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NUMERICAL STUDY FOR THE FLOW AND HEAT TRANSFER IN A 
THIN LIQUID FILM OVER AN UNSTEADY STRETCHING SHEET WITH 

VARIABLE FLUID PROPERTIES IN THE PRESENCE OF THERMAL 
RADIATION 

 
 

I-C. Liu *                                                       A. M. Megahed 

 Department of Civil Engineering Department of Mathematics 
 National Chi Nan University Faculty of Science, Benha University 
 Nantou, Taiwan 54561, R.O.C Benha, Al Qalyobia 13518, Egypt 

ABSTRACT 

In this paper, the effect of thermal radiation, variable viscosity and variable thermal conductivity on 
the flow and heat transfer of a thin liquid film over an unsteady stretching sheet is analyzed.  The conti-
nuity, momentum and energy equations, which are coupled nonlinear partial differential equations, are 
reduced to a set of two non-linear ordinary differential equations, before being solved numerically.  Re-
sults for the skin-friction coefficient, local Nusselt number, velocity profiles as well as temperature pro-
files are presented for different values of the governing parameters.  It is found that increasing the vis-
cosity parameter leads to a rise in the velocity near the surface of the sheet and a fall in the temperature.  
Furthermore, it is shown that the temperature increases due to an increase in the values of the thermal 
conductivity parameter and the thermal radiation parameter, while it decreases with an increase of the 
Prandtl number. 

Keywords: Liquid film, Unsteady stretching sheet, Thermal radiation, Variable fluid properties, 
Similarity transformation. 

1.  INTRODUCTION 

Fluid flow and heat transfer in a thin liquid film over 
a stretching sheet has gained considerable attention due 
to its many theoretical and technical applications in the 
engineering and technology fields.  The knowledge of 
heat transfer within a thin liquid film is crucial in un-
derstanding the coating process and design of various 
heat exchangers and chemical processing equipments.  
Some applications include reactor fluidization, wire and 
fiber coating, polymer processing, food stuff processing, 
and transpiration cooling.  Many metallurgical proc-
esses, such as drawing, annealing, and strips of fila-
ments are done by drawing them through a quiescent 
fluid.  The quality of the final product depends on the 
rate of heat transfer at the stretching surface.  Crane [1] 
gave an exact similarity solution in closed analytical 
form for a steady two-dimensional boundary layer flow 
caused by the stretching of a flat sheet which moves in 
its own plane with velocity varying linearly with dis-
tance from a fixed point.  Wang [2] was the first who 
studied the flow of a Newtonian fluid in a thin liquid 
film over an unsteady stretching sheet where he used a 
special type of transformation to express the boundary 
layer equations into their similarity form and also he 

solved the problem numerically and analytically.  The 
axisymmetric motion of a fluid caused by an unsteady 
stretching surface has been investigated by Usha and 
Sridharan [3].  Later Andersson et al. [4] extended 
Wang’s problem to the case of heat transfer.  Dandapat 
et al. [5] investigated the effect of the thermocapillarity 
on the flow and heat transfer in a thin liquid film over 
an unsteady stretching sheet.  Wang [6] presented ex-
act analytical solutions for the momentum and heat 
transfer within a liquid film whose motion is caused 
solely by the unsteady stretching of a horizontal elastic 
sheet.  The unsteady flow and heat transfer in a thin 
viscous liquid film over a heated horizontal stretching 
surface are analyzed by Santra and Dandapat [7].  The 
combined effect of viscous dissipation and magnetic 
field on the flow and heat transfer in a liquid film over 
an unsteady stretching surface was studied by Subhas 
Abel et al. [8].  Very recently, Noor and Hashim [9] 
investigated the effects of thermocapillarity and mag-
netic field in a thin liquid film on an unsteady elastic 
stretching sheet. 

