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Abstract—Graph similarity is a basic and essential oper-
ation in many applications. In this paper, we are interested
in computing graph similarity based on edit distance. Exist-
ing graph edit distance computation methods adopt the best
first search paradigm A∗. These methods are time and space
bound. In practice, they can compute the edit distance of
graphs containing 12 vertices at most. To enable graph edit
similarity computation on larger and distant graphs, we present
CSI_GED, a novel edge-based mapping method for computing
graph edit distance through common sub-structure isomorphisms
enumeration. CSI_GED utilizes backtracking search combined
with a number of heuristics to reduce memory requirements and
quickly prune away a large portion of the mapping search space.
Experiments show that CSI_GED is highly efficient for computing
the edit distance on small as well as large and distant graphs.
Furthermore, we evaluated CSI_GED as a stand-alone graph
edit similarity search query method. The experiments show that
CSI_GED is effective and scalable, and outperforms the state-of-
the-art indexing-based methods by over two orders of magnitude.

I. INTRODUCTION

Large scale graph data are currently prevalent in do-
mains such as Pattern Recognition, Bio-informatics, Chem-
informatics, Social Networks, Semantic Web, Software En-
gineering, etc. Due to the widespread applications of graph
models, a big research effort has been dedicated recently to
various problems in managing and analyzing graph data.

Computing the similarity of graph objects is a basic
and essential operation in many applications, including graph
classification and clustering [1], [2], molecule comparison in
chemistry [3], object recognition in computer vision [4], graph
similarity search and join [5], [6], [7], [8], etc. In this paper,
we are interested in computing graph similarity based on edit
distance. Graph edit distance (GED) as a similarity measure is
preferred over other distances or similarity measures because
of its generality and broad applicability. It is applicable to
virtually all types of data graphs with unconstrained label
alphabets for both nodes and edges, and captures precisely
structural differences. More interestingly, the accompanying
edit sequence provides an explanation for an edit distance value
and this is a very valuable feature for the user.

Unfortunately, the appealing properties of graph edit dis-
tance come at the cost of high computational complexity. Com-
puting graph edit distance is known to be NP-hard problem
[6]. Unlike other intractable graph matching problems such
as subgraph isomorphism and maximum common subgraph
isomorphism, to compute graph edit distance, a vertex of one
graph has a possibility to be mapped to any vertex of the

other graph regardless of their labels and degrees. Therefore,
the search space is exponential with respect to the number of
vertices of the involved graphs.

Very little work has been presented to address the high
complexity of graph edit distance computation. Most of the
existing methods adopt the best first search paradigm A∗ [9],
[10], [11], [12]. The basic idea of A∗ is to find a map from the
vertices of one graph to the vertices of the other graph, which
induces a minimum edit cost. To achieve its goal, A∗ explores
the underlying vertex mapping space much like traversing an
ordered tree, where intermediate tree nodes represent partial
maps and leaf nodes represent complete ones. At each search
state, A∗ selects the best partial map to expand, where that
map is the one with current minimum induced edit cost. This
procedure continues until the selected map is a complete one.

The main problem with A∗-based methods is that the
number of partial maps gets very large, especially when
comparing large and distant graphs. Most of those maps
cannot be discarded and have to be maintained until a very
late stage of the search. As a consequence, huge memory is
required. Another bottleneck is the expensive computation that
is required for selecting the minimum-cost partial maps, and
for updating that cost for each possible map extension. The
memory and computational overhead make A∗-based methods
unable to compute the edit distance of graphs having more
than 12 vertices. In practice, larger graphs are not uncommon.
Consider, for example, the area of drug development. In
order to study the properties of a new compound, the drug
designer first asks the chemical compound database for those
compounds which are within a similarity edit threshold with
the new compound. This step, called compound screening [13],
helps the drug designer to get initial view of the compound
at hand since similar compounds may have similar biological
activities. The chemical compound database contains graphs
with average order doubling at least the order of those that
can be processed by A∗.

In this paper, we presents a novel approach for graph
edit distance computation, called CSI_GED, which minimizes
memory requirement and scales to larger and distant graphs.
CSI_GED uses a completely different approach to get the edit
distance. Instead of mapping vertices and then deducing the
edit cost on edges, CSI_GED considers mapping edges first
and the edit cost on their end vertices follows directly as a
by-product. Even though the space of edge maps seems to
be relatively large, edges are allowed to match only if their
composing vertices are consistent with the previously matched
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ones, called common sub-structure isomorphism restriction.
This restriction reduces the search space sharply. Moreover,
computing the induced edit cost of partial edge maps becomes
easy and straightforward as it is directly calculated from the
derived common sub-structures. In contrast, computing that
cost with A∗-based methods is rather expensive, and is done
in a separate phase for each possible map extension.

CSI_GED utilizes backtracking to explore the edge map-
ping space. The most important benefit is that, the memory
requirement, a big burden for A∗-based methods, is diminished
since CSI_GED enumerates edge maps in a depth first manner,
which is efficient in memory consumption. Moreover, the
framework of CSI_GED allows to implement a number of
heuristics to quickly prune away a large portion of unpromis-
ing common sub-structure isomorphisms. These heuristics are
developed based on the fact that the edit costs of previously
explored complete edge maps, i.e. those seen so far in the
search, are valid upper bounds on graph edit distance. Thus,
the main goal of these heuristics is to enforce search states
whose corresponding edit costs exceeding the minimum upper
bound value to be encountered early; thus cutting large space
from consideration. To achieve this objective, the first heuristic
is to enable fast finding of tighter upper bounds, whereas the
second maximizes the initial cost assigned to each map. The
last heuristic implements look-ahead in the search.

Experiments show that CSI_GED is highly efficient for
computing the edit distance on small as well as large and
distant graphs. Furthermore, we evaluated CSI_GED as a
stand-alone graph edit similarity search query method. The
experiments show that CSI_GED is effective and scalable,
and outperforms the state-of-the-art indexing-based methods
by over two orders of magnitude.

The remainder of this paper is organized as follows. The
problem of graph edit similarity computation and state-of-the-
art computation methods are presented in Section II. Section III
presents the framework of CSI_GED and the motivation be-
hind its construction. The different heuristics used to optimize
CSI_GED are presented in Section IV. An application of
CSI_GED to the graph edit similarity search problem appears
in Section V. The experimental results are reported in Sec-
tion VI. Related work is discussed in Section VII. Section VIII
concludes the paper.

II. PRELIMINARIES

A. Problem Definition

A graph G is defined as a pair of sets (V,E), where V =
{v1, v2, . . . , v|V |} is the set of vertices and E ⊆ V × V is
the set of edges (directed or undirected). |V | and |E| are the
numbers of vertices and edges in G, and are called the order
and size of G, resp. Given a set of discrete-valued labels Σ,
a labeled graph G is a triplet (V,E, l), where l is a labeling
function l: V ∪E → Σ. Let LV and LE denote the multi-sets
of labels assigned to the vertices and edges of G, resp. This
paper focuses on simple (no self-loops, no duplicate edges),
undirected and labeled graphs. In what follows, an unlabeled
version of a labeled graph G, i.e. its structure, is referred to
as S(G), and a labeled graph is simply called a graph unless
stated otherwise.

A graph G = (V,E, l) is a subgraph of another graph G′ =
(V ′, E′, l′) (or G′ is a supergraph of G), denoted G ⊆ G′, if
there exists a subgraph isomorphism from G to G′.

Definition 1: (Sub-)graph isomorphism. A subgraph iso-
morphism is an injective function f : V → V ′, such that (1)
∀u ∈ V, l(u) = l′(f(u)). (2) ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′,
and l((u, v)) = l′((f(u), f(v))). If G ⊆ G′ and G′ ⊆ G, G
and G′ are graph isomorphic to each other, denoted as G ∼= G′.

A graph edit operation [14] is an operation on the graph to
transform it to another one. Edit operations include insertion
or deletion of vertices or edges, or the change of vertex or
edge labels (called relabeling). Given two graphs G1 and G2,
the sequence of edit operations performed on one of them to
get the other is called an edit path. Formally, let pi be an
edit operation, an edit path P = 〈pi〉

k
i=1 is a sequence of edit

operations 〈p1, p2, . . . , pk〉 that transform G1 into G2, that is,
P (G1) = G1 →p1 G1 →p2 G2 . . . →pk Gk ∼= G2. The
edit cost of transforming G1 to G2 using P is defined as:

C(G1, G2, P ) =
∑k

i=1 c(pi), where c(pi) is the cost of an
individual edit operation pi. Taking the unit cost for each edit
operation, that is c(pi) = 1,∀i, an edit path of minimal length
is called an optimal edit path.

