
Information Systems 80 (2019) 91–106

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

A novel edge-centric approach for graph edit similarity computation
Karam Gouda a,b,∗, Mosab Hassaan c

a Faculty of Computers & Informatics, Benha University, Egypt
b Computer & Decision Engineering Department, Université Libre de Bruxelles, Belgium
c Faculty of Science, Benha University, Egypt

h i g h l i g h t s

• A Novel approach for computing the exact edit distance between labeled graphs.
• It leverages the relation between common sub-structures and graph edit distance.
• Efficient heuristics to cut off the huge search space.
• An exact method which can also be used as any-time approximation method.
• Experiments show the effectiveness on graph similarity search and classification.

a r t i c l e i n f o

Article history:
Received 27 February 2018
Received in revised form 12 August 2018
Accepted 24 October 2018
Available online 2 November 2018

Keywords:
Graph data
Edit distance
Exact methods
Graph similarity search

a b s t r a c t

Graph similarity is an important notion with many applications. Graph edit distance is one of the most
flexible graph similarity measures available. The main problem with this measure is that in practice it
can only be computed for small graphs due to its exponential time complexity. This paper addresses
the high complexity of graph edit distance computations. Specifically, we present CSI_GED, a novel
edge-centric approach for computing graph edit distance through common sub-structure isomorphisms
enumeration. CSI_GED utilizes backtracking search combined with a number of heuristics to reduce
memory requirements and quickly prune away a large portion of the mapping search space. Experiments
show that CSI_GED is highly efficient for computing graph edit distance; it outperforms the state-of-
the-art methods by over three orders of magnitude. It also shows that CSI_GED scales the computation
gracefully to larger and distant graphs on which current methods fail to run. Moreover, we evaluated
CSI_GED as a stand-alone graph edit similarity search query method. The experiments show that
CSI_GED is effective and scalable, and outperforms the state-of-the-art indexing-based methods by over
two orders of magnitude.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Powerful data structures such as graphs are currently used to
represent complex entities and their relationships in many appli-
cation areas. These areas include but are not limited to Pattern
Recognition [1], Social Network [2], Software Engineering [3], Bio-
informatics [4], Semantic Web [5], and Chem-informatics [6]. Yet,
the expressive power and flexibility of the graph data model come
at the cost of high computational complexity of many fundamen-
tal graph data tasks. Among these, computing the edit distance
of a pair of graph objects is proved to be NP-hard problem [7].
Given two labeled graphs, their graph edit distance measures the
minimum cost graph editing to be performed on one of them

∗ Corresponding author at: Faculty of Computers & Informatics, Benha
University, Egypt.

E-mail addresses: karam.gouda@fci.bu.edu.eg, karam.gouda@ulb.ac.be
(K. Gouda), mosab.hassaan@fsc.bu.edu.eg (M. Hassaan).

to get the other. A graph edit operation is usually one of vertex
insertion/deletion, edge insertion/deletion or a change of a ver-
tex’/edge’s label in the graph.

Due to the rich information provided by its associated edit
sequence as well as its ability to cope with any kind of graph
structure and labeling scheme, graph edit distance is considered
as one of the most flexible graph similarity measures available for
labeled graphs. Today, graph edit similarity plays a significant role
in managing graph data [7–10], and is employed in a variety of
analysis tasks such as graph classification and clustering [11,12],
object recognition in computer vision [1], etc.

Very little work has been presented to address the high com-
plexity of graph edit similarity computation. Most of the existing
methods adopt the best-first search paradigmA∗ [13–16]. The basic
idea of these methods is to find a vertex map between the two
graphs which induces the minimum edit cost. To achieve this, the
underlying vertex mapping space is explored much like traversing
an ordered search tree, where intermediate tree nodes represent

https://doi.org/10.1016/j.is.2018.10.003
0306-4379/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.is.2018.10.003
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2018.10.003&domain=pdf
mailto:karam.gouda@fci.bu.edu.eg
mailto:karam.gouda@ulb.ac.be
mailto:mosab.hassaan@fsc.bu.edu.eg
https://doi.org/10.1016/j.is.2018.10.003

92 K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106

partial maps and leaf nodes represent complete ones. At each
search state, theminimum-cost partialmap is found and extended,
and the cost of each extension is updated. This process is continued
until the selected map is a complete one.

Themain problemof A∗-basedmethods is thatwhen comparing
large graphs, huge number of partial maps need to be maintained.
As a consequence, memory grows exponentially and searching for
the minimum-cost partial map at each search state becomes very
expensive. The time and space requirements crucially hamper A∗-
based methods from being used with real-world applications. In
practice, larger graphs are not uncommon. Consider, for example,
the area of drug development. In order to study the properties
of a new compound, the drug designer first asks the chemical
compound database for those compoundswhich arewithin a spec-
ified edit distance from the new one. This step, called compound
screening [17], helps the drug designer get an initial view of the
compound at hand since similar compounds may have similar
biological activities. The chemical compound database contains
graphs with average number of vertices doubling at least that of
the graphs which could be processed by A∗.

In this paper, we presents a novel approach for graph edit
distance computation, named CSI_GED: Common Sub-structure
Isomorphisms based Graph Edit Distance, which minimizes mem-
ory requirements and scales to larger and distant (i.e., far apart
from each other) graphs. CSI_GED uses a completely different ap-
proach to compute graph edit distance. Instead ofmapping vertices
and then deducing the edge edit cost as in A∗, CSI_GED considers
mapping edges first and the edit cost on their end vertices comes
directly as a by-product. Even though the edge mapping space
seems to be relatively large, edges are allowed to match only
if their composing vertices are consistent with already matched
ones, called common sub-structure isomorphism restriction. This
restriction reduces the search space to the smaller subspace of
common sub-structure isomorphisms (CSIs for short).1 We show
in this paper that the space of CSIs ismuch smaller than the vertex-
based mapping space especially when the graphs are sparse (Sec-
tion 4). Moreover, computing the induced edit cost of each partial
CSI becomes easy and straightforward as it is directly calculated
from the derived common sub-structure. In contrast, computing
that cost with A∗-based methods is rather expensive, and is done
in a subsequent phase for each possible map extension.

CSI_GED utilizes backtracking to explore the space of CSIs. The
most important benefit is that, the memory requirement is di-
minished since CSI_GED enumerates CSIs in a depth first manner,
which is efficient in memory consumption. To scale backtracking
search in huge CSIs spaces, CSI_GED incorporates three efficient
heuristics to prune much of unpromising CSIs. These heuristics
are developed based on the fact that the edit costs induced by
enumerated CSIs are valid upper bounds on graph edit distance.
Thus, the main goal of these heuristics is to enforce dead search
states, i.e., nodes in the backtracking search tree accompanied by
edit costs exceeding the minimum of seen upper bound values,
to be encountered early in the search; thus cutting a large space
from consideration. To achieve this objective, the first heuristic
arranges the search space in such away that enabling fast finding
of tighter upper bounds (Section 5.1), whereas the second heuristic
maximizes the edit cost initially assigned to each CSI, by setting it
to a global lower bound on graph edit distance (Section 5.2). The
third is a lookahead heuristic, enabling the prediction of edit costs
some levels ahead in the search (Section 5.3).

Experiments show that CSI_GED is highly efficient for com-
puting graph edit distance; it outperforms the state-of-the-art A∗-
based methods by over three orders of magnitude. It also shows

1 The space of CSIs is efficiently identified by exploring edges instead of vertices,
a property which will be made clear in the following sections.

that CSI_GED scales the computation gracefully to large and dis-
tant graphs on which A∗-based methods fail to run. Moreover, we
evaluated CSI_GED as a stand-alone graph edit similarity search
query method. The experiments show that CSI_GED is effective
and scalable, and outperforms the state-of-the-art indexing-based
methods by over two orders of magnitude.

A preliminary version of this paper appeared in [18]. This paper
extends the work presented there by first providing proofs of the
correctness of CSI_GED (Theorem 2, Lemma 1 and Theorem 5).
Second, the lookahead pruning is improved by using edge label
indexing, where well designed look-up tables are used to lever-
age the edge label information while comparing corresponding
vertices. Extra experimentations are also conducted to further
assessCSI_GED. These experiments are performed in order to:

• Evaluate the effect of heuristics on reducing the search space
of CSI_GED.