All of the above researchers [1-9] deal with the 
Newtonian fluids.  Many materials such as polymer 
solutions or melts, drilling mud, certain oils, greases, 
pulps, and fossil fuels are classified as non-Newtonian 
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fluids due to the non-linearity in the relationship be-
tween the stresses and the rates of the strain of these 
fluids.  Andersson et al. [10] have studied the un-
steady stretching flow in the case of finite thickness for 
a power-law fluid.  Chen [11] studied the heat transfer 
occurring in a thin liquid film of a power-law fluid over 
an unsteady stretching sheet.  The HAM solutions for 
the non-Newtonian problem considered by Andersson 
et al. [10] were presented by Wang and Pop [12].  
Chen [13] investigated the effect of viscous dissipation 
on heat transfer in a power-law liquid film over an un-
steady stretching surface.  Siddiqui et al. [14] studied 
the thin film flow of non-Newtonian fluid on a verti-
cally moving belt.  Hayat et al. [15] investigated MHD 
flow and heat transfer of a second grade fluid film over 
an unsteady stretching sheet.  Siddiqui et al. [16] 
studied the thin film flow problem with a third grade 
fluid and they obtained the solutions using the tradi-
tional perturbation method and the homotopy perturba-
tion method.  Hayat et al. [17] presented exact solu-
tions for the problem of the thin film flow for a third 
grade fluid on an inclined plane. 

All the studies mentioned above are assumed that the 
fluid has constant properties.  Particularly, the physical 
property changes significantly with temperature.  
Therefore it is necessary to take the variation of viscos-
ity and thermal conductivity into consideration.  The 
viscosity is assumed to vary exponentially with the 
temperature [18,19] and the thermal conductivity is 
assumed to vary linearly with the temperature [20-22].  
Dandapat et al. [23] discussed the effects of variable 
viscosity, variable thermal conductivity and thermo-
capillarity on the flow and heat transfer within a thin 
liquid film over an unsteady stretching sheet.  Re-
cently, Mahmoud and Megahed [24] studied the effects 
of variable viscosity and variable thermal conductivity 
on the flow and heat transfer of an electrically con-
ducting non-Newtonian power-law fluid within a thin 
liquid film over an unsteady stretching sheet in the 
presence of a transverse magnetic field.  The purpose 
of the present work is to study the effects of variable 
viscosity and variable thermal conductivity on the flow 
and heat transfer of a thin liquid film flow over an un-
steady stretching sheet in the presence of a thermal ra-
diation.      

2.  MATHEMATICAL FORMULATION 

Consider the flow in a thin Newtonian liquid film of 
a uniform thickness h(t) on a horizontal elastic sheet, 
which emerges from a narrow slit at the origin as shown 
in Fig. 1.  The x-axis is chosen along the plane of the 
sheet and the y-axis is taken normal to the plane.  We 
assume that the surface starts stretching from rest with 
the velocity U(x, t) and temperature distribution Ts(x, t). 

The liquid film is assumed to be non-volatile and 
thin so that evaporation and buoyancy effect can be 
neglected.  Further we assume that the viscosity and 
thermal conductivity vary with the temperature.  The 
velocity and temperature fields of the thin liquid film 
obey the following boundary layer equations 

 

Fig. 1  Schematic of the physical system 
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where u and v are the velocity components along the x 
and y directions, respectively.  t is the time,  is the 
fluid density,  is the dynamic viscosity, T is the tem-
perature of the fluid,  is the thermal conductivity, qr is 
the radiative heat flux, and cp is the specific heat at con-
stant pressure.  It is noted that the heat conduction and 
thermal radiated terms, on the right hand side of Eq. (3), 
in “one-dimensional form” bear the assumption that the 
boundary layer approximation is valid.  The appropriate 
boundary conditions for the present problem are: 
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where h(t) is the thickness of the liquid film.  The sur-
face of the planar fluid is assumed to be smooth and 
free from surface waves.  The influence of the interfa-
cial shear due to quiescent gas is negligible, and there-
fore Eq. (5) describes a balance between viscous shear 
stress and net surface tension.  The heat flux vanishes 
at the adiabatic free surface y = h.  U is the surface 
velocity of the stretching sheet and the flow is caused 
by stretching the elastic surface at y = 0 such that the 
continuous sheet moves in the x-direction with the ve-
locity: 

