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Abstract

Fractional differential equations have recently been applied in various area of engineer-

ing, science, finance, applied mathematics, bio-engineering and others. However, many

researchers remain unaware of this field. In this paper, an efficient numerical method for

solving the fractional diffusion equation (FDE) is considered. The fractional derivative is

described in the Caputo sense. The method is based upon Chebyshev approximations. The

properties of Chebyshev polynomials are utilized to reduce FDE to a system of ordinary

differential equations, which solved by the finite difference method. Numerical simula-

tion of FDE is presented and the results are compared with the exact solution and other

methods.

Keywords: Finite difference method; Fractional diffusion equation; Chebyshev

polynomials; Caputo derivative.

1. Introduction

Ordinary and partial fractional differential equations have been the focus of many

studies due to their frequent appearance in various applications in fluid mechanics, vis-

coelasticity, biology, physics and engineering [1]. Consequently, considerable attention has

been given to the solutions of fractional differential equations of physical interest. Most

fractional differential equations do not have exact solutions, so approximation and numer-

ical techniques ([2]-[5]), must be used. Recently, several numerical methods to solve the

fractional differential equations have been given such as variational iteration method [6],

homotopy perturbation method [15], Adomian’s decomposition method [7], homotopy

analysis method [4] and collocation method [12].

We describe some necessary definitions and mathematical preliminaries of the fractional

calculus theory required for our subsequent development.
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Definition 1.

The Caputo fractional derivative operator Dα of order α is defined in the following

form:

Dαf(x) =
1

Γ(m− α)

∫ x

0

f (m)(t)

(x− t)α−m+1
dt, α > 0,

where m− 1 < α < m, m ∈ N, x > 0.

Similar to integer-order differentiation, Caputo fractional derivative operator is a linear

operation:

Dα (λ f(x) + µ g(x)) = λDα f(x) + µDα g(x),

where λ and µ are constants.

For the Caputo’s derivative we have [11]:

DαC = 0, C is a constant, (1)

Dα xn =

{
0, for n ∈ N0 and n < dαe;

Γ(n+1)
Γ(n+1−α)

xn−α, for n ∈ N0 and n ≥ dαe.
(2)

We use the ceiling function dαe to denote the smallest integer greater than or equal to α.

Also N0 = {0, 1, 2, ...}. Recall that for α ∈ N, the Caputo differential operator coincides

with the usual differential operator of integer order.

For more details on fractional derivatives definitions and its properties see ([11], [13]).

The main goal in this article is concerned with the application of Chebyshev pseu-

dospectral method to obtain the numerical solution of FDE of the form:

∂u(x, t)

∂t
= d(x, t)

∂αu(x, t)

∂xα
+ s(x, t), (3)

on a finite domain a < x < b, 0 ≤ t ≤ T and the parameter α refers to the fractional order

of spatial derivatives with 1 < α ≤ 2. The function s(x, t) is a source term.

We also assume an initial condition:

u(x, 0) = u0(x), a < x < b, (4)

and the following Dirichlet boundary conditions:

u(a, t) = u(b, t) = 0. (5)

Note that α = 2, Eq.(3) is the classical diffusion equation:

∂u(x, t)

∂t
= d(x, t)

∂2u(x, t)

∂x2
+ s(x, t).
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The main idea of this work is to apply the Chebyshev collocation method to discretize

(3) to get a linear system of ordinary differential equations thus greatly simplifying the

problem, and use the finite difference method (FDM) ([8]-[10], [16]) to solve the resulting

system.

Chebyshev polynomials are a well known family of orthogonal polynomials on the interval

[−1, 1] that have many applications [14]. They are widely used because of their good

properties in the approximation of functions. However, with our best knowledge, very

little work was done to adapt this polynomials to the solution of fractional differential

equations.

The organization of this paper is as follows. In the next section, the approximation of

fractional derivative Dαy(x) is obtained. Section 3 summarizes the application of Cheby-

shev collocation method to solve (3). As a result, a system of ordinary differential equations

is formed and the solution of the considered problem is introduced. In section 4, some com-

parisons and numerical results are given to clarify the method. Also a conclusion is given in

section 5. Note that we have computed the numerical results using Matlab programming.

2. Derivation an approximate formula for fractional derivatives

using Chebyshev series expansion

The well known Chebyshev polynomials [14] are defined on the interval [−1, 1] and can

be determined with the aid of the following recurrence formula:

Tn+1(z) = 2 z Tn(z)− Tn−1(z), T0(z) = 1, T1(z) = z n = 1, 2, ... .

The analytic form of the Chebyshev polynomials Tn(z) of degree n is given by:

Tn(z) =

[n
2

]∑
i=0

(−1)i 2n−2 i−1 n (n− i− 1)!