• Evaluate how much improvements can edge label indexing
bring to the lookahead pruning.

• Evaluate the quality of the first upper bound generated by
CSI_GED against the state-of-the-art upper bound computa-
tionmethods. The evaluation is donew.r.t. (1) approximation
quality and computation time, and (2) graph classification ac-
curacy. Results show that CSI_GED initially provides tighter
upper bounds at very good response time compared to the
current overestimation methods. Moreover, the accuracy of
graph classification systems achieved under this first approx-
imation is relatively high.

The remainder of this paper is organized as follows. Related
work is discussed in Section 2. The problem of graph edit similarity
computation and state-of-the-art computation methods are pre-
sented in Section 3. Section 4 presents the framework of CSI_GED
and themotivation behind its construction. The different heuristics
used to optimize CSI_GED are presented in Section 5. An appli-
cation of CSI_GED to the graph edit similarity search problem
appears in Section 6. The experimental results are reported in
Section 7. Section 8 concludes the paper.

2. Related work

Graph edit distance was firstly connected with maximum com-
mon subgraphs by Bunk [19]. Recently, Brun et al. [20] uncovered
the relation between graph edit paths and common sub-structures.
They investigated under which conditions on the different costs
of elementary edit operations, an optimal edit path is related to
a maximum common sub-structure. Zheng et al. [21] exploited
this relationship to derive lower and upper bounds of graph edit
distance in the uncertain graph context, and when the edit op-
erations are of unit costs. Different from [20] and [21], in this
work, we re-discovered the same relationship and used it for
developing CSI_GED: An efficient graph edit distance computation
algorithm. To the best of our knowledge, we are the first to develop
an approach for graph edit distance computation based on this
relationship.

The heart of CSI_GED is to enumerate CSIs which quickly lead
to optimal edit paths. Although many existing algorithms could
be used to enumerate CSIs [6,22,23], they are all vertex-based
methods and adapting them would lead to algorithms suffering
from similar problems as A∗-based methods. Moreover, they could
not be equipped with efficient space-pruning tools. In contrast,
CSI_GED is an edge-centric backtracking search, which leverages
the edit cost and accommodates efficient space-pruning heuristics.

In the past, few improvements of A∗ have been considered,
especially when it is used as a verifier in the filter-and-verify
approach of the graph edit similarity search problem [10,16,24].
In [24]A∗ is improved by starting its computations froman indexed

K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106 93

common subgraph isomorphism. And, any extended partial map
is stored only if its induced edit cost is within a specified edit
distance, which minimizes memory. The main drawback of this
improvement is when there exist more than one common occur-
rence of the matching subgraph. In this case A∗ must run starting
from every occurrence and it is not easy to share the computations
among different runs. In [10,16] another improvement of A∗ is
introduced. It is based on previously indexed, path-based q-grams.
In this improvement, A∗ does not initiate the search from the
matching parts (matching q-grams) as in the previous improve-
ment, it instead starts with the mismatching ones, because these
q-grams incur some edit operations which help in terminating A∗

very quickly on the false positive candidate graphs. Themismatch-
ing q-grams are also used to enhance the search order, where the
vertices contained by at least one of these q-grams are put before
the others, and the first vertex is the one with the most infrequent
label. In the interest of connectivity, ties are broken by mapping
vertices in the order of a spanning tree. Such order leverages the
graph connectivity which allows to quickly find edge edits. All
these improvements and much more are implicitly considered by
our approach.

Recently, the vertex-based approaches have witnessed new
developments [25–28]. The earlier of these developments have
tackled the memory overloading problem of A∗-based methods by
carrying out depth-first instead of best-first search of the vertex-
mapping space. Example methods are DF_GED [25] and its recent
speed-up DF_GEDu [28]. DF_GED and CSI_GED are similar in that
they both adopt the depth-first search paradigm and prune the
search space based on theminimumeditorial cost among all visited
full mappings. However, they disagree on the way to achieve
this; while DF_GED computes an expensive lower bound at each
search state, which is very expensive with backtracking, CSI_GED
employs efficient ordering and fast look-ahead heuristics which
greatly minimize the size of the backtracking tree.

On the other hand, the more recent developments are tackling
both thememory and efficiency issues at the same time by consid-
ering newefficient pruningheuristics of the vertex-mapping space.
BSS_GED [27], A∗+ [26] and DFS+ [26] are new major methods.
BSS_GED reduces the vertex mapping space by not enumerating
the invalid and redundant vertex mappings, which are very huge
in number. Moreover, new heuristics are developed to efficiently
generate tighter upper and lower bounds for intermediate search
states to further confine the search space. Finally, the beam-stack
search paradigm is adopted, which allows for a flexible tradeoff be-
tween available memory and the time overhead of backtracking in
the vertexmapping space. In [26] a unified framework is developed
that can be instantiated into either a best-first search approach A∗+

or a depth-first search approachDFS+, and allows to use any previ-
ously developed lower bounding technique for intermediate states.
In addition, anchor-aware lower bounding techniques are devel-
oped for intermediate search states, which significantly reduce
the search spaces of both A∗+ and DFS+. Finally, to overcome the
memory overloading problem of A∗+, intermediate search states
are stored in a constant main memory space and upper bounding
techniques are used to prune irrelevant states. Different from these
methods, CSI_GED is a novel edge-centric mapping method based
on CSIs, which are much less in number than vertex mappings.
In addition, CSI_GED utilizes an ordering of the edge mapping
space to facilitate fast finding of tighter upper bounds, and fast
look-ahead instead of the expensive lower bounding techniques to
prune the search space.

Many fast algorithms seeking suboptimal solutions to graph
edit distance have been proposed. Some of these algorithms pro-
duce upper bound estimation [7,29–32]. Riesen and Bunke [29]
have developed a graph mapping method, which first constructs
a cost matrix between the vertices of the two graphs, and then

uses a cubic-timebipartite assignment algorithm, calledHungarian
algorithm [33], to optimally match the vertices. A cost matrix with
an entry for each pair of vertices holds the matching edit costs
between the neighborhoods of the corresponding vertices. The
idea behind this heuristic is that matching vertices with similar
neighborhoods induces low-cost graph mapping. A similar idea is
used in [29] and [34],where the notion of vertex star (branch) is de-
veloped to capture information about the vertex neighboring ver-
tices and edges. Recently, Gouda et al. [31,32] have developed new
upper bounding technique, based on the breadth-first hierarchical
views of the graphs. This technique allows to explore a quadratic
space of high-quality vertex mappings. It also incorporates fast
view selection methods to run using only the most effective view-
pairs. Our method for ordering the search space and obtaining an
initial upper bound differs from these methods in two aspects. The
first is that we use a novel notion of star structure called edge
star. Edge star captures wider local structure than vertex star. The
second aspect is that we do not order and match edges based only
on edge stars’ cost, instead an edit cost on the star’s remaining
graph is added in order to capture the global as well as the local
structure.

3. Preliminaries

3.1. Problem statement

Let Σ be a set of discrete-valued labels. A labeled, undirected
graph G is a triple G = (V , E, l), where V = {v1, v2, . . . , v|V |} is
a set of vertices, E = {e1, . . . , e|E|} ⊂ V × V is a set of undirected
edges, and l is a labeling function l: V ∪ E → Σ , assigning for each
vertex v ∈ V or edge e ∈ E an alphabet character l(v) ∈ Σ or
l(e) ∈ Σ . |V | and |E| are called the order and size of G, resp. Let
LV and LE denote the multi-sets of labels assigned to the vertices
and edges of G, resp. LV and LE aremulti-sets because the labels are
allowed to appear more than once on the vertices and edges of the
graph G. In what follows a labeled, undirected graph G is simply
called a graph G unless stated otherwise, and an unlabeled version
of G, i.e., its structure, is referred to as S(G).

A graph G = (V , E, l) is a subgraph of another graph G′
=

(V ′, E ′, l′) (or G′ is a supergraph of G), denoted G ⊆ G′, if there exists
a subgraph isomorphism from G to G′.

Definition 1 ((Sub-)graph Isomorphism). A subgraph isomorphism
from G to G′ is an injective function f : V → V ′, such that (1)
∀u ∈ V , l(u) = l′(f (u)). (2) ∀(u, v) ∈ E, (f (u), f (v)) ∈ E ′, and
l((u, v)) = l′((f (u), f (v))). If G ⊆ G′ and G′

⊆ G, G and G′ are graph
isomorphic to each other, denoted as G ∼= G′.

