th day PI for all groups. A significant difference was between positive and negative controls. The mean TAC in GII (positive control) was 77.10±8.86. The TAC was significantly decreased in GIII (ABZ treated) compared with GII, which reached 4.40±2.22. There was insignificant decrease in TAC in GIV (Kalobin treated) compared with GII. As to the GV (Kalobin pretreated), there was significant decrease in the TAC in GV as compared with GII.

As compared to the positive control, there was marked reduction in intestinal of adult worms’ counts in all the treated groups.

Reduction rates in the intestinal phase were 94.4% in albendazole treated mice, 52.1% in pretreated Kalobin and 38.6% in Kalobin treated mice.

As to IL-4 concentrations positive and negative controls showed significant differences from one another. Levels of IL-4 in GII were 64.49±11.75. There was high significant decrease in GIII (ABZ treated) compared with GII. But, there was insignificant decrease in GIV compared with GII. But, comparing GII to GV showed a substantial decline. IL-10 levels in intestinal homogenates; there was a substantial disparity between the positive and negative controls.

In GII (positive control) the levels were 145.8±16.37. There was significant decrease in GIII (ABZ treated) compared with GII. Also, there was no significant decrease in GIV (Kalobin treated) compared with GII. The GV (Kalobin pretreated), there was significant decrease in GV compared with GII.

MDA levels in the intestinal homogenates were compared among all groups. Between positive and negative control, there were notable difference (1.45±0.28 & 3.21±0.42). There was a significant decrease in GIII compared with GII. There was insignificant decrease in GIV (infected Kalobin treated) compared with GII. GV showed significant decrease compared to GII.

Reduced glutathione in intestinal homogenates: Levels of reduced glutathione in positive and negative control showed a significant difference between one another. The levels of the reduced glutathione in GII were 1.21±0.11. There was a significant increase in GIII and insignificant increase in GIV as compared with GII. As to GV, there was significant increase in GV compared with GII.

Details were shown in tables (1 & 2) and figures (1, 2, 3, 4 & 5).
So it's crucial to consider the mechanism by which kaolin is effective in the treatment of parasites. In recent research, the extract of the herb Kalobin (Kalobin®), containing compounds such as echinacea, allium sativum, and gallic acid, has been shown to have a significant anti-helminthic effect against T. spiralis. Kalobin has demonstrated activity against Prohemistomum vivax, a parasite harbored in mice, and has been shown to improve antibody production and activate antigen-presenting cells, as observed in vivo and in vitro studies.

In the present study, the effects of Kalobin on immune-stimulated mice with T. spiralis infection were evaluated. Kalobin was compared to the positive control group and the negative control group. The results showed that Kalobin significantly reduced the number of T. spiralis larvae and improved antibody production compared to the control groups. This is attributed to the presence of components such as echinacea, which has been shown to enhance immune responses.

Table 1: Comparison of T. spiralis adult count in intestine among groups

<table>
<thead>
<tr>
<th>Groups</th>
<th>T. spiralis adult count in intestine</th>
<th>Reduction %</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI</td>
<td>0.0±0.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GII</td>
<td>77.10±8.86</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GIII</td>
<td>4.40±2.22</td>
<td>94.4%</td>
<td>-</td>
</tr>
<tr>
<td>GIV</td>
<td>46.10±15.50</td>
<td>38.6%</td>
<td>0.010</td>
</tr>
<tr>
<td>GV</td>
<td>36.40±14.86</td>
<td>52.1%</td>
<td>0.048</td>
</tr>
</tbody>
</table>

P≤0.05 = significant.