(i)! (n− 2 i)!
zn−2 i. (6)

Where [n/2] denotes the integral part of n/2. The orthogonality condition is:

∫ 1

−1

Ti(z)Tj(z)√
1− z2

dz =


π, for i = j = 0;
π
2
, for i = j 6= 0;

0, for i 6= j.

(7)

In order to use these polynomials on the interval x ∈ [0, 1] we define the so called shifted

Chebyshev polynomials by introducing the change of variable z = 2x− 1.

The shifted Chebyshev polynomials is defined as: T ∗n(x) = Tn(2x− 1) = T2n(
√
x).
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The analytic form of the shifted Chebyshev polynomial T ∗n(x) of degree n is given by:

T ∗n(x) =
n∑
i=0

(−1)i 22n−2 i n (2n− i− 1)!

(i)! (2n− 2 i)!
xn−i. (8)

The function y(x), square integrable in [0, 1], may be expressed in terms of shifted Cheby-

shev polynomials as:

y(x) =
∞∑
i=0

ci T
∗
i (x),

where the coefficients ci, i = 1, 2, ... are given by:

c0 =
1

π

∫ 1

−1

y(0.5x+ 0.5)T0(x)√
1− x2

dx, ci =
2

π

∫ 1

−1

y(0.5x+ 0.5)Ti(x)√
1− x2

, dx. (9)

In practice, only the first (m + 1)-terms shifted Chebyshev polynomials are considered.

Then we have:

ym(x) =
m∑
i=0

ci T
∗
i (x). (10)

Theorem 1. (Chebyshev truncation theorem)

The error in approximating y(x) by the sum of its first m terms is bounded by the sum

of the absolute values of all the neglected coefficients. If

ym(x) =
m∑
k=0

ck Tk(x), (11)

then

ET (m) ≡ |y(x)− ym(x)| ≤
∞∑

k=m+1

|ck|, (12)

for all y(x), all m, and all x ∈ [−1, 1].

Proof. The Chebyshev polynomials are bounded by one, that is, |Tk(x)| ≤ 1 for all x ∈
[−1, 1] and for all k. This implies that the k-th term is bounded by |ck|. Subtracting the

truncated series from the infinite series, bounding each term in the difference, and summing

the bounds gives the theorem.

The main approximate formula of the fractional derivative of y(x) is given in the following

theorem.
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Theorem 2.

Let y(x) be approximated by Chebyshev polynomials as (10) and also suppose α > 0

then:

Dα(ym(x)) =
m∑

i=dαe

i−dαe∑
k=0

ciw
(α)
i, k x

i−k−α, (13)

where w
(α)
i, k is given by:

w
(α)
i, k = (−1)k 22 i−2 k i (2 i− k − 1)! (i− k)!

(k)! (2 i− 2 k)! Γ(i− k + 1− α)
. (14)

Proof. Since the Caputo’s fractional differentiation is a linear operation we have:

Dα(ym(x)) =
m∑
i=0

ciD
α(T ∗i (x)). (15)

Employing Eqs. (1)-(2) we have:

Dα T ∗i (x) = 0, i = 0, 1, ..., dαe − 1, α > 0. (16)

Also, for i = dαe, ...,m, by using Eqs.(1)-(2), we get:

Dα T ∗i (x) =
i∑

k=0

(−1)k 22 i−2 k i (2 i− k − 1)!

(k)! (2 i− 2 k)!
Dα xi−k

=

i−dαe∑
k=0

(−1)k 22 i−2 k i (2 i− k − 1)! (i− k)!

(k)! (2 i− 2 k)! Γ(i− k + 1− α)
xi−k−α.

(17)

A combination of Eqs. (15), (16) and (17) leads to the desired result.

Test example:

Consider the function y(x) = x2 with m = 3 and α = 1.5, the Chebyshev series of x2 is:

x2 =
3

8
T ∗0 (x) +

4

8
T ∗1 (x) +

1

8
T ∗2 (x).

Now, by using (13), we obtain:

D
3
2 x2 =

3∑
i=2

i−2∑
k=0

ciw
( 3
2

)

i, k x
i−k− 3

2 , where, w
( 3
2

)

2, 0 =
16

Γ(3
2
)
, w

( 3
2

)

3, 0 =
192

Γ(5
2
)
, w

( 3
2

)

3, 1 =
−96

Γ(3
2
)
,

therefore:

D
3
2 x2 = c2w

( 3
2

)

2, 0 x
1
2 + c3w

( 3
2

)

3, 0 x
3
2 + c3w

( 3
2

)

3, 1 x
1
2 =

2

Γ(3
2
)
x

1
2 .
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3. Procedure of solution for the fractional diffusion equation