Definition 2: Graph edit distance (GED). Given two
graphs G1 and G2. The edit distance between G1 and G2,
denoted as GED(G1, G2), is the length of an optimal edit
path transforming G1 into G2.

The following are two simple but effective lower bounds
of GED, which we use throughout the paper. They are known
as global (label) bounds. The first one is derived based on
the differences in size and order of the comparing graphs, and
given by [6] as:

GED(G1, G2) ≥ ||V1| − |V2|| + ||E1| − |E2||. (1)

The second bound improves the previous one by taking labels
as well as structure information into account, and given by [8],
[12] as:

GED(G1, G2) ≥ Γ(LV1
, LV2

) + Γ(LE1
, LE2

), (2)

where Γ(X,Y ) = max(|X|, |Y |) − |X ∩ Y |, for any sets X
and Y .

Definition 3: (Maximum) common sub-structure. Given
two graphs G1 and G2. An unlabeled graph G = (V,E) is said
to be a common sub-structure of G1 and G2 if ∃ H1 ⊆ G1

and H2 ⊆ G2 such that G ∼= S(H1) ∼= S(H2). A common
sub-structure G is a maximum common edge (resp. vertex)
sub-structure if there exists no other common sub-structure
G′ = (V ′, E′) such that |E′| > |E| (resp. |V ′| > |V |).
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Fig. 1. Example of two comparing graphs G1 and G2. Numbers on edges
are their ids, and each edge ek is defined as: ek = (ui, uj) or ek = (vi, vj),
i < j.

Example 1: Figure 1 shows two comparing graphs G1 and
G2. GED(G1, G2) = 2 since G1 can be transformed to G2
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with a minimal number of two edit operations as follows:
A deletion operation of the edge (u1, u2) and an insertion
of a new edge (u1, u4) with label b. Based on Equation 2,
the value Γ(LV1

, LV2
)+Γ(LE1

, LE2
) = [4− (|{C,B,B,B} ∩

{C,B,B,B}|)]+ [4− (|{a, a, b, b} ∩ {a, b, b, b}|)] = [4−4]+
[4 − 3] = 1 is a global label lower bound on GED(G1, G2).
S(G1) is both edge and vertex maximum common sub-
structure since it has 4 edges and 4 vertices.

Computing graph edit distance is NP-hard problem [6].
Very little work has been presented to address the high com-
plexity of graph edit distance computation. We next overview
the state-of-the-art GED computation methods and highlight
their limitations. Hereafter, the comparing graphs G1 and G2

are called the source and target graphs, resp; their edges (resp.
vertices) are called the source and target edges (resp. vertices).

B. GED Computation: A∗ Approach

The state-of-the-art methods for graph edit distance com-
putation are based on the A∗ paradigm, which explores all
possible one-to-one vertex maps between the source and target
graphs in a best-first fashion [9], [10], [11], [12]. A∗ maintains
a set of partial vertex maps with their induced edit cost. At
each search state, it picks-up a partial map with the minimum
induced edit cost to extend, where the unmapped target vertices
as well as the null vertex – a dummy vertex with special
label – are possible candidates for extension. To guide the
selection process to the most promising partial maps, the edit
cost associated with each partial map is then refined to include
a heuristic estimate on the edit distance of the remaining parts
– the unmapped edges and vertices of the two graphs. A∗

guarantees that the first complete map picked up is the optimal
one, provided that the heuristic estimate is a lower bound
on the edit distance of the remaining parts. A vertex map
is complete if the source and target vertices appear in that
map, and partial otherwise. In cases where the search is ended,
and there are some unmapped target vertices, to complete the
map, vertex insertion is performed at the source graph for each
unmapped target vertex.

Formally, given the source and target graphs G1 =
(V1, E1, l1) and G2 = (V2, E2, l2). Let the source ver-
tices be processed in the order (u1, u2, . . .), f(V1) =
{f(u1), . . . , f(ui−1)} be a partial map to extend, and c(f)
denote its associated edit cost. The cost c(f) is defined as:
c(f) = g(f) + h(f), where g(f) stands for the induced
edit cost on the mapped vertices and their implied edge edit
operations, and h(f) is a lower bound on the edit cost of the re-
maining parts. The partial map f is extended one item at a time
as the search space is traversed. For each possible value for
the new extension f(ui), i.e. a value from (V2\f(V1))∪{vn},
where vn is a null vertex with l2(v

n) /∈ Σ, 1 a new partial map
is constructed f(V1) = {f(u1), . . . , f(ui−1), f(ui)}, and the
new c(f) is calculated (see below). If the map f is of size |V1|
and there are some unmapped target vertices, to complete the
map a vertex is inserted at the source graph for each unmapped
target vertex, and g(f) is modified to include the cost of the
inserted vertices and their implied edge edit operations.

Algorithm Update_PED (Figure 2) updates g(f) based
on the recent extension f(ui). It first evaluates the edit cost

1Mapping ui to vn is equivalent to source vertex deletion.

Algorithm 1: Update_PED(G1, G2, f(ui), g(f))

1: if l1(ui) 6= l2(f(ui)) then
2: g(f)++; /*vertex relabeling (deletion if f(ui) = vn)*/

3: for each uj ∈ V1, j < i do
4: if (uj , ui) ∈ E1 ∧ (f(uj), f(ui)) ∈ E2 then
5: if l1(uj , ui) 6= l2(f(uj), f(ui)) then
6: g(f)++; /*edge relabeling*/

7: if (uj , ui) ∈ E1 ∧ (f(uj), f(ui)) /∈ E2 then
8: g(f)++; /*edge deletion*/

9: if (uj , ui) /∈ E1 ∧ (f(uj), f(ui)) ∈ E2 then
10: g(f)++; /*edge insertion*/

11: return g(f);

Fig. 2. Updating the partial edit cost g(f).

on the recently mapped vertex ui (lines 1-2), and then on its
implied edges (lines 3-10). The implied edge edit operations
are calculated as: an edge incident on ui and whose the other
vertex is already matched, i.e. the edge (uj , ui), j < i, is
deleted if (f(uj), f(ui)) is not a target edge, and relabeled
if (f(uj), f(ui)) has a different label. For each matched
vertex uj , j < i, not adjacent to ui, an edge is inserted if
(f(uj), f(ui)) is a target edge. Updating h(f) depends on the
heuristic used. [10] gives an estimation of the edit distance
between the remaining parts via bipartite matching. [12] uses
the global label lower bound on the remaining parts as a
heuristic estimate.

A∗-based methods face a number of problems. First, the
number of partial maps gets very large, especially when com-
paring large graphs. Most of those maps cannot be discarded
and have to be maintained until a very late stage of the search.
This happens because a current unpromising partial map, i.e.,
a map with high edit cost, has a chance to be extended in
an advanced stage of the search. As a consequence, huge
memory is required. Second, searching for a minimum-cost
partial map to extend is expensive. This operation requires
O(log n) if priority queue is used, where n is the number of
reserved partial maps. Thus, the major challenge is when the
comparing graphs are large and distant. The large and distant
the comparing graphs are, the larger the number of partial maps
that need to be maintained and processed. Finally, updating the
associated edit cost c(f) of a partial map f is computationally
expensive, and has to be done in a separate phase for each
possible map extension.

Obviously, such problems crucially hamper the A∗-based
methods to be used with real-world applications. To address
these problems, in this paper, we propose a novel approach
for graph edit distance computation, called CSI_GED, which
minimizes memory requirement and scales to large and distant
graphs. Next, we introduce the working principle of the new
approach.

III. CSI GED: A NOVEL GED COMPUTATION APPROACH

There are two main concerns that should be taken into
account while developing an efficient GED computation algo-
rithm. The first is to find a way to leverage the partial edit
cost which is computed at every search state, and the second
is to develop a traversing technique that continues searching
without relying on full information of partial maps. In other
words, the determination of an optimal edit path must avoid
as many as possible the problems of A∗ approach in order
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Fig. 3. The vertex map f3(V1) = {vn, v4, v3, v2}.

to scale to large and distant graphs. Below, we relate the
GED computation problem to the problem of enumerating all
common sub-structures in the comparing graphs.

Given two graphs G1 = (V1, E1, l1) and G2 = (V2, E2, l2),
we next define the preserved edges under any vertex map f .