Definition 2 ((Maximum) Common Sub-Structure (MCS)). Given
two graphs G1 and G2. An unlabeled graph G = (V , E) is said to be a
common sub-structure of G1 and G2 if ∃ H1 ⊆ G1 and H2 ⊆ G2 such
that G ∼= S(H1) ∼= S(H2). A common sub-structure G is a maximum
common edge (resp. vertex) sub-structure if there exists no other
common sub-structure G′

= (V ′, E ′) such that |E ′
| > |E| (resp.

|V ′
| > |V |).

Based on Definition 2 a common sub-structure is called a com-
mon sub-graph if the corresponding vertices and edges agree on
labels, i.e., H1 ∼= H2. The maximum edge (resp. vertex) sub-graph
can be defined analogously.

A graphG can be transformed into another graph by elementary
edit operations consisting of inserting or deleting a vertex or an
edge, or changing a vertex or edge label. Notice that a vertex can
be deleted only if its incident edges have been previously deleted.
Each elementary edit operation p is associated with a application-
dependent cost c(p), measuring the strength of the corresponding

94 K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106

Fig. 1. Example of graphs G1 and G2 . Numbers on edges are their ids, and each edge
ek is defined as: ek = (ui, uj) or ek = (vi, vj), i < j.

operation. Given two graphs G1 and G2, the sequence of edit oper-
ations performed on one of them to get the other is called an edit
path. Formally, let pi be an edit operation, an edit path P = ⟨pi⟩ki=1
is a sequence of edit operations ⟨p1, p2, . . . , pk⟩ that transform G1
into G2, that is, P(G1) = G1 →

p1 G1
→

p2 G2 . . . →
pk Gk ∼= G2.

The cost of an edit path P is the sum of its edit operation’s costs,
i.e., C(G1,G2, P) =

∑k
i=1 c(pi).

Clearly, there could be multiple edit paths that turn G1 into
G2. An optimal edit path is the one having the minimal cost.
This cost defines graph edit distance between G1 and G2, denoted
GED(G1,G2). That is, GED(G1,G2) = minP C(G1,G2, P). In this paper
we assume a uniform edit cost metric, in which the cost of each
edit operation amounts to one, i.e., c(p) = 1, ∀p. According to this
metric, the optimal edit path is the onewith theminimumnumber
of edit operations.

Definition 3 (Graph Edit Similarity Computation Problem). Given
two labeled, undirected graphs G1 and G2, and assume a uniform
edit cost metric on edit operations, the problem of graph edit
similarity is to compute GED(G1,G2).

Eqs. (1) and (2) give two simple but effective lower bounds on
GED(G1,G2) to be used throughout the paper. They arewell-known
as global lower bounds. The first bound is based on the differences
in size and order of the graphs, and is given by [7] as:

GED(G1,G2) ≥ ∥V1|−|V2∥ + ∥E1|−|E2∥. (1)

The second improves the first by taking labels as well as struc-
ture information into account, and is given by [10,16] as:

GED(G1,G2) ≥ 0(LV1 , LV2) + 0(LE1 , LE2), (2)

where 0(X, Y) = max(|X |, |Y |) − |X ∩ Y |, for sets X and Y .

Example 1. Fig. 1 shows two graphs G1 and G2. A minimal
number of two edit operations can turn G1 into G2: Insertion of a
new edge (u1, u4) with label b and a deletion of the edge (u1, u2).
Thus, GED(G1,G2) = 2. Based on Eq. (2), the value 0(LV1 , LV2) +

0(LE1 , LE2) = [4− (|{C, B, B, B}∩{C, B, B, B}|)]+[4− (|{a, a, b, b}∩
{a, b, b, b}|)] = [4− 4] + [4− 3] = 1 is a global label lower bound
on GED(G1,G2). S(G1) is both edge and vertex maximum common
sub-structure since it has 4 edges and 4 vertices.

Graph edit similarity computation is known to be NP-hard
problem [7]. Very little work has been introduced to address this
complexity. We next overview the state-of-the-art computation
methods and highlight their limitations. Hereafter, the graphs G1
and G2 are called the source and target graphs, resp; their edges
(resp. vertices) are called the source and target edges (resp. ver-
tices).

3.2. GED computation: A∗ Approach

The state-of-the-art graph edit similarity computationmethods
are based on the search paradigm A∗, which explores all possible

one-to-one vertex maps between the source and target graphs in a
best-first fashion [13–16]. A∗ maintains a set of partial vertexmaps
with their induced edit costs, and at each search state it picks-
up a minimum-cost partial map to extend, where the unmatched
target vertices as well as the null vertex – a dummy vertex with
special label – are possible candidates for extension. To guide the
selection process toward the most promising partial maps, the
map cost is incremented by a lower bound estimate on the edit
distance between the unmapped edges and vertices. This process
is continued until all source vertices are matched by the selected
map. The edit cost induced by the selected map in addition to that
induced by the unmapped target vertices is returned as graph edit
distance.

Formally, given the source and target graphs G1 = (V1, E1, l1)
andG2 = (V2, E2, l2). Let u1, u2, . . . , un be the source vertices given
in the processing order, f (V1) = {f (u1), . . . , f (ui−1)} be a selected
partial vertex map, and c(f) = g(f) + h(f) be its associated cost,
where g(f) stands for the edit cost inducedby thematched vertices,
and h(f) is a lower bound on that induced by the unmatched ones.
If i−1 = n then g(f) = g(f)+ cr is returned as graph edit distance,
where cr is the edit cost induced by matching a null source vertex
with each unmatched target vertex; Otherwise, f is extended one
item at a time as the search space is traversed. For each possible
extension f (ui) ∈ (V2 \ f (V1))∪ {vn

}, where vn is a null vertex with
l2(vn) /∈ Σ , a new partial map f (V1) = {f (u1), . . . , f (ui−1), f (ui)} is
constructed and c(f) is updated.

Algorithm 1 updates g(f). It first evaluates the cost of matching
the vertices ui and f (ui) (lines 1–2), and then on the implied edge
matching (lines 3–10) as: an edge (uj, ui), j < i, connecting ui with
an alreadymatched vertex uj is deleted if (f (uj), f (ui)) is not a target
edge, and relabeled if (f (uj), f (ui)) has a different label. For each
matched vertex uj, j < i, not adjacent to ui, an edge is inserted if
(f (uj), f (ui)) is a target edge. Updating h(f) depends on the heuristic
used; [14] computes h(f) via bipartite matching whereas [16] uses
Eq. (2) as a heuristic estimate.

Algorithm 1: Update_PED(G1,G2, f (ui), g(f))
1: if l1(ui) ̸= l2(f (ui)) then
2: g(f)++; /*vertex relabeling (deletion if f (ui) = vn)*/
3: for each uj ∈ V1, j < i do
4: if (uj, ui) ∈ E1 ∧ (f (uj), f (ui)) ∈ E2 then
5: if l1(uj, ui) ̸= l2(f (uj), f (ui)) then
6: g(f)++; /*edge relabeling*/
7: if (uj, ui) ∈ E1 ∧ (f (uj), f (ui)) /∈ E2 then
8: g(f)++; /*edge deletion*/
9: if (uj, ui) /∈ E1 ∧ (f (uj), f (ui)) ∈ E2 then
10: g(f)++; /*edge insertion*/
11: return g(f);

A∗-based methods face a number of challenges. First, most of
the generated partial maps cannot be discarded and have to wait
until a very late stage of the search. Thus, the larger and distant
the graphs are, the larger the number of partial maps that need to
be maintained and processed. As a consequence, memory grows
exponentially and searching for a minimum-cost partial map to
extend at each search state becomes very expensive — it requires
O(log n) if priority queue is used, where n is the number of current
partial maps. Second, updating c(f) for each partial map f is com-
putationally expensive, and has to be done in a separate phase for
each possible map extension.

Clearly, the memory and computation overhead prevent A∗-
based methods from being used with real-world applications. In
this paper, to address these challenges, we propose a novel ap-
proach for graph edit distance computation named CSI_GED. Next,
we introduce the working principle of CSI_GED.

