3-Adjuvant role of one hundred twenty-eight multidetector computed tomography in categorizing adnexal masses
Title: Adjuvant role of one hundred twenty eight multidetector computed tomography in categorizing adnexal masses

Article Type: Research Paper

Keywords: Adnexal masses; MDCT and ovarian neoplasms

Corresponding Author: Dr. Elshaimaa M. Mohamed, M.D.

Corresponding Author's Institution: Zagazig university faculty of medicine

First Author: Elshaimaa M. Mohamed, M.D.

Order of Authors: Elshaimaa M. Mohamed, M.D.; Hend I AbdElrahim, Msc; Hamada m Khater, M.D.; Amr A Abdelrhman, M.D.; Hanaa m Ibrahim, M.D.

Abstract: AIM: To assess the role of a 128 MDCT in discrimination between the benign and malignant adnexal masses.

PATIENTS AND METHODS: Retrospective review of the preoperative MDCT results of fifty women with clinically or sonographically diagnosed adnexal masses had been done by blinded radiologists to the surgical and histopathological outcomes. We excluded patient with bilateral ovarian masses, associated breast carcinoma with metastatic disease and postoperative patients. Our participants scanned by 128-row MDCT with its Maximum Intensity Projection, Multiplanar Reformatting and Volume Rendering Imaging. Later, the outcome of MDCT compared with surgical and pathological results.

RESULTS: The mean age of patients was 52 years old. MDCT diagnosed 23 (46%) benign masses and 27 (54%) malignant masses. 128-row MDCT presented sensitivity, specificity and diagnostic accuracy values 100%, 95.8% and 98% respectively in discriminating malignant from benign adnexal masses compared to histopathology. Our study revealed an excellent agreement 1.0 between the MDCT and laparoscopy as a proof of the origin of adnexal mass 100%.

CONCLUSIONS: 128 MDCT provides a precise distinction of ovarian from extraovarian pelvic masses and a dependable discrimination between benign and malignant adnexal mass lesions. We recommend advance 128 MDCT as an excellent reliable imaging technique to categorize adnexal masses.
Title: Adjuvant role of one hundred twenty eight multidetector computed tomography in categorizing adnexal masses

Authors: ElShaimaa Mohamed Mohamed, M.Da, Hend Ibrahim AbdElrahim, Msca, Hamada Mohamed Khater, M.Db, Amr Ahmed Abdelrhman, M.Dc, Hanaa M. Ibrahim, M.Dd

a Department of Radiodiagnosis, Faculty of Medicine, Zagazig University, Egypt.
b Department of Radiodiagnosis, Faculty of Medicine, Banha University, Egypt.
c Department of Obstetrics and Gynaecology, Faculty of Medicine, Zagazig University, Egypt.
d Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.

Correspondent:

Name: ElShaimaa Mohamed Mohamed, M.D.

Address: Department of Radiodiagnosis, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, 44519, Egypt.

Tel.: 0020 1005515964.

E-mail address: bosy_radiology@gmail.com

Contributing authors:

- ElShaimaa M. Mohamed, M.D:
Address: Department of Radiodiagnosis, Faculty of Medicine, Zagazig University, Egypt.

Email: bosy.radiology@gmail.com

• Hend Ibrahim AbdElrahim, Msc:

Address: Department of Radiodiagnosis, Faculty of Medicine, Zagazig University, Egypt.

Email: Hendmido64@gmail.com

• Hamada Mohamed Khater, M.D.:

Address: Department of radiodiagnosis, Faculty of Medicine, Banha University, Egypt.

Email: Drhamadakhater@gmail.com

• Amr Ahmed Abdelrhman, M.D.:

Address: Department of Obstetrics and Gynaecology, Faculty of Medicine, Zagazig University, Egypt.

Email: Amrrobot@gmail.com

• Hanaa M. Ibrahim, M.D.:

Address: Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.

Email: Dr.hanaaghatwary@gmail.com
Conflict of Interest:

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations).

- The institution from which the work originates: Department of Radiodiagnosis, Faculty of Medicine, Zagazig University, Egypt.

Informed Patient Consent:

All patients have consented to submission their data and imaging reports to the journal.

Author Agreement

All authors of this research agree to submit in your journal.

Elshaimaa M. Mohamed as a corresponding author.