 ,
(1 )

bx
U

at



 (7) 

where a and b are positive constants with dimension 
(time)1.  The temperature of the surface of the elastic 
sheet Ts is assumed to vary both along the sheet and 
with time [9], 

h(t)
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where d is a constant, T0 is the temperature at the slit 
and Tref is the reference temperature.  The radiative 
heat flux qr is employed according to Rosseland ap-
proximation [25] such that 
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where  is the Stefan-Boltzmann constant and k is the 
mean absorption coefficient.  Following Raptis [26], 
we assume that the temperature difference within the 
flow is small such that it may be expressed as a linear 
function of the temperature.  Expanding T4 in a Taylor 
series about T0 and neglecting higher-order terms, we 
have: 

 4 3 4
0 04 3 .T T T T   (10) 

The special form of the surface velocity (7) and the 
surface temperature (8) allows the system of partial 
differential Eqs. (2) and (3) to be transformed to a sys-
tem of coupled nonlinear ordinary differential equations, 
using the following similarity transformations [9,12]:  

1/ 2

1/ 2 1

0

(1 ) ,
/

b
at y  

      
 (11) 

1(1 ) ( ) ,u bx at f      (12) 

1/ 2

1/ 20 (1 ) ( ) ,v b at f 
      

 (13) 

2
3/ 2

0
0

(1 ) ( ) ,
2( / )

ref

dx
T T T at  
       

 (14) 

where f is the dimensionless stream function,  is the 
dimensionless temperature of the fluid and  is yet an 
unknown constant denoting the dimensionless film 
thickness which can be defined as [9,12]: 
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The variation of the viscosity  and the thermal 
conductivity  with temperature is assumed to be in the 
following form [23,24]: 

0 ,e     (16) 

0 (1 ) ,       (17) 

where 0 and 0 are the viscosity and thermal conduc-
tivity at the ambient, respectively.   = (Ts T0) is 
the viscosity parameter,  is the positive fluid property 
and  is the thermal conductivity parameter. 

Using Eqs. (16) and (17), the mathematical problem 
defined in Eqs. (1) ~ (6) are then transformed into a set 

of ordinary differential equations and their associated 
boundary conditions: 
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where a prime denotes differentiation with respect to , 
S a/b is the unsteadiness parameter, Pr 0 cp / 0 is 
the Prandtl number,   2 is the dimensionless film 
thickness, and * 3 *

0 016 / 3R T k    is the radiation pa-
rameter.  

The physical quantities of interest are the skin-  
friction coefficient Cf and the local Nusselt number Nux 
which are defined as: 
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Further, w and qw are the shear stress and the heat 
transfer from the surface of the plate, respectively, and 
they are given by: 
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Using Eqs. (11) ~ (14), we obtain 
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where Rex  U x / 0 is the local Reynolds number. 

3.  NUMERICAL SOLUTION 

The coupled system of non-linear ordinary differen-
tial Eqs. (18) and (19) together with the boundary con-
ditions (20) ~ (22) is solved numerically using the most 
efficient numerical shooting technique with the fourth- 
order Runge-Kutta scheme.  The estimated value of  
is therefore systematically adjusted until Eq. (22) is 
satisfied within 107.  Once the convergence is 
achieved, the resulting differential equations can be 
integrated using fourth-order Runge-Kutta integration 
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scheme.  The above procedure is repeated until we get 
the results up to the desired degree of accuracy, 105.  
To assess the accuracy of the present method, results for 
our problem in the absence of radiation Parameter (R = 
0), constant fluid viscosity ( = 0) and constant fluid 
thermal conductivity ( = 0) are compared with those 
obtained by Wang and Pop [12] (in the case of Newto-
nian fluid) and Noor and Hashim [9] (when there are no 
effects for thermocapillarity and magnetic field) as 
shown in Table 1.  Good agreement is observed from 
that Table. 