K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106 95

Fig. 2. The vertex map f3(V1) = {vn, v4, v3, v2}. Preserved edges are shown by the
bold curves. Dashed curves show the unpreserved ones.

4. CSI_GED: A novel GED computation approach

In order to develop an efficient GED computation algorithm,
twomain concerns should be taken into account. The first is to find
a way to leverage the computation of g(f) for each vertex map f .
The second is to develop a space traversing technique that allows
searching without relying on full information of partial maps. In
other words, identifying an optimal edit pathmust avoid the prob-
lems of A∗ approach in order to scale to large and distant graphs.
Below, we relate GED computation to the problem of enumerating
all common sub-structures of the involved graphs.

Definition 4 (Preserved Edges of a Vertex Map). Given two graphs
G1 = (V1, E1, l1) and G2 = (V2, E2, l2), and a vertex map f : V1 →

V2 ∪ {vn
}. A source edge (u, u′) ∈ E1 is preserved under f if

(f (u), f (u′)) ∈ E2. A target edge (v, v′) ∈ E2 is preserved under f
if there exists and edge (u, u′) ∈ E1 such that v = f (u) and v′

=

f (u′).

Let E ⊆ E1 and E ′
⊆ E2 denote the sets of preserved source

and target edges under the vertex map f . The vertices in V =⋃
(u,u′)∈E{u, u

′
} and V ′

=
⋃

(v,v′)∈E′{v, v′
} are also preserved source

and target vertices. Obviously, the graphs G = (V , E) and G′
=

(V ′, E ′) are structurally isomorphic. Thus, the graph G = (V , E)
composed of f ’s unlabeled preserved edges E and their associated
unlabeled vertices V is a common sub-structure of G1 and G2 gener-
ated by f . This common sub-structure can be disconnected and is
not unique in the sense that different maps can determine it.

Example 2. Consider the graphs G1 and G2 in Fig. 1. Define three
maps f1, f2, f3 : V1 → V2 ∪ {vn

} as: f1(V1) = {v1, v2, v3, v4},
f2(V1) = {v1, v3, v4, v2} and f3(V1) = {vn, v4, v3, v2}. Fig. 2 shows
f3. The common sub-structure generated by f3 is given as: G′′′

=

({u2, u3, u4}, {(u2, u3) (u2, u4), (u3, u4)}), and those generated by f1
and f2 are also given as: G′

= S(G1) and G′′
= G′′′, resp. G′ is both

edge and node maximum since it has 4 edges and 4 vertices.

Theorem 1 formulates g(f) of a vertex map f in terms of its
generated common sub-structure, and the unpreserved edges and
vertices of G1 and G2.

Theorem 1. Given two graphs G1 = (V1, E1, l1) and G2 =

(V2, E2, l2), and a vertex map f : V1 → V2 ∪ {vn
}. Let G = (V , E)

be the common sub-structure generated by f , and Gl1 ⊆ G1 and
Gl2 ⊆ G2 be the G’s corresponding subgraphs of G1 and G2 obtained
after recovering labels. The edit cost g(f) is given in terms of G as:

g(f) = cf (Gl1 ,Gl2) + |V2 \ f (V1)| + λ +

2∑
i=1

(|Ei| − |E|), (3)

where cf (Gl1 ,Gl2) is the common sub-structure edit cost, V2 \ f (V1) is
the set of unmatched target vertices, and λ = 0(L(V1\V), L(f (V1)\V)).

Proof. See [18]. ■

Based on Theorem 1, the edit cost g(f) of a vertex map f can be
easily computed once the common sub-structure generated by f is
identified.

Example 3. Consider the vertex maps f1, f2 and f3 defined in
Example 2. f3 induces 8 edit operations; it can be given in terms
of its generated common sub-structure as: a deletion of the un-
preserved edge (u1, u2), a relabeling of the unpreserved vertex u1
(equivalent to u1 deletion), four relabeling operations on the com-
mon sub-structure (two on the vertices u2 and u3, and two on the
edges (u2, u4) and (u3, u4)), a vertex insertion to correspond to the
unmatched target vertex v1, and an edge insertion to correspond
to the unpreserved target edge (v1, v2). Similarly, g(f1) = 5 and
g(f2) = 2. Thus, the edit path induced by f2 is the optimal one.

Example 3 shows that (1) a non-maximum common sub-
structure can induce an edit cost less than that of a maximum one;
(2) a common sub-structure can induce different edit costs, which
are based on its generating maps.

Algorithm 2: CSI_GED(G1,G2)
1: Enumerate all CSIs of G1 and G2;
2: for each CSI f do
3: compute g(f) as in Eq. (3);
4: keep track of minimum g(f);
5: output the minimum g(f);

As such, a novel approach to graph edit similarity computation
can be proposed. This approach suggests to enumerate all common
sub-structure isomorphisms (CSIs for short) of G1 and G2, and
calculate for each CSI its induced edit cost as in Eq. (3). The min-
imum of these costs is then returned as graph edit distance. This
approach is named CSI_GED (which stands for the bold letters in:
Common Sub-structure Isomorphisms based Graph Edit Distance)
and outlined in Algorithm 2. Theorem 2 shows the completeness
of CSI_GED.

Theorem 2. Given two graphs G1 and G2. CSI_GED(G1,G2) returns
the edit distance between G1 and G2.

Proof. Weprove by showing that enumerating all CSIs between G1
and G2 is sufficient and necessary to get their graph edit distance.
Sufficiency: Every vertexmap betweenG1 andG2 defines a CSI and
induces an edit pathwhich can be determined in the context of the
CSI’s associated common sub-structure (Theorem 1).
Necessity:Given any edit path P , themaximum common subgraph
isomorphism between G and G2 defines a CSI between G1 and G2,
where G is the graph obtained from G1 after applying the deletion
and relabeling operations appearing in P . ■

CSI_GED makes it possible to cut the overhead of computing
g(f) of each vertex map f . Unfortunately, similar computations
are needed by any vertex-based mapping method enumerating
CSIs. In such methods [6,22,23] a target vertex matches a source
vertex if their connections with the previously matched vertices
are consistent. To check consistency, computations similar to that
of calculating the implied edge edits (Algorithm 1) are required.
Meeting this challenge, CSI_GED constructs CSIs throughmapping
edges instead of vertices. We next show that mapping edges eases
the consistency checking problem. We also show that the space of
CSIs is considerably smaller than the full edge mapping space, and
smaller than the vertex-based mapping space on real data graphs.

4.1. CSIs enumeration

Initially, to match edges, any target edge is considered as an
ordered-pair of vertices. Hence, both the target edge e = (v, v′) ∈

E2 and its reverse er = (v′, v) are possible matching candidates.
Let Ẽ2 = {e, er : e ∈ E2} be an extended set of target edges. We

96 K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106

say that a target edge e′
= (v, v′) ∈ Ẽ2 matches a source edge

e = (u, u′) ∈ E1, denoted e → e′, iff v and v′ are matched with u
and u′, resp. Lemma 1 gives the properties that any edgemapmust
satisfy when it comes to identify a common sub-structure.

Lemma 1. Given two graphs G1 = (V1, E1, l1) and G2 = (V2, E2, l2).
Themap f : E1 → Ẽ2∪{en}, where en is a null edge with l2(en) /∈ Σ , is
an edge map iff e → f (e), ∀e ∈ E1. The edge map f defines a common
sub-structure if (1) it only allows many source edges to be mapped
to en; and (2) for any two adjacent source edges e = (u, u′) and
e′

= (u, w), if f (e) ̸= en and f (e′) ̸= en then they must be consistent
on matching the connecting vertex u.

Proof. First, since a common sub-structure does not have to
contain any particular edge, we can map one or more edges to
the null edge (condition 1). Condition 2 ensures that structural
connectivity must be preserved by the map. ■

Lemma 1 shows that the space of CSIs is much smaller than
the original space. In what follows, each CSI is represented as a
multiset of indexed edges f (E1) = {ei1 , . . . , ei|E1 |

}, where each eij –
the matching edge of ej ∈ E1 – is chosen from a finite possible set
Pj ⊆ Ẽ2 ∪{en}, and en is the only edge that can be repeated in f (E1).