Definition 4: Preserved edges of a vertex map. Given a
vertex map f : V1 → V2 ∪ {vn}. An unlabeled source edge
(u, u′) ∈ E1 is called preserved under f if (f(u), f(u′)) ∈ E2.
An unlabeled target edge (v, v′) ∈ E2 is called preserved under
f if ∃ (u, u′) ∈ E1 such that v = f(u) and v′ = f(u′).

Let E ⊆ E1 and E′ ⊆ E2 denote the sets of preserved
source and target edges under the vertex map f . Consider
the two sets of vertices associated with preserved edges,
V =

⋃

(u,u′)∈E{u, u′} and V ′ =
⋃

(v,v′)∈E′{v, v′}, also called

preserved source and target vertices. Obviously, the two graphs
G = (V,E) and G′ = (V ′, E′) have the same structure. Thus,
the unlabeled graph G = (V,E) composed of f ’s unlabeled
preserved edges E and their associated unlabeled vertices V
is a common sub-structure of G1 and G2 which is induced by
f . The common sub-structure G can be disconnected and is
not unique in the sense that different maps can determine it.

Example 2: Consider the comparing graphs G1 and G2 in
Figure 1. Define three maps f1, f2, f3 : V1 → V2 ∪ {vn},
as f1(V1) = {v1, v2, v3, v4}, f2(V1) = {v1, v3, v4, v2} and
f3(V1) = {vn, v4, v3, v2}. Figure 3 shows the map f3. The
preserved edges under this map are shown by the bold curves.
Dashed curves show the unpreserved ones. The common sub-
structure defined by f3 is thus given by the preserved edges
and their associated vertices as G′′′ = ({u2, u3, u4}, {(u2, u3),
(u2, u4), (u3, u4)}). The common sub-structures defined by f1

and f2 are also given as G′ = S(G1) and G′′ = G′′′. G′ is both
edge and node maximum since it has 4 edges and 4 vertices.

Theorem 1 restates the edit cost of any vertex map f in
terms of its induced common sub-structure, and the unpre-
served edges and vertices of the comparing graphs.

Theorem 1: Given two graphs G1 = (V1, E1, l1) and G2 =
(V2, E2, l2), and a vertex map f : V1 → V2 ∪ {vn}. Let G =
(V,E) be the common sub-structure of G1 and G2 induced
by f . Let Gl1 ⊆ G1 and Gl2 ⊆ G2 be the G’s corresponding
subgraphs of G1 and G2 obtained after recovering labels. The
edit cost of f , g(f), is given in terms of G as:

g(f) = cf (Gl1 , Gl2)+ |V2 \f(V1)|+λ+
2

∑

i=1

(|Ei|−|E|), (3)

where cf (Gl1 , Gl2) is the common sub-structure edit cost,
V2 \ f(V1) is the set of unmatched target vertices, and λ =
Γ(L(V1\V ), L(f(V1)\V ).

PROOF: The map f induces an edit path P which trans-
forms G1 into G2. The operations in P can be grouped
into three sets of edit operations: edge deletion group D,
vertrex/edge insertion group I and vertex/edge relabelling

Algorithm 2: CSI_GED(G1, G2)

1: Enumerate all CSIs of G1 and G2;
2: for each CSI f do
3: compute g(f) as in Equation 3;
4: keep track of minimum g(f);
5: output the minimum g(f);

Fig. 4. CSI_GED approach for GED(G1, G2).

group R. The deletion group D consists of deleting all unpre-
served source edges. These edges have no counterparts in the
target graph. There are |E1|−|E| of such edges. The insertion
group I consists of inserting vertices at the source graph
corresponding to the unmatched target vertices, i.e. inserting
|V2 \ f(V1)| vertices. It also contains inserting edges into the
source graph corresponding to the unpreserved target edges,
i.e. inserting |E2| − |E| edges. The relabelling group of oper-
ations consists of relabelling on Gl1 and on the unpreserved
source vertices V1 \V . The former is calculated as the number
of corresponding vertices and edges of Gl1 and Gl2 which
have different labels. This number is given as: cf (Gl1 , Gl2) =
|{(u, u′) ∈ E, l1(u, u′) 6= l2(f(u), f(u′))}|+|{u ∈ V, l1(u) 6=
l2(f(u))}|. The latter is calculated as the number of un-
preserved source vertices having different labels from their
corresponding target labels, i.e. Γ(L(V1\V ), L(f(V1)\V ). ¥

Based on Theorem 1, it becomes easy and straightforward
to compute the induced edit cost g(f) of a complete vertex map
f once its corresponding common sub-structure is identified.
Example 3 shows that a common sub-structure of G1 and G2

can induce an edit cost less than that of a maximum one.

Example 3: Consider the comparing graphs G1 and G2 in
Figure 1, and the three maps f1, f2 and f3, defined in Example
2. The edit cost of transforming G1 into G2 using f3 is equal
to 8; it can be calculated in terms of the induced common sub-
structure as: a deletion of the unpreserved source edge (u1, u2),
a vertex insertion to correspond to the unmatched target vertex
v1, an edge insertion to correspond to the unpreserved target
edge (v1, v2), 4 relabeling operations on the common sub-
structure (two on the source vertices u2 and u3, and two
on the source edges (u2, u4) and (u3, u4)), and a relabelling
operation on the unpreserved source vertex u1 (equivalent to
u1 deletion). Likewise, g(f1) = 5 and g(f2) = 2. Thus, the edit
path induced by f2 is the optimal one.

Note in Example 3 that although f2 and f3 generate the
same common sub-structure, they induce different edit costs
on that structure.

As such, a novel approach to compute graph edit distance
can be proposed. This approach suggests to enumerate all com-
mon sub-structure isomorphisms (CSIs for short) of G1 and
G2, and calculate for each enumerated one the corresponding
edit cost as in Equation 3. The graph edit distance is then cal-
culated as the minimum of these costs. The approach, named
CSI_GED (which stands for the bold letters in: Common Sub-
structure Isomorphisms based Graph Edit Distance), is outlined
in Figure 4, and its completeness is verified by Theorem 2.

Theorem 2: (Completeness) Given two comparing graphs
G1 and G2. CSI_GED(G1, G2) returns the edit distance be-
tween G1 and G2.

The CSI_GED approach makes it possible to cut the
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computation overhead of getting the edit cost, g(f), of each
vertex map f . Unfortunately, an equivalent computation cost
is needed by any vertex-based mapping method enumerating
CSIs. In such methods, see [15] for example, to construct
a common sub-structure, a target vertex matches a source
vertex if they do not violate the connections on the previously
matched vertices. To check previous connections, the method
exerts computations equivalent to that of calculating the im-
plied edge edit operations as in A∗-based methods. Facing this
challenge, CSI_GED constructs CSIs through mapping edges
instead of vertices, that is, edge mapping instead of vertex
mapping space is considered. Mapping edges eases, as we
see next, the connection checking problem appearing while
constructing CSIs. Although the edge mapping space seems, at
first glance, to be relatively large, we next show that the space
used for CSIs enumeration is considerably smaller than the
full space. It could be smaller than the vertex-based mapping
space on sparse graphs which is the case for many real-world
applications.

A. CSIs Enumeration

Initially, for the sake of matching edges, we consider any
target edge as an ordered pair of vertices. Thus, for any target
edge e = (v, v′) ∈ E2, let er = (v′, v) denote its reverse and

Ẽ2 = {e, er : e ∈ E2} denote an extended set of target edges.

We say that a target edge e′ = (v, v′) ∈ Ẽ2 matches a source
edge e = (u, u′) ∈ E1, denoted e → e′, if and only if v and v′

are matched with u and u′, resp. Next, we give the properties
that any edge map must satisfy when it comes to identify a
common sub-structure.

Lemma 1: Given two comparing graphs G1 = (V1, E1, l1)
and G2 = (V2, E2, l2). The map f : E1 → Ẽ2 ∪ {en}, where
en is the null edge, is an edge map iff e → f(e), ∀e ∈ E1.
The edge map f defines a common sub-structure if (1) it only
allows one or more source edges to be mapped to the null
edge; and (2) for any two adjacent source edges e = (u, u′)
and e′ = (u,w), if f(e) 6= en and f(e′) 6= en then they must
be consistent on matching the connection vertex u.