Consider the FDE of type given in Eq.(3). In order to use Chebyshev collocation

method, we first approximate u(x, t) as:

um(x, t) =
m∑
i=0

ui(t)T
∗
i (x). (18)

From Eqs. (3), (18) and Theorem 1 we have:

m∑
i=0

d ui(t)

dt
T ∗i (x) = d(x, t)

m∑
i=dαe

i−dαe∑
k=0

ui(t)w
(α)
i, k x

i−k−α + s(x, t), (19)

we now collocate Eq.(19) at (m+ 1− dαe) points xp as:

m∑
i=0

u̇i(t)T
∗
i (xp) = d(xp, t)

m∑
i=dαe

i−dαe∑
k=0

ui(t)w
(α)
i, k x

i−k−α
p + s(xp, t), p = 0, 1, ...,m− dαe.

(20)

For suitable collocation points we use roots of shifted Chebyshev polynomial T ∗m+1−dαe(x).

Also, by substituting Eqs.(18) and (13) in the initial conditions or boundary conditions

we can find dαe equations. For example by substituting Eqs.(18) and (13) in boundary

conditions (5) we obtain:

m∑
i=0

(−1)i ui(t) = 0,
m∑
i=0

ui(t) = 0. (21)

Equation (20), together with dαe equations of the boundary conditions (21), give (m+ 1)

ordinary differential equations which can be solved, for the unknown ui, i = 0, ...,m, using

FDM, as described in the following section.

4. Numerical simulation and comparison

In this section, we implement the proposed method to solve FDE (3) with different two

cases through the introduced examples. Also, a comparison with method in [10], which is

based on the FDM of fractional derivative is given.

Example 1:

In this example, we consider (3) with α = 1.8, of the form:

∂ u(x, t)

∂ t
= d(x, t)

∂1.8u(x, t)

∂x1.8
+ s(x, t), 0 < x < 1, quadt > 0,

with the coefficient function: d(x, t) = Γ(1.2)x1.8, and the source function: s(x, t) =

3x2(2x− 1)e−t, with initial condition:u(x, 0) = x2(1− x), and zero Dirichlet conditions.
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Note that the exact solution to this problem is: u(x, t) = x2(1− x)e−t,

which can be verified by applying the fractional differential formula (2).

We apply the suggested method with m = 3, and approximate the solution u(x, t) as

follows:

u3(x, t) =
3∑
i=0

ui(t)T
∗
i (x). (22)

Using Eq.(20) we have:

3∑
i=0

u̇i(t)T
∗
i (xp) = d(xp, t)

3∑
i=2

i−2∑
k=0

ui(t)w
(1.8)
i, k xi−k−1.8

p + s(xp, t), p = 0, 1, (23)

where xp are roots of the shifted Chebyshev polynomial T ∗2 (x), i.e.,

x0 = 0.146447, x1 = 0.8872983.

By using Eqs.(23) and (21) we obtain the following system of ordinary differential equations:

u̇0(t) + k1 u̇1(t) + k2 u̇3(t) = R1 u2(t) +R2 u3(t) + s0(t), (24)

u̇0(t) + k11 u̇1(t) + k22 u̇3(t) = R11 u2(t) +R22 u3(t) + s1(t), (25)

u0(t)− u1(t) + u2(t)− u3(t) = 0, (26)

u0(t) + u1(t) + u2(t) + u3(t) = 0, (27)

where:

k1 = T ∗1 (x0), k2 = T ∗3 (x0), k11 = T ∗1 (x1), k22 = T ∗3 (x1),

R1 = d(x0, t)w
(α)
2, 0 x

2−α
0 , R2 = d(x0, t) [w

(α)
3, 0 x

3−α
0 + w

(α)
3, 1 x

2−α
0 ],

R11 = d(x1, t)w
(α)
2, 0 x

2−α
1 , R22 = d(x1, t) [w

(α)
3, 0 x

3−α
1 + w

(α)
3, 1 x

2−α
1 ].

Now, we use FDM to solve the system (24)-(27). We will use the following notations:

ti = i∆t to be the integration time 0 ≤ ti ≤ T, ∆t = τ = T/N, for i = 0, 1, ..., N. Define

uni = ui(tn), sni = si(tn). Then the system (24)-(27), is discretize in time and take the

following form:

un0 − un−1
0

∆t
+ k1

un1 − un−1
1

∆t
+ k2

un3 − un−1
3

∆t
= R1 u

n
2 +R2 u

n
3 + sn0 , (28)

un0 − un−1
0

∆t
+ k11

un1 − un−1
1

∆t
+ k22

un3 − un−1
3

∆t
= R11 u

n
2 +R22 u

n
3 + sn0 , (29)

un0 − un1 + un2 − un3 = 0, (30)

un0 + un1 + un2 + un3 = 0. (31)
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We can write the above system (28)-(31) in the following matrix form as follows:
1 k1 −τ R1 k2 − τ R2