CSI_GED enumerates CSIs while traversing the edge mapping
space using backtracking. Backtracking views edge maps as ar-
ranged in a tree-like structure, where each tree node corresponds
to a partial edge map of length equal to the depth of that node.
Backtracking starts with an empty map f0 = {} and extends it
one edge at a time as the search space is traversed. Given a partial
edge map fl = {ei0 , ei1 , . . . , eil−1} of length l, the possible values
for the next extension eil comes from a set Cl ⊆ Pl called the
combine set. If e′

∈ Pl − Cl, then nodes in the subtree with root
node fl+1 = {ei0 , ei1 , . . . , eil−1 , e

′
} will not be considered by the

backtracking algorithm. Since such subtrees have been pruned
away from the original search space, the determination of Cl is also
called pruning. Algorithm 3 outlines the method. The main loop in
CSI-backtrack tries to extend fl with every edge e′ in the current
combine set Cl. Line 5 computes fl+1, which is simply fl extended
with e′. e′ and its reverse e′

r
are then marked as matched at Line

6. In Line 8, the new possible set of extensions Pl+1 is extracted
which consists only of target edges e ∈ Ẽ2 that are not matched
yet. A new combine set consisting of all valid extensions is then
created for the next pass at Line 9. A target edge is a valid extension
if its end vertices are conformingwith the previouslymatched ones
(Lemma 1).2 Thus, the combine set Cl+1 comprises those edges in
Pl+1 that produce a common sub-structure when used to extend
fl+1. Any edge not in the combine set refers to a pruned subtree.
Line 10 recursively calls CSI-backtrack for each extension. At
Line 11, when all source edges are matched, the map is added
to CSI – the set of all CSIs. Theorem 3 gives an upper bound
estimation on the size of CSIs space.

Theorem 3. The space of CSIs is of size O(|E2| × (|V2|

2 − 2)! ×

(d − 1)|E1|−
|V1 |

2), where d = maxu∈V2 (deg(u)) – the maximum vertex
degree in the target graph.

Proof. See [18]. ■

Theorem 3 shows that the space of CSIs is much smaller than
O(|V2|

|V1|)) – the size of vertex-based mapping space – especially
when the graphs are sparse,3 because in sparse graphs |E1| is very

2 Edge validity is easily checked by maintaining a vertex mapM with each edge
map f , to store the matching vertices of already matched edges. When (v, v′) ∈ E2
extends f for (ui, uj) ∈ E1 , the nonempty slot M(i) or M(j) must be equal to v or v′ ,
resp.
3 Graph density is given by 2|E|

|V |(|V |−1) , i.e., the number of edges in the graph
proportion to the number of edges if the graph is complete.

Algorithm 3: CSIs_Enum(G1,G2)
1 1: CSI = ∅; /*a set to hold all CSIs*/
2 2: CSI-backtrack(∅, Ẽ2 ∪ {en}, 0);
3 3: return CSI;
CSI-backtrack(fl, Cl, l)
4: for each e′

∈ Cl
5: fl+1 = fl ∪ {e′

};
6: if e′

̸= en then mark e′ and e′
r
as matched;

7: if l < |E1| − 1 then
8: Pl+1 = {e : e ∈ Ẽ2 and e is unmatched};
9: Cl+1 = CSI-combine(fl+1, Pl+1);
10: CSI-backtrack(fl+1, Cl+1, l + 1);
11: else CSI = CSI ∪ {f }; /*f is a complete CSI*/
12: fl+1 = fl+1 \ {e′

}; /*restore state(lines 12–13)*/
13: if e′

̸= en then mark e′ and e′
r
as unmatched;

//Can fl+1 combine with edges in Pl+1?
CSI-combine(fl+1, Pl+1)
14: C = ∅;
15: for each e ∈ Pl+1
16: if e is a valid extension then C = C ∪ {e};
17: return C ∪ {en};

close to |V1|, d ≪ |V2|, and (|V2|

2 − 2)! ≪ (|V2|

2 − 2)
|V1 |

2 . Only when
the target graph is complete, i.e., d = |V2| − 1, the vertex and
edge spaces have almost the same size. In cases where both graphs
are very dense, i.e., |E1| ≫ |V1| and d approaching |V2|, the vertex
mapping space becomes smaller.

Example 4. Fig. 3 shows part of the full edge mapping search
tree of the graphs G1 and G2 given in Fig. 1, where nodes at level
i indicate the target edges possible for matching the source edge
ei ∈ E1. As shown, a source edge matches a target edge at a
time according to the given order of source edges. So, inner tree
nodes correspond to partial edgemaps and leave nodes correspond
to complete ones. Backtracking search space can be considerably
smaller than the full space. For example, it starts with f0 = {} and
C0 = Ẽ2 ∪ {en}. At level 1, each item in C0 is added to f0 in turn.
For example, e1 = (v1, v2) is added to obtain f1 = {e1}. Then e1
and er1 are marked as matched. The possible set P1 of e1 comprises
all target edges in Ẽ2 that are not matched yet. However, since
e2 = (v2, v3), e4 = (v2, v4) and en are the only valid extensions,
the subtrees rooted at er2, e3, e

r
3 and er4 are pruned. Considering this

common sub-structure isomorphism restriction, the search space
rooted at f = {e1} is reduced from 139 edge maps to only 13
CSIs to examine for edit distance. The whole search space of this
example contains 51 CSIs in total to examine. Contrast this with
|V2|

|V1|+1
= 45

= 1024 vertex maps that need to be examined
in A∗-based methods. There is around 95% reduction of the search
space.

Unfortunately, the number of CSIs becomes quite large with
large graphs. Large search space is amajor challenge for backtrack-
ing. To meet this challenge and scale CSI_GED, three heuristics,
described below, are developed to cut off the search space.

5. Optimizing CSI_GED

Since CSIs are enumerated in a depth first manner, some CSIs
will be available early in the search before others. The edit costs
induced by the enumerated ones are in fact upper bounds of graph
edit distance, and can be used to cut branches of the backtracking
tree at the nodes associated with (expected) higher edit costs. To
facilitate this pruning, instead of computing the edit cost g(f) in-
duced by each CSI f in a separate, subsequent phase as in Algorithm

K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106 97

Fig. 3. Edge mapping/backtrack search tree. Black edges are considered by backtracking and dashed ones show pruned branches. en: null edge.

2, incremental computation of g(f) must be supported. Theorem 1
shows that g(f) is computed using five independent costs. The
first cost, cf (Gl1 ,Gl2), calculates the edits on the two subgraphs
Gl1 ⊆ G1 and Gl2 ⊆ G2 which are identified based on the common
sub-structure G = (V , E) of G1 and G2. The second and third
costs calculate the number of unpreserved source and target edges,
which are |E1| − |E| and |E2| − |E|, resp. The last two costs come
from the edits on the source and target vertices which are not in
G: |V2 \ f (V1)| vertex insertions for the unmatched target vertices
(the fourth cost) and the relabeling required on the unpreserved
source vertices (the last cost).

Only the first two costs could be easily injected into the CSIs
construction process. Given a search state, the common sub-
structure identified at this state is expanded if a valid map exten-
sion is found; otherwise, it remains unchanged and the source edge
is deleted by matching it with en. Thus, having the edit cost on the
valid extension increments g(f) based on the first cost value. Also,
deleting the source edge increments g(f) based on the second cost
value. The third and fifth costs could also be injected but at extra
computations (an easy injection of the third cost will be given later
in this section); thus they remain to be calculated subsequently,
i.e., after completing the map. Since ∥V1|−|V2∥ (a fraction of the
fourth value) is global and independent of any CSI, it could be used
as an initial cost for each CSI. The new code of CSI_GED after cost
injection is given by Algorithm 4. It is a straightforward extension
of Algorithm 3. The main addition is the injection of g(f) based on
the first two cost values to eliminate branches of the backtracking
tree. In addition to the main steps of Algorithm 3, the new code
starts with an hypothetical upper bound A = ∞ and an initial cost
IC = ∥V1|−|V2∥ assigned to every CSI f . It adds a step to update
g(f) after the map extension (line 7) and a step to update A (lines
14–15). To include pruning based on the upper bound value, a new
condition is added to the main pruning step at line 21. The edge
matching cost emc(e → e′) that is used for incrementing the first
two costs is defined as follows.