Lemma 1 shows that the space of edge maps considered
for CSIs enumeration is much smaller than the original space.
In what follows, the edge map f that defines a common sub-
structure is represented as a multiset of indexed edges f(E1) =
{ei1 , . . . , ei|E1|

}, where each eij
– the matching edge of ej ∈

E1 – is chosen from a finite possible set Pj ⊆ Ẽ2 ∪{en}, and
en is the only edge that can be repeated in f(E1).

CSI_GED uses backtracking to traverse the edge mapping
space for CSIs enumeration. Backtracking views edge maps as
arranged in a tree-like structure, and works as follows. Initially,
an edge map f is empty; it is extended one edge at a time, as
the search space is traversed. The length of f is the same as
the depth of the corresponding node in the search tree. Given
a partial edge map of length l, fl = {ei0 , ei1 , . . . , eil−1

}, the
possible values for the next extension eil

comes from a subset
Cl ⊆ Pl called the combine set. If e′ ∈ Pl −Cl, then nodes in
the subtree with root node fl+1 = {ei0 , ei1 , . . . , eil−1

, e′} will
not be considered by the backtracking algorithm. Since such
subtrees have been pruned away from the original search space,
the determination of Cl is also called pruning. Figure 5 outlines
the backtracking algorithm. The main loop tries extending the
partial edge map fl with every edge e′ in the current combine

Algorithm 3: CSIs enumeration

1: CSI = ∅; /*a set to hold all CSIs*/
2: CSI-backtrack(∅, Ẽ2 ∪ {en}, 0);
3: return CSI;

CSI-backtrack(fl, Cl, l)
1: for each e′ ∈ Cl

2: fl+1 = fl ∪ {e′};

3: if e′ 6= en then mark e′ and e′
r

as matched;
4: if l < |E1| − 1 then

5: Pl+1 = {e : e ∈ Ẽ2 and e is unmatched};
6: Cl+1 = CSI-combine(fl+1, Pl+1);
7: CSI-backtrack(fl+1, Cl+1, l + 1);
8: else CSI = CSI ∪ {f}; /*f is a complete CSI*/
9: fl+1 = fl+1 \ {e

′}; /*restore state(lines 9-10)*/

10: if e′ 6= en then mark e′ and e′
r

as unmatched;
//Can fl+1 combine with edges in Pl+1?
CSI-combine(fl+1, Pl+1)
1: C = ∅;
2: for each e ∈ Pl+1

3: if e is a valid extension then C = C ∪ {e};
4: return C ∪ {en};

Fig. 5. An edge backtracking algorithm for CSIs enumeration.

set Cl. The first step (line 2) is to compute fl+1, which is
simply fl extended with e′. e′ and its reverse e′

r

are then
marked as matched at the second step (line 3). The third
step (line 5) is to extract the new possible set of extensions,

Pl+1, which consists only of target edges e ∈ Ẽ2 that are not
matched yet. The forth step (line 6) is to create a new combine
set for the next pass, consisting of valid extensions. A target
edge is a valid extension if it satisfies the second condition
of Lemma 1, i.e. if its end vertices are consistent with the
previously matched ones. The combine set, Cl+1, thus, consists
of those edges in the possible set Pl+1 that produce a common
sub-structure when used to extend fl+1. Any edge not in the
combine set refers to a pruned subtree. The final step (line 7)
is to recursively call CSI-backtrack for each extension.
When matching all source edges (line 8), i.e. a complete map
f is found, it is added to CSI – the set of all completed CSIs.

As presented, the backtracking method performs a depth-
first traversal of the search space which offers efficient manip-
ulation of memory, a major problem for A∗-based methods.
Also, the validity of possible extensions can be easily checked
by maintaining with each edge map f a vertex map M to store
the mapping on the end vertices of already matched edges.
When a new target edge (v, v′) is considered for extending f
on the source edge (ui, uj), a nonempty slot M(i) or M(j)
must be equal to v or v′, resp., to be a valid extension.

Theorem 3 gives an upper bound estimation on the size of
the edge mapping space considered by CSI_GED.

Theorem 3: The search space considered by CSI_GED is

of size O(|E2| × ( |V2|
2 − 2)! × (d − 1)|E1|−

|V1|
2 ), where d is

the maximum vertex degree of the target graph.

PROOF: First, without loss of generality, suppose G1 and
G2 have even number of vertices each, and |V1| ≥ |V2|.
Since Ẽ2 ∪ {en} is the set of matching candidates for each
edge ei ∈ E1, the total size of edge mapping search space

is
∏|E1|

i=1 |Ẽ2|. However, the actual size of the search space

considered by CSI_GED is calculated as S =
∏|E1|

i=1 |C(ei)|,
where C(ei) ⊆ Ẽ2 is the set of valid candidates in the search.
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The first source edge to be matched has a number of candidates

equal to |Ẽ2| = 2 × |E2|. In order to calculate the number of
valid candidates for each remaining source edge ei ∈ E1, we
first classify those edges, while searching, into two types: free
and tied edges. An edge is called tied, denoted et, if it is
adjacent to at least one previously matched edge, and called
free and denoted ef otherwise. Let F and T denote the sets of

free and tied edges. Thus, S =
∏|F |

j=1 |C(ef
j )|

∏|T |
k=1 |C(et

k)|.

The number of free edges is at most
|V1|
2 , i.e. |F | ≤ |V1|

2 ,
because any set of free edges, F , represents a maximal edge

matching in G1 with largest value is
|V1|
2 – the size of

maximum edge matching. The number of valid candidates for

each free edge is calculated as
|V2|
2 −k, where k is the number

of previously matched target edges and
|V2|
2 is the size of

the maximum edge matching in G2. Thus,
∏|F |

j=1 |C(ef
j )| =

2|E2|×
∏

|V1|
2

−1
j=1 ( |V2|

2 −1−j) = O(|E2|×( |V2|
2 −2)!), because

|V1| ≥ |V2| and 2|E2| is the number of candidates of the
first matched source edge. Considering tied edges, there are
two cases. In the first case, the tied edge is adjacent to only
one previously matched edge. In this case, there are at most
d − 1 valid candidates, where d = maxvj∈V2

(deg(vj)). In
the second case, the tied edge is connected to two previously
matched edges. For each of such edges, there is only one valid

candidate. Thus,
∏|T |

k=1 |C(et
k)| ≤

∏|T |
k=1(d − 1) = (d − 1)|T |.

Since |T | is at least |E1| −
|V1|
2 , then the space size is S =

O(|E2| × ( |V2|
2 − 2)! × (d − 1)|E1|−

|V1|
2 ). ¥

It is clear from Theorem 3 that the space considered by
CSI_GED is much smaller than the vertex-based mapping
space which is of size O(|V2|

|V1|)), especially when the
comparing graphs are sparse. It is because, in sparse graphs
2, the number of edges |E1| is very close to the number of

vertices |V1|, and d ≪ |V2|. Also, ( |V2|
2 −2)! ≪ ( |V2|

2 −2)
|V1|
2 .

Only when the target graph is a complete one which is of full
density and d = |V2| − 1, the vertex and edge spaces have
almost the same size. In cases where both graphs are very
dense, i.e. |E1| ≫ |V1| and k = |V2|, the vertex mapping
space is smaller.

Example 4: Consider the comparing graphs G1 and G2 in
Figure 1. Figure 6 shows part of the full edge mapping search
tree of G1 and G2, where nodes at level i indicate the target
edges possible for matching the source edge ei ∈ E1. As the
figure shows, a source edge is mapped to a target edge at a
time according to the given order of the source edges. So,

2The graph density is defined as
2|E|

|V |(|V |−1)
, i.e. the number of edges in

the graph proportion to the number of edges if the graph is complete.

inner nodes correspond to partial edge maps and leave nodes
correspond to complete ones. The backtrack search space can
be considerably smaller than the full space. For example, we

start with f0 = ∅ and C0 = Ẽ2∪{en}. At level 1, each item in
C0 is added to f0 in turn. For example, e1 = (v1, v2) is added
to obtain f1 = {e1}. Then e1 and er

1 are marked as matched.
The possible set for e1, P1, consists of all target edges in

Ẽ2 that are not matched yet. However, since e2 = (v2, v3),
e4 = (v2, v4) and en are the only valid extensions, the subtrees
rooted at er

2, e3, er
3 and er

4 are pruned.

When comparing large graphs, the number of CSIs be-
comes quite large. Large search space is a major challenge for
backtracking. To meet this challenge and develop an efficient
CSI_GED algorithm, new heuristics are required to remove
entire branches from the backtracking tree. We describe below
the different heuristics used to optimize CSI_GED.