Table 2: Levels of IL-4, IL-10, MDA and reduced glutathione among groups

<table>
<thead>
<tr>
<th>Variations</th>
<th>GI</th>
<th>GII</th>
<th>GIII</th>
<th>GIV</th>
<th>GV</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4 (pg/mg tissue)</td>
<td>29.49±3.93</td>
<td>64.49±11.75</td>
<td>40.08±7.38</td>
<td>52.75±9.09</td>
<td>49.44±11.76</td>
<td>p1<0.001 p2=0.001 p3=0.182 p4=0.047</td>
</tr>
<tr>
<td>IL-10 (pg/mg tissue)</td>
<td>62.23±15.15</td>
<td>145.81±16.37</td>
<td>95.06±18.14</td>
<td>123.85±22.32</td>
<td>115.08±23.46</td>
<td>p1<0.001 p2<0.001 p3=0.123 p4=0.027</td>
</tr>
<tr>
<td>MDA (nmol/gm tissue)</td>
<td>1.45±0.28</td>
<td>3.21±0.42</td>
<td>2.35±0.64</td>
<td>2.89±0.28</td>
<td>2.52±0.32</td>
<td>p1<0.001 p2<0.001 p3=0.429 p4=0.005</td>
</tr>
<tr>
<td>Reduced glutathione (mg/tissue)</td>
<td>5.09±0.04</td>
<td>1.21±0.11</td>
<td>4.10±0.33</td>
<td>2.39±0.27</td>
<td>3.20±0.36</td>
<td>p1<0.001 p2<0.001 p3=0.109 p4=0.003</td>
</tr>
</tbody>
</table>

P≤0.05 significant, P1: between GsII & I, P2: between GsII & III, P3: between GsII & IV, P4: between Gs II & V

Discussion

Albendazole therapy has been associated with transient and asymptomatic elevations in serum aminotransferase levels in up to 50% of patients treated for more than a few weeks. These abnormalities rapidly improve with stopping therapy which is rarely required (~4%). Albendazole has also been associated clinically with apparent liver injury. The onset of injury has been within a few days to as long as 2 months of starting therapy. So it's crucial to develop new, secure, effective medications (Ben Fredj et al, 2014). To our understanding, no research has been done to determine how Kalobin affects T. spiralis infection.

In the present study, regarding the anti-parasitic impact showed a substantial drop in TAC in the infected mice and immune-stimulated with Kalobin (52.1%) compared to positive control. In agreement with the recorded observation, mice treated with herbal extract Alchinal, a complicated mixture made up of three ingredients (Echinacea purpura extract, Allium sativum extract and coca) harbored significantly fewer T. spiralis larvae (Bany et al, 2003). At this point in research, the exact process by which kalobin produces its anti-helminthic effect is unknown. However, it is thought that plant extracts may exert their effects through activation of antigen presenting cells as well as antibody production (Amer et al, 2006).

In the present study, the histopathological examination of small intestines in infected mice and Albendazole treated and infected mice with Kalobin immune-stimulated showed significantly less inflammation than both the positive control group and Kalobin-treated group, as well as restored villi architecture. This agreed with Amer et al. (2006) in Egypt, they proved the immune-stimulating effect of Pelargonium reinformes/sidoidees extract (Kalobin®) against Prohemistomum vivax, Also, this agreed with Abdel Menaem et al. (2022) in Egypt who reported that Kalobin's immuno-potentiating effects on the treatment of schistosomiasis mansoni in vivo whether used alone or in conjunction with praziquantel. Gallic acid, the primary component of Pelargonium extract, was demonstrated by Kayser et al. (2001) to have an anti-leishmanial good effect. They noted that therapy with pelargonium extract resulted in the generation of TNF-α, iNO, and INF-, which activated the macrophages.
Also, Tomex (garlic), according to Abou Hussien et al. (2022), has a potential in vitro antiparasitic action and may be an efficient alternate drug for *T. spiralis* adult worms and muscle larvae because it is a cost-effective, easily-accessible without the unpleasant smell of natural garlic plant. In the same time, *Nigella sativa* (black seeds), Ivermectin®, and Albendazole® were evaluated by Nada et al. (2018) for their ability to effectively treating mice infected with the different phases of *Trichinella spiralis*.