Definition 5 (Edge Matching Cost). Given a source and target
edges e = (u, u′) and e′

= (v, v′). The cost of assigning e′ to e,
called edge matching cost and denoted emc(e → e′), is given as:

emc(e → e′) =
{

c(u → v) + c(u′
→ v′) + c(e → e′), e′

̸= en;
1, e′

= en

where the cost function c returns 0 if the twomatching items have
identical labels, and 1 otherwise.4

It is clear that the two cases in Definition 5 update g(f) on the
first two cost values, resp.

4 Notice that since we are matching edges, based on Definition 5 it is possible
that a target vertex be assigned more than once to a source vertex. We should take
care of this in the implementation and evaluates the cost of matching vertices only
once.

Algorithm 4: CSI_GED(G1,G2)
1 (* indicates a new line not in Algorithm 3, and
2 ∆ = λ + |V2 \ f (V1)| − ∥V1|−|V2∥).
1: *A = ∞; //initial upper bound on GED(G1,G2).
2: *IC = ∥V1|−|V2∥; //initial edit cost for each CSI.
3: CSI-backtrack(∅, Ẽ2 ∪ {en}, 0, IC);
4: return A;
CSI-backtrack(fl, Cl, l, g(fl))
5: for each e′

∈ Cl
6: fl+1 = fl ∪ {e′

};
7: * g(fl+1) = g(fl) + emc(el+1 → e′);
8: if e′

̸= en thenmark e′ and e′
r
as matched;

9: if l < |E1| − 1 then
10: Pl+1 = {e : e ∈ Ẽ2 and e is unmatched};
11: Cl+1 = CSI-combine(fl+1, Pl+1, g(fl+1));
12: CSI-backtrack(fl+1, Cl+1, l + 1, g(fl+1));
13: else /*a complete CSI*/
14:* if g(fl+1) + |{e ∈ E2 : e is unmatched}|+∆ < A
15:* A = g(fl+1) + |{e ∈ E2 : e is unmatched}|+∆ ;
16: fl+1 = fl+1 \ {e′

}; /*restore state (lines 16–17)*/
17: if e′

̸= en thenmark e′ and e′
r
as unmatched;

18:* g(fl+1) –= emc(el+1 → e′);
CSI-combine(fl+1, Pl+1, g(fl+1))
19: C = ∅;
20: for each e ∈ Pl+1
21: * if e is valid & g(fl+1) + emc(el+2 → e) < A
22: C = C ∪ {e};
23: return C ∪ {en};

To boost pruning based on upper bounds, a sum of g(f) with a
lower bound on the edit distance of unmapped edges and vertices
could be used. However, it is not practical to compute a lower
bound at every tree node of an ever expanding search tree. Here,
new efficient pruning heuristics are developed. The first is an
ordering heuristic, arranges the search space in such away that
enabling fast finding of tighter upper bounds (Section 5.1),whereas
the second heuristic maximizes the edit cost initially assigned
to each CSI, by setting it to a global lower bound on graph edit
distance (Section 5.2). The third is a lookahead heuristic, enabling
the prediction of edit costs some levels ahead in the search (Section
5.3). Such heuristicswill allow tree nodes accompaniedwithworse
edit costs than the best seen upper bounds to be encountered early
in the search; thus cutting many branches from consideration.
Next, we detail each of these heuristics.

5.1. Ordering heuristic

Given that every valid extension of every partial CSI of size l
comes from the same set of target edges Ẽ2 (line 10, Algorithm

98 K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106

Fig. 4. Example of two edge stars s(u3, u2) and s(v3, v4).

4), Ẽ2 could be ordered at each search level l in such a way that
those CSIs which produce tighter upper bounds are enumerated
first. The ordering heuristic we use arranges Ẽ2 at a search level l in
increasing order of C(el, e′), where C computes an approximation of
GEDgiven that the target edge e′ is assigned to the source edge el. In
order to define C, edge star – a local structure around an edge – and
star matching cost will be first defined.

Definition 6 (Edge Star). Given a graph G and an edge e ∈ G. The
edge star of e, denoted s(e), is a subgraph consisting of e, called the
star core, and edges adjacent to e.

Definition 7 (Star Matching Cost). Given two source and target
edges e = (u, u′) and e′

= (v, v′). The star matching cost of s(e)
and s(e′), denoted by smc(e, e′), is given as:

smc(e, e′) = emc(e → e′) + 0(LEu, LEv) + 0(LEu′ , LEv′),

where LEx is the set of labels of edges incident on the vertex x,
excluding the core’s label.

Note that the outer vertices of each edge star are not involved
in computing the star matching cost.

Definition 8 (Star Remaining Graph). Given a graph G and an edge
star s(e) of e ∈ G. The star remaining graph of s(e), denoted Ge, is
defined to be the graph obtained after removing s(e) from G.

Given two source and target edges el and e′. LetGel
1 = (V ′

1, E
′

1, l1)
and Ge′

2 = (V ′

2, E
′

2, l2) be the star remaining graphs of s(el) and s(e′),
resp. The cost function C(el, e′) is defined to be the star matching
cost of s(el) and s(e′) in addition to the global lower bound on the
edit distance between the stars’ remaining graphs, i.e., C(el, e′) =

smc(el, e′)+ 0(LV ′
1
, LV ′

2
)+ 0(LE′

1
, LE′

2
).

Example 5. Consider the graphs G1 and G2 in Fig. 1, and the source
and target edges e = (u3, u2) and e′

= (v3, v4). Fig. 4 shows the
edge stars s(e) and s(e′). The star remaining graphs of e and e′ are
given as: Ge

= ({u1, u4}, ∅, l1) and Ge′
= ({v1, v2}, {(v1, v2)}, l2).

The matching cost of s(e) and s(e′) is calculated as: smc(e, e′) =

emc(e → e′) + 0(LEu3 , LEv3) + 0(LEu2 , LEv4) = 2 + 1 + 1 = 4. The
vertex and edge global bounds on GED of the remaining graphs are
calculated as 0 and 1, resp. Thus, C(e, e′) = 4 + 0 + 1 = 5. If the
source edges are processed as in the order E1 = {(u1, u2), (u2, u3),
(u3, u4), (u4, u2)}, then the target edges at level 2, e.g., are ordered
based on C as: {(v3, v4), (v3, v2), (v2, v3), (v2, v1), (v4, v3), (v2, v4),
(v4, v2), (v1, v2)}, where C is calculated for every target edge w.r.t.
the source edge (u2, u3), and given as: {2, 2, 3, 4, 5, 5, 6, 6}.

5.2. Maximizing initialization cost

It is possible to maximize the initial cost assigned to each CSI
to include graph size as well as graph order differences. That is,
the initial cost could be refined to become IC = ∥V1|−|V2∥ +

∥E1|−|E2∥. Adding the difference of graph sizes to the initial cost
entails modifying the edge matching cost emc , especially on the
deleted source edges. That is, in the process of matching edges,

instead of assessing edge deletion as of edit cost one (Definition 5),
it is modified taking into account the different values of |E1| and
|E2|. Theorem 4 defines the new edge deletion cost.

Theorem 4. Given an empty CSI f whose initial cost g(f) =

∥V1|−|V2∥ + ∥E1|−|E2∥, the cost of deleting a source edge e while
extending f is given as:

emc(e → en) =

{ 2, |E1| ≤ |E2|;
2, |E1| > |E2| & k ≥ (|E1| − |E2|);
0, |E1| > |E2| & k < (|E1| − |E2|),

where k is the number of previously deleted source edges.

Proof. See [18] ■

In addition to maximizing the initial cost, Theorem 4 allows
smooth injection of the edit cost of unpreserved target edges, |E2|−
|E|, into the CSIs enumeration process. Algorithm 4 is modified
accordingly in order to accommodate the new initialization and
edge deletion cost. The number of unpreserved target edges is also
removed from the subsequent calculations at lines 14 and 15.

5.3. Look-ahead based pruning

Consider the graphs G1 and G2 given in Fig. 5. These two graphs
have the same order, but G1 has one extra edge. Thus, the edit cost
assigned to eachCSI is initialized to one. Consider a partial CSI f that
matches the bold edges of both graphs. Its edit cost g(f) remains
equal to one because the subgraphs associated with this common
sub-structure induce no cost. If the current best upper bound is
greater than one, it is not possible to stop extending f at this stage
based on g(f) alone. Here, we introduce another cost function g ′(f)
effective for pruning such cases, to bemaintainedwith each CSI f in
addition to g(f). This new function implements lookahead. That is,
it is able to calculate the edit cost some levels ahead in the search
tree.