Hend I. Abdelrhim.

Hamada M. Khater.

Amr A. Abdelrahman.

Hanaa M. Ibrahim
Detailed Response to Reviewers

First of all, many thanks for your great effort in reviewing our research and also we appreciate your valuable meticulous comments.

We reply and explain our responses on your precise comments:

Reviewers comments:

1- We are rewriting the references after reviewing the author guidelines of EJRMN and highlighted in red color. We hope that reference styling accepted from you.

2- We replaced the word “restrictions” by “limitations” highlighted in red color in text (As your recommendations).

3- We omitted the line numbering method that obscuring the first word (As your recommendations).

4- We do our best to submit a clean version for our research paper, Hope that you find it good.

At the end, many thanks for your patience and very valuable recommendations.
Title: Adjuvant role of one hundred twenty eight multidetector computed tomography in categorizing adnexal masses

Authors: ElShaimaa Mohamed Mohamed, M.Da, Hend Ibrahim AbdElrahim, M.Sca, Hamada Mohamed Khater, M.Db, Amr Ahmed Abdelrhman, M.Dc, Hanaa M. Ibrahim, M.Dd

a Department of Radiodiagnosis, Faculty of Medicine, Zagazig University, Egypt.
b Department of Radiodiagnosis, Faculty of Medicine, Banha University, Egypt.
c Department of Obstetrics and Gynaecology, Faculty of Medicine, Zagazig University, Egypt.
d Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.

Correspondent:

Name: ElShaimaa Mohamed Mohamed, M.D.

Address: Department of Radiodiagnosis, Faculty of Medicine, Zagazig University, Zagazig, Sharkia, 44519, Egypt.

Tel.: 0020 1005515964.

E-mail address: bosy_radiology@gmail.com

Contributing authors:

- ElShaimaa M. Mohamed, M.D.
Address: Department of Radiodiagnosis, Faculty of Medicine, Zagazig University, Egypt.

Email: bosy.radiology@gmail.com

- Hend Ibrahim AbdElrahim, Msc:

 Address: Department of Radiodiagnosis, Faculty of Medicine, Zagazig University, Egypt.

 Email: Hendmido64@gmail.com

- Hamada Mohamed Khater, M.D:

 Address: Department of radiodiagnosis, Faculty of Medicine, Banha University, Egypt.

 Email: Drhamadakhater@gmail.com

- Amr Ahmed Abdelrhman, M.D:

 Address: Department of Obstetrics and Gynaecology, Faculty of Medicine, Zagazig University, Egypt.

 Email: Amrrobot@gmail.com

- Hanaa M. Ibrahim, M.D:

 Address: Department of Pathology, Faculty of Medicine, Zagazig University, Egypt.

 Email: Dr.hanaaghatwary@gmail.com
Acknowledgments

The authors show appreciation for all staff members and colleagues of the Radiodiagnosis, Obstetrics and Gynaecology Departments, Zagazig University, for their helpful cooperation and all the study participants for their patience and support.
Adjuvant role of one hundred twenty eight multidetector computed tomography in categorizing adnexal masses.

Abstract: Aim: To assess the role of a 128-multidetector CT (MDCT) in discrimination between the benign and malignant adnexal masses.

Patients and Methods: Retrospective review of the preoperative MDCT results of fifty women with clinically or sonographically diagnosed adnexal masses had been done by blinded radiologists to the surgical and histopathological outcomes. We excluded patient with bilateral ovarian masses, associated breast carcinoma with metastatic disease and postoperative patients. Our participants scanned by 128-row MDCT with its Maximum Intensity Projection (MIP), Multiplanar Reformatting (MPR) and Volume Rendering Imaging (VRI). Later, the outcome of MDCT compared with surgical and pathological results.
RESULTS: The mean age of patients was 52 years old. MDCT diagnosed 23 (46%) benign masses and 27 (54%) malignant masses. 128-row MDCT presented sensitivity, specificity and diagnostic accuracy values 100%, 95.8% and 98% respectively in discriminating malignant from benign adnexal masses compared to histopathology. Our study revealed an excellent agreement 1.0 between the MDCT and laparoscopy as a proof of the origin of adnexal mass 100%.