4.  RESULTS AND DISCUSSION 

For the problem of thin liquid film flow, there exist 
specific values for the unsteadiness parameter S in 
which no solution could be obtained.  Wang [2] found 
that (for positive value of S in a Newtonian fluid) the 
dimensionless film thickness parameter is a monotoni-
cally decreasing function of S within the interval [0,2] 
and no solution exists outside this interval.  The limit-
ing case of S  0 stands for the case of an infinitely 
thick layer of fluid, i.e.   , whereas the limiting 
case of S  2 represents a liquid film of infinitesimal 
thickness, i.e.   0.  Variations of the dimensionless 
film thickness , skin-friction coefficient in terms of 
f (0), free surface temperature (1), and local Nusselt 
number in terms of (0) for the parameters governing 
the flow and heat transfer are presented in Tables 2 ~ 6.  
From Table 2, we can observe that increasing the meas-
ure of the unsteadiness parameter S will decrease the 
thin film thickness   1/2, the values of the 
skin-friction coefficient f (0) and the heat flux (0), 
but increase the free surface temperature (1).  Figure 
2 illustrates the effect of the unsteadiness parameter on 
the velocity profile.  The results show that the velocity 
increases along the surface with an increase in the un-
steadiness parameter.  As the unsteadiness parameter 
increases, the same behaviour is observed for the tem-
perature () in Fig. 3.  When the unsteady stretching 
parameter S on the surface rises, friction and the flow 
velocity also rise.  When friction increases, the area of 
the stretching surface in contact with the flow increases, 
therefore heat generated from the friction on the surface 
is transferred to the flow.  This leads to a rise in the 
surface temperature and the flow is heated.  Table 3 
shows that, as the viscosity parameter  increases, the 
film thickness   1/2 and the heat flux (0) also in-
crease.  This physically leads to faster cooling of the 
thin film flow, which is important in many engineering 
applications.  Correspondingly, the free surface tem-
perature (1) and the skin-friction coefficient f (0) 
decrease.  Figure 4 illustrates the effect of viscosity 
parameter  on the velocity profiles.  It can be shown 
that the velocity increases near the surface with an in-
crease in the viscosity parameter but the reverse is true 
away from the sheet.  But the temperature () de-
creases as the viscosity parameter increases as shown 
from Fig. 5.  It is obvious from Table 4 that increasing 
in the Prandtl number Pr leads to an increase for the 

Table 1  Comparison for values of f (0) and  

S
Noor and Hashim 

[9] 
Wang and Pop 

[12] 
Present work 

 f (0)  f (0)  f (0) 

1.4 0.674089 1.01278 0.674097 1.01278 0.674093 1.012779

1.6 0.331976 0.64240 0.331977 0.64241 0.331975 0.642396

1.8 0.127013 0.309138 0.127014 0.309138 0.127012 0.309135

Table 2 Variation of   1/2, f (0), (1) and (0) 
when   0.1,   0.1, R  1 and Pr  1 

S  f (0) (1) (0) 

0.8 2.226702 2.60647 0.233955 2.41802 

1.0 1.601771 1.92514 0.348752 1.77790 

1.2 1.173380 1.41414 0.473161 1.29644 

1.4 0.856434 0.99741 0.602940 0.90581 

1.6 0.602561 0.63577 0.735144 0.57114 

Table 3 Variation of   1/2, f (0), (1) and (0) 
when S  0.8,   0.1, R  1 and Pr  1 

  f (0) (1) (0) 

0.0 2.15199 2.68095 0.251616 2.31637 

0.1 2.22670 2.60647 0.233955 2.41802 

0.2 2.30130 2.52864 0.217410 2.51963 

0.4 2.44959 2.36492 0.187610 2.72202 

Table 4 Variation of   1/2, f (0), (1) and (0) 
when   0.1,   0.1, R  1 and S  0.8 

Pr  f (0) (1) (0) 

0.7 2.23242 2.61862 0.331022 1.93869 

1.0 2.22670 2.60647 0.233955 2.41802 

2.0 2.21520 2.58173 0.092074 3.59682 

3.0 2.20855 2.56710 0.043626 4.48395 

Table 5 Variation of   1/2, f (0), (1) and (0) 
when   0.1, Pr  1, R  1 and S  0.8 

  f (0) (1) (0) 