IV. OPTIMIZING CSI GED

Existing vertex-based backtracking algorithms for the max-
imum CSI problem use sub-structure size to prune the search
space [15], [3], [16]. In our setting, however, sub-structure size
has no role to play since we have to enumerate all common
sub-structures. Fortunately, the map edit cost can be used
instead for pruning the backtracking tree as follows.

Since backtracking enumerates CSIs in a depth first man-
ner, some CSIs will be available early in the search before
others. The edit cost induced by those enumerated ones are in
fact upper bounds on the graph edit distance, and can be used
to cut branches of the backtracking tree at some search states;
precisely, at those tree nodes with (expected) higher edit costs.
To do so, instead of calculating the edit cost induced by each
CSI in a separate, subsequent phase as in Figure 4, we push the
calculation (or a relevant part of it) into the CSIs enumeration
process, and maintain a cost value for each partial CSI. If that
value is no less than the current upper bound value, the search
for those CSIs which extend the current partial CSI stops, and
continues trying to extend other partial ones.

Before deciding on the relevant calculations that could be
easily injected into the CSIs construction process, we need to
show first what is contributing to the induced edit cost g(f)
of a given CSI f . The cost value g(f) given by Theorem
1 is a summation of five independent values. The first one,
cf (Gl1 , Gl2), calculates the edit cost on the two subgraphs

Gl1 ⊆ G1 and Gl2 ⊆ G2 which are identified based on the
common sub-structure G = (V,E) of G1 and G2. The second
and third values calculate the number of unpreserved source
and target edges, which are |E1| − |E| and |E2| − |E|, resp.
The last two values are obtained from the edit operations on
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the source and target vertices that are not appearing in G. |V2\
f(V1)| vertex insertions for the unmatched target vertices are
required, and this number constitutes the fourth value. The last
value comes from the relabeling required on the unpreserved
source vertices.

It is easy to inject the first two costs into CSIs construction.
Given a search state, the common sub-structure identified at
that state is expanded if a valid map extension is found;
otherwise, it remains unchanged and the source edge is mapped
to the null edge en, which means deleting that edge. Thus, on
one hand, having the edit cost on matching the source and
target edges used for extending f will increment g(f) based
on the first cost value. On the other hand, deleting the source
edge will increment g(f) based on the second cost value.
The third and fifth costs could also be injected but at extra
computations3; thus they remain to be calculated subsequently,
i.e. after completing the map. An important part of the fourth
value which is ||V1|− |V2|| could be used as an initial cost for
each CSI because it is global and independent of any CSI.

The new code for CSI_GED after cost injection is given
in Figure 7. It is a straightforward extension of CSI-backtrack.
The main addition is the injection of g(f) on the first two
values to eliminate branches of the backtracking tree. In
addition to the main steps in CSIs enumeration, the new code
starts with an hypothetical upper bound value A = ∞ and an
initial cost value IC = ||V1|−|V2|| assigned to every CSI f . It
adds a step (line 3, CSI-backtrack) after the map extension to
update g(f) and a step (lines 10-11, CSI-backtrack) to update
A. To include pruning based on the upper bound value, a new
condition is added to the main pruning step at line 3 of CSI-
combine. The edge matching cost emc(e → e′) that is used
for updating g(f) is defined as follows.

Definition 5: Edge matching cost. Given a source and
target edges e = (u, u′) and e′ = (v, v′). The cost of assigning
e′ to e, called edge matching cost and denoted emc(e → e′),
is given as:

emc(e → e′) =

{

c(u → v) + c(u′ → v′) + c(e → e′), e′ 6= en;
1, e′ = en,

where the cost function c returns 0 if the two matching items
have identical labels, and 1 otherwise.4

It is clear that the two cases in Definition 5 update g(f)
on the first two cost values, resp.

To boost pruning based on upper bounds, the idea that first
comes to mind is that instead of pruning based on g(f) alone,
we can prune based on a cumulative of g(f) and a lower bound
on the edit distance of unmapped edges and vertices. However,
it is not practical to compute a lower bound at every tree node
of an ever expanding search tree. Here, new efficient heuristics
are adopted to enhance pruning. The first heuristic arranges
target edges in order to enable fast finding of tighter upper
bounds, whereas the second maximizes the initial edit cost
assigned to each CSI. The last heuristic implements look-ahead
in the search. Such heuristics would allow tree nodes whose
corresponding edit costs exceeding the upper bound values to

3An easy injection of the third cost will be presented later in this section.
4Notice that since we are matching edges, it is possible that a target vertex

be assigned more than once to a source vertex. We should take care of this
in the implementation and evaluates the cost of matching vertices only once.

Algorithm 4: CSI_GED(G1, G2)

1: *A = ∞; //initial upper bound on GED(G1, G2).

2: *IC = ||V1| − |V2||; //initial edit cost for each CSI.

3: CSI-backtrack(∅, Ẽ2 ∪ {en}, 0, IC);
4: return A;
CSI-backtrack(fl, Cl, l, g(fl))
1: for each e′ ∈ Cl

2: fl+1 = fl ∪ {e′};
3: * g(fl+1) = g(fl) + emc(el+1 → e′);
4: if e′ 6= en then mark e′ and e′

r

as matched;
5: if l < |E1| − 1 then

6: Pl+1 = {e : e ∈ Ẽ2 and e is unmatched};
7: Cl+1 = CSI-combine(fl+1, Pl+1, g(fl+1));
8: CSI-backtrack(fl+1, Cl+1, l + 1, g(fl+1));
9: else /*a complete CSI*/

10:* if g(fl+1) + |{e ∈ E2 : e is unmatched}| + ∆ < A
11:* A = g(fl+1) + |{e ∈ E2 : e is unmatched}| + ∆ ;
12: fl+1 = fl+1 \ {e

′}; /*restore state(lines 12-14)*/

13: if e′ 6= en then mark e′ and e′
r

as unmatched;
14:* g(fl+1) –= emc(el+1 → e′);
CSI-combine(fl+1, Pl+1, g(fl+1))
1: C = ∅;
2: for each e ∈ Pl+1

3: * if e is valid & g(fl+1) + emc(el+2 → e) < A
4: C = C ∪ {e};
5: return C ∪ {en};

Fig. 7. CSI_GED algorithm (* indicates a new line not in CSI-backtrack
(Figure 5) and ∆ = λ + |V2 \ f(V1)| − ||V1| − |V2||).

be encountered early in the search; thus cutting many branches
from consideration. Next, we detail each of these heuristics.

A. Ordering Target Edges

Given that every valid extension of a size l, partial CSI

comes from the same set of target edges Ẽ2 (line 6, Figure 7).

Thus, the target edges Ẽ2 used at a tree level l, 1 ≤ l ≤ |E1|,
could be ordered in such a way that those CSIs which produce
tighter upper bounds would be enumerated first. The adopted

ordering heuristic arranges Ẽ2 at a tree level l in increasing
order of a cost value C(el, e

′), where the function C computes
an approximated graph edit cost, provided that the target edge
e′ is assigned to the source edge el. In order to define the cost
function C, we start by defining edge star – a local structure
surrounding an edge – and star matching cost.

Definition 6: Edge star. Given a graph G = (V,E, l) and
an edge e ∈ E. The edge star of e, denoted s(e), is a subgraph
consisting of e, called the star core, and edges adjacent to e.

Definition 7: Star matching cost. Given two edges e =
(u, u′) and e′ = (v, v′), the source and target edges. The star
matching cost of s(e) and s(e′), denoted by smc(e, e′), is
given as.

smc(e, e′) = emc(e → e′) + Γ(LEu, LEv) + Γ(LEu′ , LEv′),

where LEx is the multiset of labels of edges incident on the
vertex x, excluding the core edge label. 5

5Note that the outer vertices surrounding each edge star are not involved in
calculating the star matching cost.
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Definition 8: Star remaining graph. Given a graph G =
(V,E, l) and an edge star s(e), e ∈ E. we define the star
remaining graph, denoted Ge, to be the graph obtained after
removing the edge star s(e) from G.

Given a source and target edges el and e′. Let Gel

1 =
(V ′

1 , E′
1, l1) and Ge′

2 = (V ′
2 , E′

2, l2) be the remaining graphs
of the stars s(el) and s(e′), resp. Now, we are ready to define
the cost value C(el, e

′) to be equal to the star matching cost
of s(el) and s(e′) in addition to the vertex and edge label
lower bounds of the stars’ remaining graphs, i.e. C(el, e

′) =
smc(el, e

′)+ Γ(LV ′
1
, LV ′

2
)+ Γ(LE′

1
, LE′

2
).