CONCLUSIONS:
128-row MDCT provides a precise distinction of ovarian from extraovarian pelvic masses and a dependable discrimination between benign and malignant adnexal mass lesions. We recommend recent advance 128-row MDCT as an excellent reliable imaging technique to categorize adnexal masses.

Keywords: Adnexal masses; MDCT and ovarian neoplasms.

INTRODUCTION
Most of ovarian carcinomas remain clinically asymptomatic for unlimited time, so two thirds of them at the time of first detection have advanced to disease stage III or IV [1]. The
“silent” nature of ovarian malignancies and defective population-based screening programs are the basic factors why most of the females manifest with metastatic disease and late problematical prognosis [2]. The precise characterization of clinically picked up adnexal mass achieves by surgery and histopathology [3]. Up to date imaging techniques establish parallel accuracy as exploratory laparotomy [4]. The perfect purpose of adnexal mass imaging is identifying the malignancy [3] and discrimination the cases suitable for primary cytoreductive surgery and others needing neoadjuvant chemotherapy preceding the surgery [5]. Ultrasonography (US) keeps on the primary imaging tool in the diagnosis of a clinically suspected adnexal mass, but it is incompetent in categorization of adnexal lesions and in identifying the spread of disease in malignant cases [4]. Recently developed advances in MDCT, which permit thinner sections, faster imaging and good spatial resolution, has recommended utilization in further classification of adnexal mass and staging work-up of ovarian malignancy [6]. Now, MDCT considers the gold standard imaging modality for staging
patients with ovarian carcinoma, detects tumor respectability and assists in excellent treatment planning. This study in our local population points to assess the advent of 128 slices MDCT in identification and categorization of adnexal masses. The histopathological and surgical results are our ideal standard for comparison.

Methods

Study design

From Nov. 2016 to July 2017, we retrospectively reviewed the preoperative MDCT data of fifty women with clinically or sonographically picked up adnexal masses. Our radiological observers (who had five experienced years in female imaging) ignored with surgical and histopathological conclusions. We excluded participant with bilateral ovarian masses, concurrent breast carcinoma with metastatic disease and postoperative cases. Institutional review board approval and a waiver of informed consent received for the use of patient’s data.
MDCT protocol

The present study carried out in our Radiodiagnosis department via a 128 MDCT scanner (PHILIPS Ingenuity 128). The cases positioned supine on the CT table. MDCT scan of abdomen and pelvis achieved from dome of the diaphragm to the symphysis pubis by 128 MDCT by a qualified technologist with five years’ practice in MDCT scanning.

Image scanning parameters were as follows: detector collimation of 128x1mm, pitch 1.375, rotation time 0.75 second, table speed 15.4 mm/rotation, reconstruction interval 0.45 mm, 120 kV/300 mAs, acquisition time 9s. All scans achieved by a standard protocol using the triple phase. Precontrast scan of the upper abdomen; arterial phase by the Automatic Bolus Tracking System; portal phase generated by sixty seconds delay after the arterial one followed by MPR in axial, coronal and sagittal planes with five mm slice thickness of each. The non-ionic contrast medium omnipaque-300 had been given by a computer-controlled injector at rate of four ml/second through the antecubital vein of the right arm. Patients with malignant mass
suspicion had Gastrograflin oral contrast media before our MDCT examination.

Image analysis:

The MDCT data processed at a workstation using Maximum Intensity Projection (MIP), Multiplanar Reformat (MPR) and Volume Rendering Images (VRI).

Categorization of adnexal masses based upon MDCT data interpretation:

The imaging criteria involved the origin of the mass (ovarian or extra-ovarian), lesion dimensions and content [3].