In the present study, IL-4 and IL-10 cytokines expressions were significantly down-regulated in GV compared to GII. But, between both GIII and GV, there was barely a change. By decreasing intestinal mastocytosis, which significantly contributed to villi injury and atrophy during *T. spiralis* infection, reduced IL-4 production may be beneficial in trichinellosis (Serna et al, 2006). More or less similar results were reported by Marshman et al. (2002); Sofronic-Milosavljevic et al. (2013); Chen et al. (2013) and Ding et al. (2017), they showed that IL-4 mRNA is elevated in *T. spiralis* infected animals compared to uninfected ones. Goblet cell hypertrophy has been demonstrated to require the Th2 cytokines, particularly IL-4, which is a crucial aspect of intestinal nematode infection (Kuperman et al, 2005). According to Ding et al. (2017) TGF production, IL-4, IL-10, raised by more than three times when compared to the control ones. Additionally, while the production of IL-4 and IL-10 increased throughout the whole intestinal phase, IL-2 was down-regulated in early phases of infection. *T. spiralis* provided DCs with immunomodulatory capabilities and made them favor a Th2-polarized response (Stolley and Campbell, 2016). Free radicals and ROS are produced in large amounts during *T. spiralis* infection by both the parasite and the host as a result of inherent and learned immune reactions (Bruschi et al, 2003; Othman et al, 2016). The antioxidants are crucial to metabolism and aid in defending the host against oxidant-mediated negative impacts (Bruschi and Chiumiento, 2011). The positive control’s small intestine had significantly higher levels of the oxidative stress indicators than the negative control group did. This agreed with many authors (Wojtkowiak-Giera et al, 2012; Blum et al, 2013; Kazemzadeh et al, 2014). The decline in MDA levels and the rise in GSH levels indicate that oxidative stress was reduced in GIII, GIV, & GV. Besides, the present data agreed with Hamed et al. (2022) who reported that curcumin’s anti-inflammatory, antioxidant, and anti-angiogenic properties helped to alleviate trichinellosis and curcumin has potential as an adjunctive other antiparasitic drugs (Gabrashanska et al, 2019). Moreover, trichinellosis was successfully easily treated with antioxidant-agents like selenium and resveratrol (Elgendy et al, 2020).

Conclusion

The outcome results demonstrated how orally taking Kalobin can guard against the pathological impacts of *T. spiralis* infection. This was significantly added by the anti-inflammatory and antioxidant effects of Kalobin. Accordingly, Kalobin may be helpful as an adjuvant in the therapy of trichinellosis and additional research on the use and exact mechanism of this adjuvant in both experimental animals and human deserves consideration.

References

Kuperman, DA, Huang, X, Nguyenvu, L, Hol-
scher, C, Brombacher, F, et al, 2005: IL-4 re-
ceptor signaling in Clara cells is required for al-

Li, RH, Pei, YJ, Li, QC, Huo, J, Ding, Y, Yin, GR, 2012: Efficacy of the albenzadole orally
administered at different dosages against Trichi-
nella spiralis encapsulated larvae in mice. Chin.

Lowry, OH, Rosebrough, NJ, Farr, AL, Ran-
dall, RJ, 1951: Protein measurement with the
Folin-phenol reagent. J. Biol. Chem.193, 1:265-
75.

Marshan, E, Booth, CE, Potten, CS, 2002:
Intestinal epithelial stem cells. Bioessays 24:91-
8.

Mido, S, Fath, EM, Farid, AS, Nonaka, N,
serum paraoxonase-1 levels, lipid profile,
and oxidative status in rats. Exp. Parasitol. 131,
2:190-204.

Mohammed, ES, Youseef, AG, Mubarak, AG,
Mawas, AS, Khalifa, FA, et al, 2022: Epidemi-
ological perspective associated with principal
risk factors of Trichinella spiralis infection in
pigs and humans in Egypt. Vet. World 6:1430-7

Morsy, TA, Sallam, TA, Hawam, SM, 2022:
Trichinosis (trichinellosis) in man and animals
with reference to Egypt: An overview. JESP 52,
3:431-42

Nada, S, Mohammad, SM, Moad, HS, El-Sh-
afey, MA, Al-Ghandour, AMF, et al, 2018:
Therapeutic effect of Nigella sativa and iver-
mercin versus albenzadole on experimental trichinellosis in mice. J. Egypt. Soc.