0.0 2.22598 2.60493 0.227308 2.50253 

0.1 2.22670 2.60647 0.233955 2.41802 

0.2 2.22733 2.60788 0.240646 2.34034 

0.6 2.22978 2.61313 0.267616 2.08341 

Table 6 Variation of   1/2, f (0), (1) and (0) 
when   0.1, Pr  1,   0.1 and S  0.8 

R  f (0) (1) (0) 

0.0 2.21585 2.58320 0.0950347 3.48459 

1.0 2.22670 2.60647 0.233955 2.41802 

2.0 2.23302 2.61982 0.342149 1.90080 

3.0 2.23728 2.62880 0.424915 1.57986 
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Fig. 2 Velocity profiles for various values of S with 
0.1, R 1 and Pr 1 
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Fig. 3 Temperature profiles for various values of S 
with 0.1, R 1 and Pr 1 
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Fig. 4 Velocity profiles for various values of  with 
= 0.1, S = 0.8, R = 1 and Pr = 1 
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Fig. 5 Temperature profiles for various values of  
with  = 0.1, S = 0.8, R = 1 and Pr = 1 

heat flux (0), whereas the free surface temperature 
(1), skin-friction coefficient f (0) and the thin film 
thickness   1/2 are found to be decreased.  The ef-
fect of the Prandtl number on the dimensionless tem-
perature is illustrated in Fig. 6.  From this figure it is 
found that the temperature decreases with increasing 
the Prandtl number (i.e. decreasing thermal diffusivity), 
which reflects to the usual reduction of temperature 
distribution owing to the effect of increasing Pr.  This 
causes a raise in the rate of heat transfer between the 
flow and surface, and speeds up the cooling of the thin 
film flow.  As seen from Tables 5 and 6, one can ob-
serve that increasing the thermal conductivity parameter 
 and the radiation parameter R causes an enhancement 
for values of skin-friction coefficient f (0), thin film 
thickness and the free surface temperature but the re-
verse is true for the values of heat flux (0).  The 
effects of the thermal conductivity parameter  and the 
thermal radiation parameter on the temperature profile 
 are presented in Figs. 7 and 8, respectively.  From 
these figures it can be seen that the temperature distri-
bution increases as the thermal conductivity parameter 
and the thermal radiation parameter increase, which 
leads to a fall in the rate of heat transfer (0) from the 
flow to the surface.  This in turn causes a fall in the rate 
of cooling for the liquid film.  Furthermore, Fig. 9 re-
veals that, for great values of thermal conductivity pa-
rameter  and viscosity parameter , the velocity de-
creases along the surface with increase in the thermal 
radiation parameter but the reverse is true away from 
the sheet. 
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Fig. 6 Temperature profiles for various values of Pr 

with  0.1, S  0.8, R  1 and  0.1 
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Fig. 7 Temperature profiles for various values of  
with Pr 1, S 0.8, R1 and 0.1 
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Fig. 8 Temperature profiles for various values of R 
with Pr  1, S  0.8,   0.1 and   0.1 
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Fig. 9  Velocity profiles for various values of R 

5.  CONCLUSIONS 

The problem of flow and heat transfer of a thin liquid 
film over an unsteady stretching sheet in the presence 
of thermal radiation is studied in the light of variation 
of fluid properties with the temperature.  The obtained 
similarity ordinary differential equations are solved 
numerically by using the fourth-order Runge-Kutta 
scheme coupled with the shooting technique.  In this 
study there exhibits a very important role for the varia-
tion of viscosity and thermal conductivity with tem-
perature on velocity field, temperature distribution, the 
free surface temperature, skin-friction coefficient and 
heat flux.  It is found that increasing the unsteadiness 
parameter causes a rise in the flow velocity and tem-
perature.  On the other hand, the thin film thickness 
and the heat flux decrease with increasing the un-
steadiness parameter.  Furthermore, as the viscosity 
parameter, thermal conductivity parameter and the 
thermal radiation parameter increase the thin film 
thickness increases. 
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