7 MDCT suggestive criteria of benignity were the following: a lesion diameter of less than four cm, completely cystic components, a wall thickness of less than three mm and no ascites or metastatic disease [7]. A unilocular or multilocular cystic lesion filled with serous fluid of homogenous CT density and unenhanced after contrast administration, well matched with a *serous cystadenoma*. A multilocular cystic mass with thin wall or septa, had fluids of higher density than water (>20HU) due to the mucin presence, represented as a *mucinous*
cystadenoma. An oblong, tubular, fluid filled adnexal lesion was well matched with hydro or pyosalpinx diagnosis [8]. Fat density within adnexal cyst, with or without calcification, was characteristic of dermoid cyst [9] (Fig.1). The finding of a sharply demarcated, homogenous hyperdense solid ovarian mass (about 50-70HU), was compatible with a benign ovarian lesion with hemorrhagic content (hemorrhagic cyst or Chocolate cyst) (Fig.2). On the contrary, MDCT primary criteria suggestive for malignancy were the following: size greater than four cm, a mass mixed cystic and solid, with solid portions enhancing after contrast use and necrosis in a solid tumor [7, 10]. In the characterization of an adnexal mass, the enhancement of the wall or septa was of a great interest. Secondary criteria such as, pelvic organ or pelvic sidewall involvement, ascites, peritoneal metastases and lymphadenopathy established the malignancy outcome. An adnexal mass categorized as malignant when at least two primary criteria or one primary and one secondary criterion achieved [7] (Fig.3, 4).
Surgical and Pathological assessment:
A skillful gynecologist gave detailed surgical data and illustrated pelvis, lymph nodes and peritoneum metastatic occurrence. A well qualified pathologist analyzed all the excision samples without any awareness of the MDCT or surgical outcomes. The surgical and histopathological data was the ideal control standard in the assessment of MDCT adjuvant role in characterization of adnexal mass.

Statistical analysis
Data verified, inserted and analyzed via Microsoft Excel software. Data introduced to statistical Package for the social sciences (SPSS version 20.0) software for analysis. Results offered as mean ± standard deviation (SD). The sensitivity, specificity and diagnostic accuracy values for MDCT calculated in comparison with surgical and histopathological results.

Cohen's kappa coefficient is a statistic which calculates inter-rater agreement for qualitative (categorical) items. It verifies the agreement between MDCT results and two controls (surgery and
histopathology) results of adnexal masses. P value was set at > 0.05 for significant results & > 0.001 for high significant result.

Results

Fifty women with clinically or sonographically picked up adnexal mass who performed preoperative MDCT during the study period enrolled in our work. Age of our participants was ranging from 34 to 70 years old with mean age equals 52 years old. The pelvic pain and congestion (76% and 30%) were the commonest complaints while the least common complaints were fever and persistent fatigue (6% and 4%).

(Table 1) demonstrates the most common MDCT findings according to the origin was ovarian origin (86%) with malignant frequency about 55.8% for cystic lesion and 7% for solid lesions. Tubal lesions were the least common origin (6%) and other lesions as subserous fibroid and appendicular abscess were (8%).

(Table 2) represents the histopathology and laparoscopic findings among our participants with most common malignant ovarian tumors are serous cystadenocarcinoma (51.9 %) and
least common is granulosa cell tumor (3.7%). While among the benign ovarian tumors, the cystadenoma is the most common and the least is ovarian fibroma.

On our study, cases that diagnosed by histopathology are in agreement with that assessed by MDCT excluding only one false positive case of cystadenoma that diagnosed as malignant cystic lesion by MDCT. Most undifferentiated lesions by MDCT were benign lesions by histopathology. So agreement is good 0.75 between MDCT and histopathology (Table 3).

(Table 4) illustrates the excellent agreement between the MDCT findings and laparoscopic results as a confirmation of the adnexal mass origin 100% in our work.

(Table 5) demonstrates sensitivity, specificity and diagnostic accuracy of 128 MDCT in differentiating malignant from benign adnexal masses compared to histopathology.

Discussion

Differentiation between benign and malignant adnexal masses clinically is tricky and depends essentially on imaging outcome.
Ultrasonography evaluates the morphological and Doppler criteria of the adnexal mass [10]. Yet, the reported accuracy of US in categorizing the adnexal masses differs from 65–94% for gray-scale US, 35–88% for color Doppler flow imaging, and 48–99% for Doppler arterial resistance measurements [3]. The well qualified skillful sonographer, the patient's menopausal status and absent exclusive sonographic diagnostic criteria are the principal obstacles in front of US in discriminating adnexal malignancies [11].