Given a graph G, define for each subgraph H ⊆ G two neighbor-
hood structures, called inner and outer neighborhoods as follows.

Definition 9 (Inner & Outer Neighborhoods of a Subgraph). Given a
graph G. Let H be a subgraph of G. The inner neighborhood of H ,
denoted NI (H), is defined as: NI (H) = {(u, v) ∈ G : u, v ∈ H}. The
outer neighborhood of H , denoted NO(H), is defined as: NO(H) =

{(u, v) ∈ G : u ∈ H ∧ v /∈ H}.

Based on the inner and outer neighborhoods of a subgraph H ⊆

G, the inner and outer neighborhood of a vertex u ∈ H is defined
as: NI (u) = {(u, v) ∈ NI (H)} and NO(u) = {(u, v) ∈ NO(H)},
resp. |NI (u)| and |NO(u)| define the inner and outer degree of u ∈ H
denoted as dI (u) and dO(u), resp.

Now, given two graphs G1 and G2, and a (partial) CSI f . LetM be
the vertex map associated with f , and Gl1 ⊆ G1 and Gl2 ⊆ G2 be
the subgraphs identified based on f ’s common sub-structure. The
cost g ′(f) is defined, in terms of the inner and outer neighborhoods
of Gl1 and Gl2 , as the total of four costs: the degree cost cd on
corresponding vertices, the edge cost ce on corresponding inner
edges, the cost cr on the remaining edges, and the cost κ on vertex
relabeling of G1 and G2 taken by the CSI f . That is, g ′(f) = cd+ ce+
cr+ κ , where the degree cost cd is given as:

cd =

∑
u∈Gl1

|dO(u) − dO(M(u))| +
1
2
|dI (u) − dI (M(u))|, (4)

where the fraction 1
2 is introduced because each inner edge is used

twice in the degree calculation, one for each end vertex. The inner
edge cost ce is given as:

ce =

∑
u,u′∈Gl1

c((u, u′) → (M(u),M(u′))), (5)

K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106 99

Fig. 5. Example of two graphs G1 and G2 .

where (u, u′) ∈ NI (Gl1) and (M(u),M(u′)) ∈ NI (Gl2), and the cost
function c returns 0 if themapping edges have identical labels, and
1 otherwise. The remaining edge cost, cr , is given as:

cr = |n1 − n2|, (6)

where ni = |Ei \ (NI (Gli) ∪ NO(Gli))|, i = 1, 2. The vertex relabeling
cost, κ , is given as:

κ = max(0(LV1 , LV2), h + ∥V1|−|V2∥), (7)

where h is the number of vertex relabeling on matched vertices.

Theorem 5. Given two graphs G1 and G2, and a complete CSI f . For
any partial CSI f ′ of f , g ′(f ′) ≤ g(f).

Proof. The partial map f ′ constitutes a common structure which is
a substructure of the one identified by f . The edit cost onmatching
edges of the smaller structure are taken care by Eq. (5). Eq. (5) also
evaluates the cost on inner edges that are sure to match at next
tree levels, and will be part of the bigger structure. Source inner
and outer edges that are to be deleted in the future because the
counterpart target edges are not exist, are considered by inner and
outer degree differences (Eq. (4)), resp. The inner and outer degree
differences also consider the edge additions that will be taken
place at the source graph because of the existence of counterpart
target edges. Edges that are neither inner nor outer in both graphs
and need to be added to or to be deleted from the source graph
because of the missing counterparts, are taken care by the edge
difference in Eq. (6). Finally, since 0(LV1 , LV2) and ∥V1|−|V2∥ are
both global lower bounds on vertex relabeling of G1 and G2, the
vertex relabeling taken by a complete CSI f is at least any of these
values. Because the h vertex relabeling performed by the partial
map f ′ are done on vertices other than those in the difference
∥V1|−|V2∥, h is added to ∥V1|−|V2∥. Thus, the number of vertex
relabeling of f is at least κ (Eq. (7)). ■

Example 6. Consider G1 and G2 in Fig. 5. Let f be the partial CSI
that matches the bold edges in both graphs, M = {v1, v2, v3, v4}

be the vertex map associated with f and G be the common sub-
structure identified by f . The inner neighborhoods ofGl1 andGl2 are
given as: NI (Gl1) = {(u1, u2), (u1, u3), (u1, u4), (u2, u4), (u3, u4)}
and NI (Gl2) = {(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4)}, resp.
The outer neighborhoods are NO(Gl1) = E1 \ (NI (Gl1) ∪ {(u5, u6)})
and NO(Gl2) = E2 \ NI (Gl2), resp. The inner and outer degrees of
a vertex u1, e.g., are given as: dI (u1) = 3 and dO(u1) = 1. The
lookahead cost g ′(f) = 4 + 1 + 1 + 2 = 8, where the degree
cost is calculated as: cd = (1+

1
2)+ (0+

1
2)+ (1+

1
2)+ (0+

1
2) = 4,

the inner edge cost as: ce = 0 + 0 + 0 + 1 = 1, the remaining
edge cost as: cr = |1 − 0| = 1, and the vertex relabeling cost as:
κ = max(11 − 9, 0 + 0) = 2. Hence, if the current upper bound
value is, e.g., 7, the subtree rooted at f could be pruned based on
g ′(f).

Besides being very effective for pruning the search space, com-
puting g ′(f) for any partial CSI f is not computationally-demanding
as the costs cd, ce and cr (Eqs. (4)–(6)) are easy to compute, and the
costly0(LV1 , LV2) (Eq. (7)) could be calculated once at the beginning
of the algorithm and be used for every CSI.

5.3.1. Improving lookahead using label indexing
The lookahead cost g ′ includes in its computation the value cd–

the degree cost on corresponding vertices of the common sub-
structures. The cost cd can be modified to include edge label com-
parison instead of just simply comparing the number of incident
edges (i.e., vertex degrees). Since edge label comparison is finer
than degree comparison, cd is guaranteed to be maximized; con-
sequently g ′. Consider Example 7, the outer degree difference
|dO(u2) − dO(v2)| on the corresponding vertices u2 and v2 does
not contribute to g ′. However, if we instead take edge label into
account during comparison, g ′ can be increased to 10 instead of
8 as two edit operations are required to modify the labels on the
outer edges of u2 and v2. Themodification of cd, denoted c ld, is given
by the following equation.

c ld =

∑
u∈Gl1

0(LNO(u), LNO(M(u))) +
1
2
|dI (u) − dI (M(u))|, (8)

Eq. (8) shows that cd is onlymodified based on the first term (outer
edge comparison). The second term of cd (inner edge comparison)
remains intact because the label comparison of inner edges is
already taken care by Eq. (4).

Though c ld may improve the lookahead pruning, it is computa-
tionally expensive to calculate 0(LNO(u), LNO(M(u))) with ever grow-
ing common sub-structures and changing of vertex’s outer neigh-
borhood. To overcome this computation challenge we construct a
set of look up tables for caching the computation as follows. Given
two graphs G1 and G2 to be compared. For each graph Gi, i =1, 2,
we calculate its neighborhood sets {LN(u)}u∈Gi , where N(u), u ∈ Gi,
is the set of u’s incident edges in Gi, i.e., N(u) = {(u, w) : (u, w) ∈

Gi}. Obviously, each of these collections initially determines the
outer neighborhoods of graph vertices. The inner neighborhood
of each vertex, on the other hand, is initially empty. Then, from
each neighborhood collection we enumerate all distinct subsets
{P(LN(u))}u∈G1 , where P(X) denote the powerset of a given set X .
It is clear that the outer neighborhood of each vertex u, LNO(u), at
any search state of CSI_GED will be one of those subsets. A look-
up table, called 0 table, is created to maintain the 0 computations
between distinct neighborhoods of the two graphs, that is, for each
two corresponding neighborhoods X = LNO(u) and Y = LNO(M(u)),
the valuemax(|X |, |Y |)−|X ∩ Y | is cached. Fortunately, the0 table
hasmanageable size because the number of distinct subsets in each
collection is not that large as many vertices in the graph share the
same neighborhood and the size of each subset is bounded by the
large vertex degree.