Oray, M, Abu Samra, K, Ebrahimiadib, N,
Meese, H, Foster, CS, 2016: Long-term side

Othman, AA, Abu Rayia, DM, Ashour, DS,
Saied EM, Zineldeen, DH, et al, 2016: Atrov-
astatin and metformin administration modulates
experimental Trichinella spiralis infection. Para-
sitol. Inter. 65:105-12.

Pozio, E, 1991: Current status of food-borne
parasitic zoonoses in the Mediterranean and Af-
Publ. Hlth. 22:S85-7

Rózycki, M, Korpysa-Dzirba, W, Belcik, A,
Pelec, T, Mazurek J, et al, 2022: Analy- sis of
a trichinellosis outbreak in Poland aft-er con-
sumption of sausage made of wild bo-ar meat. J.

Serna, H, Porras, M, Vergara, P, 2006: Mast
cell stabilizer ketotifen [4-(1-methyl-4-piperi-
dyldiene)-4h-benzo[4,5] cyclohepta [1,2-b] thioph-
-ene-10 (9H)-one fumarate] prevents mucosal
stabilizer
mast cell hyperplasia and intestinal dysmotility
in experimental T. spiralis inflammation in rat.

Fischer, AH, Jacobson, KA, Rose, J, Zeller, R
A, 2008: Cutting sections of paraffin-embedded
tissues. CSH Proto. May 1;2008: pdbprot4987.

Sharma, R, Thompson, PC, Hoerg, EP, et
al, 2020: Hiding in plain sight: discovery and
phylogeny of a cryptic species of Trichi-
nella (Nematoda: Trichinellidae) in wolverine
(Gulo gulo). Int. J. Parasitol. 50: 277-82.

Sofronic-Milosavljevic, LJ, Radovic, I, Il-ic,
N, Majstorovic, I, Cvetkovic, J, et al, 2013:
Application of dendritic cells stimula-ted with T.
spiralis excretory-secretory antigens alleviates
experimental autoimmune- encephalomyelitis.

Stolley, J M, Campbell, DJ, 2016: A 33
D1” dendritic cell/auto-reactive CD4+ T cell cir-
cuit maintains IL-2-dependent regulatory T cells

Wakelin, D, Lloyd, M, 1976: Immunity to
primary andchallenge infections of Trichinella spi-
ralis in mice: A re-examination of conventional
parameters. Parasitology 72, 2:173-82.

Wink, DA, Hines, HB, Cheng, RY, 2010: Ni-
tric oxide and redox mechanisms in immune

Wojtkowiak-Giera, A, Wandurska-Now-ak,
E, Michalak, M, Derda, M, Łopaciuch J,
2012: Trichinellosis in mice: effect of alben-
azo1e on the glutathione transferase in the intest-

Yadav, AK, Temjenmongla, 2012: Efficacy of
Lasia spinosa leaf extract in treating mice infect-
ted with Trichinella spiralis. Parasitol. Res 110,
1:493-8.

Explanation of figures

Fig.1: Section in small intestine of negative control (GI) showed normal intestinal villi.

Fig.2: Section in the small intestine of +ve control (GIH) showed many scattered T.S. worms in lumen and within villi (red arrows) with
distorted villous pattern (shorter and broader)(blue arrows) and increased goblet cell population (yellow arrow) as well as
moderate infiltra- tion by mononuclear inflammatory cells (black arrow) (H&E stain, X100).
Fig. 3: Small intestinal section of Albendazole treated (GIII) of mice showed few T.S. worms (red arrow), nearly restorted villous pattern (blue arrows) and mild infiltration by mononuclear inflammatory cells (black arrow) (H&E stain, X100)

Fig.4: Small intestinal section (GIV) treated by Kalobin showed partially shortened villi (blue arrows), regenerating goblet cells yellow arrows) as well as moderate infiltration by mononuclear inflammatory cells (black arrow) (H&E stain, X100)

Fig.5: Small intestinal section of Kalobin pretreated (GV) showed partially retorted (blue arrows) and partially distorted villous pattern (red arrow) as well as mild mononuclear inflammatory cells.