The innovation of 128-row CT scanner enhances the sensitivity of CT in identifying and categorizing adnexal masses. MDCT scanners have obviously amplified volume coverage, together with reduced scanning time to less than one min in most cases [12, 13]. Our 128 MDCT scanner enhances temporal resolution and diminishes significantly the motion artifacts. An additional technical improvement is the acquisition of thin slices (section collimation of 0.9 mm). All above-mentioned benefits produce possible isotropic imaging, permitting the reformation of images at any plane with spatial resolution identical to the initial
scanning plane. 128-row CT scanners let an inclusive assessment of the whole abdomen, with few seconds scan duration on the average, using a slice thickness of less than one mm, avoiding excessive patient radiation exposure. Identification of the pelvic mass origin is challenging, as ovarian and extra-ovarian masses may have equivalent morphological criteria. Our applied CT protocol together with MPR allowed a sure detection of the ovaries and an exact differentiation between ovarian and extra-ovarian pelvic masses [14].

Our present study established 100% sensitivity, 95.8% specificity and 98% diagnostic accuracy in differentiating benign from malignant adnexal masses. Our result is amazing in comparison to the previous studies. Kinkel et al. [15] in their meta-analysis stated a sensitivity and specificity of 81% and 87% respectively. Tsili et al. [3] described the sensitivity of the 16-slice MDCT to be 90 % and accuracy of 89.1% for detecting malignant tumors in patients with an adnexal mass. Conversely, higher sensitivity (90.5%), specificity (93.7%) and accuracy (92.9%) had been stated by the same author in the study
achieved for comparing MDCT and MRI diagnostic performances in characterizing and differentiating ovarian masses” the difference was not proved statistically significant”[16]. Gatreh-Samani et al. [17] mentioned results (92.8% sensitivity, 88% specificity and 91.5 % accuracy) in their study might be as a result of thinner slices of 64-row MDCT which improved by reconstructed images. Enhanced results reported by Mubarak et al. [4] as a sensitivity, specificity and accuracy of 97%, 96% and 98% respectively. Also, Khattak et al. [2] stated a diagnostic accuracy of 90.5 and 96 respectively by reader A and B.

Our reasonable result achieved by new innovation 128 MDCT which produces a precise assessment of the internal architecture of the adnexal masses and picks up the secondary criteria.

Single-detector row CT scanners stated a sensitivity of 85–93% for the discovery of peritoneal metastases, but the sensitivity severely diminished to 25–50% for metastatic implants of one cm or lesser in dimensions [18]. MDCT progressed the sensitivity of CT in diagnosing peritoneal carcinomatosis, owing
to the acquisition of thin slices and the high quality MPRs, for these reasons picking up the sub-centimeter implants [19, 20]. In our work, 128 MDCT recognized all cases of peritoneal carcinomatosis in patients with ovarian malignancies. One case showed peritoneal lesions ranging from 0.7 to 2 cm in diameter, all detected on MDCT. The other one 0.5 cm detected at Douglas pouch.

Three cases of undifferentiated and mixed ovarian lesions that later diagnosed by histopathology as benign lesions. Tubal origin lesions were three from the total 50 cases, two of them were tubo-ovarian abscesses (Fig.5) and the other was hydrosalpinx. Other adnexal lesions were appendicular mass with fecolith and subserous fibroids (8%) of cases. Yitta et al. [21] mentioned that MPR images may be beneficial in recognizing a tubo-ovarian abscess from acute appendicitis, either of which imitating a pyosalpinx.

Our study shows excellent agreement 1.0 between the 128-row MDCT and surgical laparoscopy as confirming the origin of adnexal mass 100% and agreement is good 0.75 between 128-
row MDCT and histopathology. Gatreh-Samani et al. [17] discovered significant agreements between 64-row MDCT and surgical outcomes (Kappa = 0.891) and between 64-row MDCT and histopathological findings (K= 0.858).

Possible Limitations in our study:

Firstly, a difficulty in exact defining whether a large adnexal mass was unilateral or bilateral. This problem occurs whether MDCT or other imaging technique used. **Secondly,** in our study the papillary projections lead to the false-positive diagnosis in patient with multicystic ovarian tumor, which proved a cystadenoma on histolopathology. **Thirdly,** the relative small number of cases (50 cases only) involved in our sample and retrospective design study producing selection, verification biases and high sensitivity up to 100%. So we recommended increasing the number of cases in future studies. **Fourthly,** in MDCT images assessment (as, we had more than one observer radiologist), the inter-observer reliability was not statistically performed. **Fifthly,** the use of the risk of Malignancy index using USS and Ca125 is not performed.
CONCLUSIONS:

128-row MDCT provides a precise distinction of ovarian from extraovarian pelvic masses and a dependable discrimination between benign and malignant adnexal mass lesions. We recommend recent advance 128-row MDCT as an excellent reliable imaging technique to categorize adnexal masses.