1 k11 −τ R11 k22 − τ R22

1 −1 1 −1

1 1 1 1




u0

u1

u2

u3


n

=


1 k1 0 k2

1 k11 0 k22

1 −1 1 −1

1 1 1 1




u0

u1

u2

u3


n−1

+


s0

s1

0

0


n

(32)

We will use the notation for the above system:

AUn = B Un−1 + Sn, or Un = A−1B Un−1 + A−1 Sn, (33)

where: Un = (un0 , u
n
1 , u

n
2 , u

n
3 )T , Sn = (sn0 , s

n
1 , 0, 0)T . For n = 1, the initial solution U0,

can obtain from the initial condition of the problem, u(x, 0) and using Eq.(9).

The obtained numerical results by means of the proposed method are shown in table

1 and figures 1 and 2. In the table 1, the absolute errors between the exact solution uex

and the approximate solution uapprox, at m = 3, m = 5 and m = 7 with the final time

T = 2 are given. But, in the figures 1 and 2, comparison between the exact solution uexact,

the numerical solution using [10], uFDM ; and the approximate solution using our proposed

method uCheb, at T = 1 with time step τ = 0.0025, with m = 9 and m = 11 respectively.

From table 1, it is evident that the overall errors can be made smaller by adding new terms

from the series (22).

Table 1: The absolute error between the exact and approximate solutions at m = 3, m = 5

and m = 7 and T = 2.

x |uex − uapprox.| at m = 3 |uex − uapprox.| at m = 5 |uex − uapprox.| at m = 7

0.0 0.170849 e-03 0.274260 e-04 0.300045 e-05

0.1 0.021094 e-03 0.420794 e-04 0.417836 e-05

0.2 0.176609 e-03 0.376716 e-04 0.544655 e-05

0.3 0.301420 e-03 0.844125 e-04 0.617664 e-05

0.4 0.404138 e-03 0.327010 e-04 0.648973 e-05

0.5 0.489044 e-03 0.361133 e-04 0.639512 e-05

0.6 0.563305 e-03 0.194954 e-04 0.595329 e-05

0.7 0.633367 e-03 0.295780 e-04 0.531930 e-05

0.8 0.705677 e-03 0.492488 e-04 0.459538 e-05

0.9 0.786679 e-03 0.283224 e-04 0.379345 e-05

1.0 0.882821 e-03 0.773238 e-04 0.300045 e-05
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Figure 1. Comparison between the exact solution, the numerical solution using [10] and

approximate solution using our proposed method at T = 1 with τ = 0.0025, m = 9.

Figure 2. Comparison between the exact solution, the numerical solution using [10] and

approximate solution using our proposed method at T = 1 with τ = 0.0025, m = 11.
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Example 2:

In this example, we consider (3) with the following functions:

The initial condition: u(x; 0) = sin(πx)− 0.5x2(1− x), 0 < x < 1,

and Dirichlet conditions: u(0, t) = u(1, t) = 0.

Note that the exact solution to this problem (in the case α = 2) is:

u(x, t) = e−π
2t sin(πx)− 0.5x2(1− x).

We apply the suggested method with different values of m. By the same procedure in

the first example, we can obtain the approximate solution. In this example we will compare

our results with those obtained by the finite difference method (FDM) [10].

The obtained numerical results by means of the proposed method uCheb, FDM, uFDM

and exact solution uexact are shown in figure 3, with the final time T = 2 and the time step

τ = 0.0025, with m = 5 and α = 2. Also, the obtained numerical results by means of the

proposed method uCheb and FDM, uFDM are shown in figure 4, with the final time T = 2

and the time step τ = 0.0025, with m = 7 and α = 1.5.

Figure 3. Comparison between the exact solution, the numerical solution using [10] and

approximate solution using our proposed method at T = 2 with τ = 0.0025, m = 5.

10



  

Figure 4. Comparison between, the numerical solution using [10] and the approximate

solution using our proposed method at T = 2 with τ = 0.0025, m = 7 and α = 1.5.

5. Conclusion

The properties of the Chebyshev polynomials are used to reduce the fractional diffu-

sion equation to the solution of system of ordinary differential equations. The fractional

derivative is considered in the Caputo sense. From the solutions obtained using the sug-

gested method we can conclude that these solutions are in excellent agreement with the

already existing ones and show that this approach can be solve the problem effectively. It

is evident that the overall errors can be made smaller by adding new terms from the series

(22). Comparisons are made between approximate solutions and exact solutions and other

methods to illustrate the validity and the great potential of the technique. All numerical

results are obtained using Matlab 7.1.
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