Example 5: Consider the comparing graphs G1 and G2

in Figure 1, the source and target edges e = (u3, u2)
and e′ = (v3, v4). Figure 8 shows the edge stars s(e)
and s(e′). The graphs Ge = ({u1, u4}, ∅, l1) and Ge′

=
({v1, v2}, {(v1, v2)}, l2) are the stars’ remaining graphs. The
cost value C(e, e′) = 5, where the star matching cost is
calculated as: smc(e, e′) = emc(e → e′) + Γ(LEu3

, LEv3
) +

Γ(LEu2
, LEv4

) = 2 + 1 + 1 = 4. The vertex and edge label
bounds of the remaining graphs are calculated as 0 and 1,
resp. If the source edges are processed in the order E1 =
{(u1, u2), (u2, u3), (u3, u4), (u4, u2)}, then the target edges
at level 2, e.g., are ordered as: {(v3, v4), (v3, v2), (v2, v3),
(v2, v1), (v4, v3), (v2, v4), (v4, v2), (v1, v2)}, where the cost
values C are calculated w.r.t. the source edge star s(u2, u3),
and given as: {2, 2, 3, 4, 5, 5, 6, 6}.

B. Maximizing Initial CSI Cost

It is possible to maximize the initial cost value assigned
to each CSI to include the difference in graph size as well
as graph order difference. That is, the initial cost assigned to
each CSI f could be refined to become IC = ||V1| − |V2|| +
||E1| − |E2||. Adding the graph size difference to the initial
cost entails modifying the edge matching cost emc, especially
on the deleted source edges. That is, in the process of matching
edges, instead of assessing the source edge deletion as of edit
cost one (Def. 5), we modify it taking into account the different
cases that may arise regarding the values |E1| and |E2|. The
following theorem covers these cases.

Theorem 4: Given an empty CSI f whose initial cost
g(f) = ||V1| − |V2|| + ||E1| − |E2||, the cost of deleting a
source edge e while extending f is calculated as:

emc(e → en) =

{

2, |E1| ≤ |E2| ;
2, |E1| > |E2| & k ≥ (|E1| − |E2|);
0, |E1| > |E2| & k < (|E1| − |E2|),

where k is the number of previously deleted source edges.

PROOF: We have two possible cases regarding the number
of source and target edges, i.e. |E1| and |E2|.

Case I: When |E1| ≤ |E2|. To transform G1 into a graph
isomorphic to G2, we initially need to add |E2| − |E1| edges
somewhere at the source graph G1 to equalize edges of both
graphs. Thus, during CSI construction, for each deleted source
edge, a new edge is required to be added somewhere in
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Fig. 9. Example of two comparing graphs G1 and G2.

the source graph, thus two edit operations, to keep an equal
number of source and target edges.

Case II: When |E1| > |E2|. Initializing g(f) with
|E1| − |E2| means that deleting up to this number of source
edges has no effect on the edit cost since an equivalent cost
is already added in the initialization. After exhausting the
initial cost, i.e. after deleting (|E1| − |E2|) source edges, any
following source edge deletion requires another edge addition
at the source graph, thus two edit operations, to keep an equal
number of source and target edges. ¥

In addition to maximizing the initial cost assigned to each
CSI, Theorem 4 allows smooth injection of the edit cost of
unpreserved target edges, |E2| − |E|, into CSIs enumeration
process. The pseudo-code of CSI_GED in Figure 7 is modified
accordingly in order to accommodate the new definitions of
edge matching cost and initial cost value. The number of
unpreserved target edges is also removed from the subsequent
calculations phase at lines 10 and 11 of CSI-backtrack.

C. Look-ahead Based Pruning

Consider the source and target graphs G1 and G2 given in
Figure 9. These two graphs have the same number of vertices,
but G1 has an extra edge. Thus, the initial cost assigned to each
CSI is equal to one. Consider a partial CSI f that matches the
bold target edges with the bold source edges. The edit cost
of this partial CSI, g(f), remains equal to one since the edit
cost on the subgraphs induced by the common sub-structure is
equal to zero. For any upper bound value greater than one, it
is not possible to stop extending this partial CSI at this stage
based on the cost value g(f). In this subsection we introduce
another cost function g′(f) effective for pruning such cases, to
be maintained with each CSI f in addition to g(f). This new
function implements lookahead. That is, it is able to calculate
the edit cost some levels ahead in the search, and see if it is
larger than the current upper bound value to prune the map.

Given a graph G. We define for any subgraph H ⊆ G two
neighborhood structures, called inner and outer neighborhoods
as follows.

Definition 9: Inner & outer neighborhoods of a sub-
graph. Given a graph G = (V,E, l) and a subgraph H =
(VH , EH , l) ⊆ G. The inner neighborhood of VH , denoted
NI(VH) is defined as: NI(VH) = {(u, v) ∈ E : u, v ∈ VH}.
The outer neighborhood of VH , denoted NO(VH) is defined
as: NO(VH) = {(u, v) ∈ E : u ∈ VH ∧ v /∈ VH}.

Based on the inner and outer neighborhoods of a subgraph
H ⊆ G, we define inner and outer degrees for the vertices
of H as follows. Let NI(VH) and NO(VH) be the inner and
outer neighborhoods of VH , the inner and outer degrees of a
vertex v ∈ VH , denoted dI(v) and dO(v) resp., are given as:
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dI(v) = |{(v, w) ∈ NI(VH)}| and dO(v) = deg(v) − dI(v),
where deg(v) is the vertex degree.

Now, given the source and target graphs G1 and G2, and a
(partial) CSI f . Let M be the vertex map associated with the
edge map f . The new cost function g′(f) is defined in terms
of the inner and outer neighborhoods of subgraphs as follows.
Let Gl1 ⊆ G1 and Gl2 ⊆ G2 be the two subgraphs identified
based on the f ’s common sub-structure G = (V,E) of G1 and
G2. The cost g′(f) is calculated as the total of four costs: the
degree cost cd on corresponding vertices, the edge cost ce on
corresponding inner edges, the cost cr on the remaining edges,
and the cost κ on vertex relabeling of G1 and G2 taken by
the CSI f . That is, g′(f) = cd+ ce+ cr+ κ, where the degree
cost cd is given as:

cd =
∑

u∈V
Gl1

|dO(u)−dO(M(u))|+
1

2
|dI(u)−dI(M(u))|, (4)

where the fraction 1
2 is introduced because each inner edge is

used twice in the degree calculation, one for each end vertex.
The inner edge cost ce is given as:

ce =
∑

u,u′∈V
Gl1

c((u, u′) → (M(u),M(u′)), (5)

where (u, u′) ∈ NI(VGl1 ) and (M(u),M(u′)) ∈ NI(VGl2 ),
and the cost function c returns 0 if the mapping edges have
identical labels, and 1 otherwise. The remaining edge cost, cr,
is given as:

cr = |n1 − n2|, (6)

where ni = |Ei\(NI(VGli )∪NO(VGli ))|, i = 1, 2. The vertex
relabeling cost, κ, is given as:

κ = max(Γ(LV1
, LV2

), h + ||V1| − |V2||), (7)

where h is the number of vertex relabeling on matched vertices.

Theorem 5: Given two comparing graphs G1 and G2, and
a complete CSI f . For any partial CSI f ′ of f , g′(f ′) ≤ g(f).

Example 6: Consider the graphs G1 and G2 in Figure
9. Let f be the current CSI that matches the bold target
edges with the bold source edges, M = {v1, v2, v3, v4} be
the vertex map associated with f and G be the common
sub-structure identified by f . The inner neighborhoods of
Gl1 and Gl2 are given as: NI(VGl1 ) = {(u1, u2), (u1, u3),
(u1, u4), (u2, u4), (u3, u4)} and NI(VGl2 ) = {(v1, v2),
(v1, v3), (v2, v3), (v2, v4), (v3, v4)}, resp. The outer neigh-
borhoods are NO(VGli ) = Ei \ NI(VGli ), i = 1, 2. The inner
and outer degrees of a vertex u1, e.g., are given as: dI = 3 and
dO = 1. The lookahead cost g′(f) = 4+1+1+2 = 8, where
the degree cost is calculated as: cd = (1+ 1

2 )+(0+ 1
2 )+(1+

1
2 )+(0+ 1

2 ) = 4, the inner edge cost as: ce = 0+0+0+1 = 1,
the remaining edge cost as: cr = |1 − 0| = 1, and the label
bound cost as: κ = max(11 − 9, 0 + 0) = 2. Thus, if the
current upper bound value is, e.g., 7, the subtree rooted at f
could be pruned based on g′(f).