References

The figure legends

Figure 1: (A&B) Axial images postcontrast show LT. ovarian cyst thin walled and clear content, with calcification inside (Yellow arrow) and papillary projections (Black arrow). (C&D) Sagittal images postcontrast show the actual size of the cyst 14
cm x 20x6 cm, and the intracystic calcification. (E&F) Coronal images show the thickness of the papillary projection about 13 mm and the calcification inside. Histopathological examination reveals dermoid cyst.

Figure 2: (A) Postcontrast Axial MDCT image shows RT. ovarian complicated cyst (Yellow arrow) just posterior to the RT iliac vessels measuring 42 mm x 37 mm with thickened mildly enhanced wall. (B) Sagittal reconstructed image shows the exact size of the ovarian cyst (Yellow arrow). (C) Another sagittal image shows the normal sized uterus with hypodense endometrium. (D) Coronal reconstructed image reveals the slight high density fluid content of ovarian cyst in comparison to the clear urine in UB and left ovary not seen. Histopathological examination after laparoscopy reveals chocolate cyst "endometrioma".

Figure 3: (A&B) Axial images show the huge pelviabdominal mass of mixed density and large mural soft tissue density… Uterus seen well defined homogenous with regular hypodense endometrial line (blue arrow). The lesion is mostly RT.adnexal
in origin. (C) Coronal image shows huge pelviabdominal mass mainly pelvic and midline. (D) Sagittal image shows the mass seen occupying the whole pelvis and extending abdominal till the liver, with prominent thick septations (Yellow arrows) more than 6 mm. Histopathological study reveals **mucinous cystadenocarcinoma**.

Figure 4: (A&B) Axial images show the enlarged RT ovary 12 x 14 cm with central areas of breakdown (blue star). (C&D) Axial images show prominent abnormal feeding artery (blue arrow) and normal left ovary (Yellow arrow) among the moderate ascites. (E) Sagittal image shows the uterus with thickened hypodense endometrium (Black arrow) measuring 40mm >associated endometrial hyperplasia. (F) Axial cut postcontrast shows abnormal invasion of the base of UB (Red arrow) mostly metastasis. Postoperative histopathology reveals **granulosa cell tumor juvenile type**.

Figure 5: (A&B) Axial post contrast images show the actual size of the mass 50 mm x48 mm just right to the normal uterus.
RT ovary seen continuous with the RT fallopian tube (Red arrow) which is cystic, elongated with thickened wall and internal septations with hazy surrounding fat planes denoting tubo-ovarian abscess. (C) Coronal image shows the lesion "complex- fluid collection" (Red arrow) and the normal uterus. (D) Sagittal image reveals the lesion (Red arrow). Histopathological examination reveals thick fibrous cystic wall and heavy inflammatory cellular infiltrate… picture of tubo-ovarian abscess.
Table (1): MDCT Findings in study participants:

<table>
<thead>
<tr>
<th>Origin</th>
<th>MDCT Findings</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian (n=43)</td>
<td>Malignant ovarian cyst ± ascitis</td>
<td>24</td>
<td>55.8</td>
</tr>
<tr>
<td></td>
<td>Malignant solid ovarian lesion ± hemorrhage</td>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Benign ovarian cyst</td>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Benign ovarian cyst with fat & calcification</td>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Complicated ovarian cyst</td>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Simple cyst</td>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>Undifferentiated ovarian cyst</td>
<td>2</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>Ovarian benign mixed lesion</td>
<td>1</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Benign ovarian solid lesion</td>
<td>1</td>
<td>2.3</td>
</tr>
<tr>
<td>Tubal (n=3)</td>
<td>Tubo-ovarian abscess</td>
<td>2</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>Hydrosalpinx</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>Other (n=4)</td>
<td>Sub serous fibroid</td>
<td>3</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>Appendicular mass & fecolith</td>
<td>1</td>
<td>25.0</td>
</tr>
</tbody>
</table>
Table (2): Histopathology and laparoscopy Findings in study participants:

<table>
<thead>
<tr>
<th>Origin</th>
<th>Histopathology and laparoscopy Findings</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benign (n=16):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cystadenoma</td>
<td>5</td>
<td>31.3</td>
</tr>
<tr>
<td></td>
<td>Dermoid cyst</td>
<td>3</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>Chocolate cyst</td>
<td>3</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>Simple cyst</td>
<td>2</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>Complicated benign ovarian cyst</td>
<td>2</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>Fibroma</td>
<td>1</td>
<td>6.3</td>
</tr>
<tr>
<td>Ovarian</td>
<td>Malignant (n=27):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=13)</td>
<td>Serous cyst adenocarcinoma</td>
<td>14</td>
<td>51.9</td>
</tr>
<tr>
<td></td>
<td>Mucinous cyst adenocarcinoma</td>
<td>11</td>
<td>40.7</td>
</tr>
<tr>
<td></td>
<td>Malignant germ cell tumor</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>Granulosa cell tumor</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>Benign (n=3):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tubo-ovarian abscess</td>
<td>2</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>Hydrosalpinx</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>Tubal</td>
<td>Benign (n=3):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=3)</td>
<td>Subserous fibroid</td>
<td>2</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Appendicitis</td>
<td>1</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>Malignant (n=1):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leiomyosarcoma of subserous fibroid</td>
<td>1</td>
<td>25.0</td>
</tr>
</tbody>
</table>

Table (3): Agreement between MDCT and histopathology:

<table>
<thead>
<tr>
<th>MDCT</th>
<th>Histopathology</th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Malignant</td>
<td>Benign</td>
<td></td>
</tr>
<tr>
<td>Malignant</td>
<td>26</td>
<td>96.3%</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benign</td>
<td>0</td>
<td>0.0%</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>73.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undifferentiated</td>
<td>1</td>
<td>3.7%</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>100%</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Good agreement** High statistical significance
Table (4): Agreement between MDCT and laparoscopy:

<table>
<thead>
<tr>
<th>MDCT</th>
<th>Laparoscopy</th>
<th></th>
<th></th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ovarian</td>
<td>Tubal</td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Tubal</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>100%</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.0%</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>3</td>
<td>23</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Excellent agreement** High statistical significance

Table (5): Sensitivity, specificity and diagnostic accuracy of 128 MDCT in differentiating malignant from benign adnexal masses compared to histopathology:

<table>
<thead>
<tr>
<th>Sensitivity (%) a</th>
<th>Specificity (%) b</th>
<th>DA (%) d</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>95.8%</td>
<td>98%</td>
</tr>
</tbody>
</table>
PRIMARY SOURCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A.C. Tsili, C. Tsampoulas, A. Charisiadi, John Kalef-Ezra, V. Dousias, E. Paraskevaidis, S.C. Efremidis</td>
<td>"Adnexal masses: Accuracy of detection and differentiation with multidetector computed tomography", Gynecologic Oncology, 2008</td>
<td>Crossref</td>
<td>2%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>preview-ovarianresearch.biomedcentral.com</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>www.ias.ac.in</td>
<td>1%</td>
</tr>
<tr>
<td>4</td>
<td>A.C. Tsili.</td>
<td>"Adnexal masses: Accuracy of detection and differentiation with multidetector computed tomography", Gynecologic Oncology, 2008</td>
<td>Crossref</td>
<td>< 1%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>eurradiolexp.springeropen.com</td>
<td>< 1%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>eurorad.org</td>
<td>< 1%</td>
</tr>
<tr>
<td>7</td>
<td>A. C. Tsili.</td>
<td>"Comparative evaluation of multidetector CT and MR imaging in the differentiation of adnexal masses", European Radiology, 05/2008</td>
<td>Crossref</td>
<td>< 1%</td>
</tr>
<tr>
<td>8</td>
<td>Wanwangying Ma, Lin Chen, Yuming Zhou, Baowen Xu.</td>
<td>"Do We Have a Chance to Fix Bugs"</td>
<td></td>
<td>< 1%</td>
</tr>
</tbody>
</table>

SIMILARITY INDEX

7%

ORIGINLITY REPORT

3-Adjuvant role of one hundred twenty eight multidetector computed tomography in categorizing adnexal masses

ecommuns.aku.edu

Internet