Besides being a very effective tool for pruning the search
space, evaluating the lookahead value g′(f) for any partial
CSI f is not computationally-demanding as the cost values
cd, ce and cr (Equations 4-6) are easy to compute, and the
costly Γ(LV1

, LV2
) (Equation 7) could be calculated once at

the beginning of the algorithm and be used for every CSI.

V. APPLICATION: GESS PROBLEM

Graph edit distance computation is extensively used in
the solution of graph edit similarity search (GESS) problem.
Given a collection of data graphs D = {G1, G2, . . . , G|D|},
the GESS problem is to retrieve data graphs that are similar
to a given query graph Q within an edit threshold τ , that is,
retrieve Gi if GED(Q,Gi) ≤ τ . The well-known solution
strategy to this problem, called filter-and-verify, is to first
filter unpromising data graphs based on lower bounds of GED
and then verify the remaining graphs using the expensive edit
distance computations [6], [7], [8], [17], [18], [12], [19]. Upper
bounds of GED could also be used to exempt some valid
candidates from the expensive graph edit computations in the
verification phase [6]. GESS problem can benefit from the
CSI_GED algorithm in two different ways: (1) as a verifier
with any GESS filtering method; (2) as a stand-alone GESS
query method.

Incorporating the edit distance threshold τ with CSI_GED
can further optimize it as follows. First, the possible set Pl

at every search tree level l could be refined by removing a
target edge e′ if the cost value C(el, e

′) is greater than τ , i.e.
if C(el, e

′) > τ . Indeed, those edges would not be part of
any optimal edge map to the answering graphs. Likewise, the
combine set Cl can be further optimized by adding a new
pruning condition based on τ : A valid target edge e′ is removed
from the combine set Cl of any partial CSI f if, in addition to
the upper bound based pruning, the map cost g(f) added to the
edge matching cost is greater than τ , i.e. if g(f) + emc(el →
e′) > τ , or if the lookahead cost g′(f) of the map f after being
extended based on e′ is greater than τ , i.e. if g′(f) > τ . Similar
to the previous argument, those edges would not be part of any
optimal edge map to the answering graphs. Finally, obtaining
a complete CSI f with edit cost g(f) is less than or equal to τ
halts the algorithm, and the data graph is reported as an answer
graph. This is due to the fact that g(f) is an upper bound on
the graph edit distance, and in this case, the comparing graphs
are surely within a distance less than τ . For graphs whose edit
distance is far less than τ , halting the algorithm becomes very
quick. Adding new steps to accommodate these optimizations
makes CSI_GED an efficient GESS query method.

VI. EXPERIMENTAL RESULTS

In this section, we present a comprehensive experimental
study on CSI_GED. All experiments were performed on a
3 GHz Dual Core CPU with 4G memory running Linux.
CSI_GED is implemented in standard C++ with STL library
support and compiled with GNU GCC.

Benchmark Datasets: We chose several real and synthetic
graph datasets for testing the performance of the algorithm.
The real data graphs are known to be sparse while the synthetic
ones are always dense.
1) AIDS6. It is a DTP AIDS Antiviral Screen chemical
compound dataset, published by National Cancer Institute. It
consists of 42, 687 chemical compounds, with an average of
46 vertices and 48 edges. Compounds are labelled with 63
distinct vertex labels but the majority of these labels are H, C,
O and N. The total number of distinct edge labels is 3.
2) Linux7. It is a Program Dependence Graph (PDG) dataset

6http://dtp.nci.nih.gov/docs/aids/aids data.html
7www.comp.nus.edu.sg/∼xiaoli10/data/segos/linux segos.zip
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generated from the Linux kernel procedure. PDG is a static
representation of the data flow and control dependency within
a procedure. In the PDG graph, an vertex is assigned to one
statement and each edge represents the dependency between
two statements. PDG is widely used in software engineering
for clone detection, optimization, debugging, etc. The Linux
dataset has in total 47,239 graphs, with an average of 45
vertices each. The graphs are labelled with 36 distinct vertex
labels, representing the roles of statements in the procedure,
such as declaration, expression, control-point, etc. The edges
are unlabeled.
3) PubChem8. It is a chemical compound dataset. Chem 1M
is a subset of PubChem, and consists of one million graphs.
Chem 1M has 23.98 vertices and 25.76 edges on average. The
number of distinct vertex and edge labels are 81 and 3, resp.
4) PROTEIN9. It is a protein dataset from the Protein Data
Bank, constituted of 600 protein structures, with an average
of 32.63 vertices each. Vertices represent secondary structure
elements and are labeled with their types-helix, sheet, and loop.
Edges are labeled with lengths in amino acids.
5) Synthetic. The synthetic datasets are generated using the
synthetic graph data generator GraphGen10. The generator cre-
ates a collection of labeled, undirected and connected graphs. It
allows us to specify various parameters such as dataset size, the
average graph density, graph size, and the number of distinct
vertex labels. For example, Syn10K.E30.D10.L5 means that
it contains 10000 graphs; the average size of each graph is
30; the density of each graph is 10%; and the number of
distinct vertex and edge labels are 5 and 2, resp. A number of
synthetic datasets are used in the experiments in order to see
the performance changes with varying density values.
Query sets: 100 graphs were randomly selected from each

dataset as its query graphs.

Due to the hardness of GED computations, very small
subsets of the AIDS dataset were used for testing the GESS
query methods in [6], [7], [8], [17], [18], [12], [19], whereas
the entire Linux dataset was only used for testing the filtering
power of the approaches in [18], [20]. Chem 1M was recently
used for testing graph edit similarity joins in cloud [21]. To
carry out a comparative study on our machine, we chose 10K
data graphs from AIDS, 100K from Chem 1M, and put 10000
seconds time limit for each algorithm to run. Besides this
setting, we ran our algorithm on the entire real datasets and
the results are shown in the scalability study.
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Fig. 10. Performance comparison with A∗ algorithm against graph order.

8http://pubchem.ncbi.nlm.nih.gov
9http://www.iam.unibe.ch/fki/databases/iam-graph-database/ download-the-

iam-graph-database.
10http://www.cse.ust.hk/graphgen/

A. Evaluation Against Graph Order

In this set of experiments we compare the performance of
CSI_GED with A∗ algorithm against the graph order to show
how large the graph order will be for each algorithm to work
with on our machine. Six groups of data graphs were randomly
selected from each dataset. Each group consists of three data
graphs having three consecutive order values, and the number
of vertices of each group is in the range: 8 ± 1, 11 ± 1, 14 ±
1, 17± 1, 20± 1, and 23± 1, resp. The executable of A∗ was
obtained from [11].

Figure 10 plots the average running time taken by each
algorithm on each group, where graphs in the group are
compared with each other in a self join manner. The figure
shows A∗ failed to run on groups consisting of large graphs,
i.e. graphs with orders well beyond 12 vertices, for all datasets.
This failure is due to the lack of memory–the physical memory
available (4 GB) is not enough to store the huge number of
partial vertex maps needed by A∗. In contrast, the very low
memory requirements let CSI_GED run in any computational
environment. Moreover, for the graph orders where A∗ can run
(7 and 12 vertices), CSI_GED significantly outperforms A∗.
The performance gap starts small (from two to three orders
of magnitude) and increases with graph order to become over
three orders of magnitude. Thus, we conclude that CSI_GED
is highly efficient for computing the edit distance on small
graphs, and scales gracefully to large graphs.
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Fig. 11. Effect of the different heuristics on the performance of CSI_GED.
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Fig. 12. Performance comparison with GSimJoin against edit threshold.

B. Effect of Heuristics

In order to show the influence of the different heuristics
on the performance of CSI_GED, we injected these heuristics
one by one into the base algorithm and monitored the speedup
achieved by each heuristic. We use the term ”Basic” for
the baseline algorithm without applying any heuristics. ”+h1”
denotes the improved algorithm of Basic by incorporating
the first heuristic (Section IV-A). ”+h2” denotes the improved
algorithm of +h1 by incorporating the second heuristic (Sec-
tion IV-B). ”+h3” denotes the improved algorithm of +h2 by
incorporating the third heuristic (Section IV-C).
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Fig. 13. Scalability on (1) dataset cardinality [a-d]; and (2) graph density [e].

We carried out these experiments in the context of graph
edit similarity search. Figure 11 plots the time taken by each
algorithm version on the different datasets at different τ . The
figure shows that Basic is unable to finish within the time
limit on AIDS 10K at τ > 4, on Chem 100K at τ > 3 and
on the synthetic datasets at τ > 6. It also shows that each
heuristic enabled our algorithm to finish at larger thresholds
within the time limit. For example, on AIDS 10k, +h1 could
finish at τ = 5, +h2 could finish at τ = 7 and +h3 could finish
at τ = 9. And, the time taken by +h3 at τ = 8 is almost the
same as that of Basic at τ = 4.

The speedup achieved by each heuristic is clear from
the figure. +h3 brought around 120x speedup over basic

on Chem 100K at τ = 3, 200x on AIDS 10k at τ =
4, 7x on Syn10K.E30.D10.L5 at τ = 6 and 26x on
Syn10K.E30.D30.L5 at τ = 6. Even though there is no
speedup by +h3 over +h2 at small thresholds, the performance
gap becomes clear at larger thresholds, e.g. at τ ≥ 4 on real
datasets and at τ ≥ 6 on synthetic datasets. This performance
boost from basic to +h3 is attributed to the effective and
less computationally-demanding pruning strategies.

C. Evaluation as a GESS Query Method

The third set of experiments is to evaluate CSI_GED as
a GESS query method. To do so, we compared CSI_GED

with the state-of-the-art, indexing-based GESS methods such
as GSimJoin [12], [8] on real and synthetic graphs by varying
the edit threshold τ .11 GSimJoin is a path-based q-gram
approach [12], [8]. It filters data graphs based on a counting
condition on the number of matching q-grams with those
of the query, as well as a global lower bound on graphs’
labels. GSimJoin uses indexing for accelerating bounds’
computations. It also uses an improved version of A∗ as a
verifier. The executable of GSimJoin was obtained from their
authors.

As q-gram based approaches, GSimJoin performance is
influenced by the gram size. For the real datasets, the best
performance was obtained when q = 4, and when q = 1 for
the synthetic ones. This variance is attributed to the fact that
the graph density influences the number of path-based q-grams.
The greater the graph density, the more path-based q-gram in
a graph.

Figure 12 shows the effect of increasing the edit threshold
on algorithms’ performance. It reports the total response time

11Other graph edit similarity search query methods do exist, such as SEGOS
[18], Pars [17] and Mixed [19]. Experimental results in [17], [12], [8]
revealed that GSimJoin outperforms SEGOS and is slightly outperformed
by Pars. For instance, Pars is reported to be 3x faster than GSimJoin on
a small subset of AIDS dataset. The current experimental results show that
CSI_GED is 330x faster than GSimJoin on AIDS dataset at τ = 5. Even
though the executable of Mixed [19] was obtained from their authors, it is
excluded from comparisons because it uses an approximated GED verifier and
therefore its final results are not precise.

taken by each algorithm at different τ . If there is no plotted
data for an algorithm at some τ values, it means the algorithm
could not finish within the time limit on our machine for
that value. CSI_GED shows the best performance on all
datasets. For τ values where GSimJoin can finish, CSI_GED
outperforms GSimJoin by over two orders of magnitude
on the real datasets, and by up to two orders of magnitude
on the synthetic ones. On synthetic data, GSimJoin starts
faster at smaller τ , then both algorithms become comparable
at τ = 4. For larger τ , CSI_GED beats GSimJoin, and the
performance gap increases with τ . These results are expected
because CSI_GED implicitly uses lower and upper bounds as
well as effective search order and pruning strategies to quickly
confine the search space.

D. Evaluating Scalability

In order to test the scalability of CSI_GED against the
dataset cardinality, we ran CSI_GED and GSimJoin on
different subsets of the real datasets. Figure 13(a-d) shows the
total response time of both algorithms on the generated subsets
of AIDS at τ = 5, of Chem 1M at τ = 7, of Linux at τ = 16
and of Protein at τ = 8, resp. Since GSimJoin failed to
run on Chem 1M, Linux and Protein at the chosen thresholds,
we could not report on its scalability for these datasets. On
AIDS dataset (Figure 13(a)), where GSimJoin can run, the
two methods are not very sensitive to this parameter, and
the running time grows slowly. CSI_GED shows the best
performance. The performance gain is consistent with the
previous experiments. Figure 13(b)-(d) show that CSI_GED
scales gracefully on other datasets.

Figure 13(e) shows the effect of changing the density of
synthetic graphs on the performance of algorithms at τ = 6.
It shows CSI_GED scales gracefully with this parameter.
GSimJoin, on the other hand, shows less sensitivity, and
the performance gap with CSI_GED decreases with increasing
density. In fact, this improvement is brought to GSimJoin by
A∗. Since the size of synthetically-generated graphs is fixed
to 30 edges each, the graph order decreases with increasing
density; it is about 6 vertices at higher densities. A∗ is very
efficient on comparing small and dense graphs.

VII. RELATED WORK

H. Bunk [22] was the first to connect the graph edit distance
problem with the one of maximum common subgraphs. In [23],
Brun et al. uncovered the relation between graph edit paths
and common sub-structures. They investigated under which
conditions on the different costs of elementary edit operations,
an optimal edit path is related to a maximum common sub-
structure. [24] exploited this relationship in the unit cost model,
and derived lower and upper bounds of graph edit distance in
the uncertain graph context. Different from [23] and [24], in
this paper, we re-discovered the same relationship and utilized
it in the development of a new efficient graph edit distance
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computation algorithm. To the best of our knowledge, we are
the first to utilize this relationship to develop a new approach
for GED computation.

The heart of our approach is to enumerate the common sub-
structures that quickly lead to optimal edit paths. Even-though
there exist many algorithms in the literature that can enumerate
the common sub-structures [15], [3], [16], and some of them
even employ backtracking search, none of these methods could
serve our setting. First, because they are all vertex-based
methods and adapting them would lead to algorithms suffering
from problems similar to that of A∗-based methods. Second
they could not be equipped with efficient pruning tools. In
contrast, our approach is an edge-based backtracking search,
which leverage the edit cost and accommodate new efficient
pruning techniques.

Few approaches have been introduced to improve A∗,
especially when using it as a verifier in the filter-and-verify
approach for the GESS problem. [17] enhances A∗ by starting
its computations from an indexed common subgraph isomor-
phism. A∗ then extends this isomorphism and uses τ to
minimize memory, where extensions whose edit distance no
more than τ are the only ones to be maintained. The main
drawback is when there are more than one occurrence of the
matching subgraph. In this case A∗ should be run starting from
every occurrence and it is not easy to share the computation
among the different runs. To avoid this case, A∗ starts from
scratch. [12], [8] introduced another approach to enhance A∗

based on the indexed, path-based q-grams. In this approach, A∗

does not start with the matching parts (matching q-grams) as
in the previous approach, it instead starts with the mismatching
ones, because these q-grams incur some edit operations which
helps terminating A∗ very quickly on candidate graphs whose
edit distance is not within τ . Mismatching q-grams are also
used to enhance the search order in A∗, where the vertices
contained by at least one mismatching q-gram are put before
the others, and the first vertex is the one with the most
infrequent label. In the interest of connectivity, ties are broken
by mapping vertices in the order of spanning tree. Using such
order leverages the connectivity of a graph and can quickly
find edge edit operations. Finally, h(f) is optimized by using
the maximum of global and local label lower bounds on the
two remaining parts. All these improvements and much more
are implicitly taken by our approach.

VIII. CONCLUSIONS

For decades, the widely used graph edit distance compu-
tation methods follow the best first search paradigm known
as A∗. These methods have shown inability to compare large
and distant graphs. To overcome the challenge of large graph
comparisons, this paper introduced a novel approach for exact
GED computation, called CSI_GED. CSI_GED utilizes back-
tracking combined with efficient heuristics to quickly search
the edge-mapping space for those maps inducing optimal edit
paths. Experiments showed that CSI_GED is highly efficient
for computing the edit distance on small as well as large and
distant graphs. Furthermore, CSI_GED is evaluated as a stand-
alone graph edit similarity search query method. Experiments
showed that CSI_GED is effective and scalable, and outper-
forms the state-of-the-art indexing-based methods by over two
orders of magnitude.
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