Given two corresponding vertices, how to locate their corre-
sponding value in the 0 table. To answer this, for each graph Gi,

100 K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106

Fig. 6. The distinct neighborhood subsets (DNs) and their position indices (N.index) of (a) G1 , (b) G2 .

Fig. 7. 0(ik, jl) for each pair of neighborhood subsets at positions ik and jl .

Fig. 8. The Accessibility Bridges of (a) G1 , (b) G2 .

Fig. 9. The transition tables of indexed subsets and edge labels.

Fig. 10. The Accessibility Bridges of (a) G1 , (b) G2 , after matching (u1, u2) with (v1, v2).

we maintain an array of size |Vi|, called Accessibility Bridge (AB)
array, to store for each vertex the position index of its current outer
neighborhood at the set of distinct neighborhoods. Using these
indices we look up the 0 table for the relevant 0 value. Since at
each iteration of CSI_GED a common sub-structure is growing by
one edge at a time, the outer neighborhoods NO(u) and NO(M(u))
of the involved vertices is also changing by one edge label at a
time. To help update the position indices of outer neighborhoods
of these vertices, another lookup table, called transition table and
denoted TG(), is created between the distinct neighborhoods and
distinct edge labels in each graph Gi. For each neighborhood set X
and an edge label a, TG(a, X) preserves the position index of the set
Y = X \ {a}, i.e., of the neighborhood set obtained after removing
the label a from X .

Example 7. Consider the graphs G1 and G2 in Fig. 1. The neighbor-
hood collections of both graphs are given as: {LN(ui)}ui∈G1 = {{a},
{a, b, b}, {a, b}, {a, b}} and {LN(vi)}vi∈G2 = {{b}, {a, b, b}, {b, b},
{a, b}}. The distinct subsets of both collections are calculated as:
{∅, {a}, {b}, {a, b}, {b, b}, {a, b, b}}. Fig. 6 shows these subsets with
their indices. The 0 values for these neighborhood subsets are
given in Fig. 7. The bridge arrays for both graphs are given in
Fig. 8. The new indices of neighborhood subsets obtained after
removing distinct edge labels, i.e. transitions tables, are given in
Fig. 9. Finally, Fig. 10 shows the new accessibility values after
matching the source edge (u1, u2) with the target edge (v1, v2).

6. Application: Graph edit similarity search problem

Graph edit distance is extensively used in the solution of graph
edit similarity search (GESS) problem. Given a set of data graphs
D = {G1,G2, . . . ,G|D|}, the GESS problem is to retrieve data graphs
that are similar to a given query graphQ within an edit threshold τ ,
that is, retrieve Gi if GED(Q ,Gi) ≤ τ . The well-known approach to
this problem, called filter-and-verify, is to first filter unpromising
data graphs based on lower bounds of GED and then verify the re-
maining ones using the expensive edit distance computations [7,9,
10,16,24,34,35]. Upper bounds of GED could also be used to exempt
some valid candidates from the expensive verification phase [7].
CSI_GED can benefit GESS problem by two ways: (1) as a verifier
with any GESS filtering method5; (2) as a stand-alone GESS query
method.

Incorporating τ into the computation can further optimize
CSI_GED as follows. First, the possible set Pl at each search level
l could be refined by removing a target edge e′ if C(el, e′) is greater
than τ . Indeed, those edges would not be part of any optimal CSI
between the query and answering graphs. Likewise, the combine
set Cl can be further refined by adding a new pruning condition
based on τ : A valid target edge e′ is removed from the combine set
Cl if, in addition to the upper bound based pruning, g(f)+emc(el →

5 Deploying CSI_GED as a verifierwith the filter-and-verify GESS systemswhich
utilize tighter upper-bounds for validity checking of candidates would give ultra-
fast response to the GESS queries as these upper-bounds could be used to initialize
CSI_GEDwhen verifying those candidates.

K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106 101

e′) > τ , or if the lookahead cost g ′(f) of f after being extended
based on e′ is greater than τ , i.e. if g ′(f) > τ . Similar to the previous
argument, those edges would not be part of any optimal CSI to the
answering graphs. Finally, getting a complete CSI f with g(f) at
most τ stops the algorithm, and the data graph is reported as an
answer graph. This is due to the fact that g(f) is an upper bound
of graph edit distance, and in this case, the data graph is surely
lying within a distance τ from the query. For data graphs whose
edit distance is far less than τ , halting the algorithm becomes
very quick. Adding new steps to accommodate these optimizations
makes CSI_GED an efficient GESS query method.

7. Experimental results

Here, we present a comprehensive experimental study on
CSI_GED. All experiments were performed on a 3 GHz Dual Core
CPU with 4G RAM running Linux. CSI_GED is implemented in C++
with STL library support and compiled with GNU GCC.

Benchmark Datasets: We chose several real and synthetic
graph datasets for testing the performance of CSI_GED. The real
graphs are known to be sparse while the synthetic ones are always
dense.

(1) AIDS (http://dtp.nci.nih.gov/docs/aids/aidsdata.html) is a
DTP AIDS Antiviral Screen chemical compound dataset. It
consists of 42,687 chemical compounds, with an average of
46 vertices and 48 edges. Compounds are labeled with 63
distinct vertex labels but the majority of these labels are H,
C, O and N. The total number of distinct edge labels is 3.

(2) Linux (www.comp.nus.edu.sg/~xiaoli10/data/segos/linux_
segos.zip) is a Program Dependence Graph (PDG) dataset
generated from the Linux kernel procedure. PDG is a static
representation of the data flow and control dependency
within a procedure. In the PDG graph, an vertex is assigned
to one statement and each edge represents the dependency
between two statements. PDG is widely used in software
engineering for clone detection, optimization, debugging,
etc. The Linux dataset has in total 47,239 graphs, with an
average of 45 vertices each. The graphs are labeled with 36
distinct vertex labels, representing the roles of statements in
the procedure, such as ‘‘declaration’’, ‘‘expression’’, ‘‘control-
point’’, etc. The edges are unlabeled.

(3) Chem_1M is a chemical compound dataset. It is a subset of
PubChem (https://pubchem.ncbi.nlm.nih.gov) and consists
of one million graphs. It has 23.98 vertices and 25.76 edges
on average. The number of distinct vertex and edge labels
are 81 and 3, resp.

(4) Protein (http://www.iam.unibe.ch/fki/databases/iam-grap
h-database/)is a dataset from the Protein Data Bank, con-
stituted of 600 protein structures, with an average of 32.63
vertices each. Vertices represent secondary structure ele-
ments and are labeled with their types—helix, sheet, and
loop. Edges are labeled with lengths in amino acids.

(5) Synthetic is artificially generated data by GraphGen (http:
//www.cse.ust.hk/graphgen/) GraphGen creates a collection
of labeled, undirected and connected graphs. It allows us to
specify various parameters such as data size, the average
graph density, graph size, and the number of distinct vertex
labels; e.g., Syn10K.E30.D10.L5 dataset contains 10K graphs;
the average size of each graph is 30; the density of each
graph is 10%; and the number of distinct vertex and edge
labels are 5 and 2, resp. A number of synthetic datasets are
used in the experiments in order to see the performance
changes with varying density values.

Query sets: 100 graphs were randomly selected from each dataset
as its query graphs.

Due to the hardness of GED computations, small subsets of AIDS
graphswere used for testing the GESS querymethods in [7,9,10,16,
24,34], whereas the entire Linux dataset was only used for testing
the filtering power of methods in [35,36]. Chem_1M was recently
used for testing graph edit similarity joins in the cloud [37]. To
carry out a comparative study on our machine, we chose 10K AIDS
graphs, 100K Chem_1Mgraphs, and put 10K s as time limit for each
algorithm to run. Besides, we ran CSI_GED on the whole real data;
results are shown in the scalability study.

7.1. Evaluation against graph order

In these experiments we compare the performance of CSI_GED
with the recent vertex-based method DF-GED [25] and the state-
of-art A∗-based method [15]. These experiments were performed
against graph order to show how large the graph would be for
each algorithm to work with on our machine. Six groups of three
graphs each were randomly selected from each dataset such that
the graphs in each group have consecutive graph order in the
range: 8 ± 1, 11 ± 1, 14 ± 1, 17 ± 1, 20 ± 1, and 23 ± 1, resp.

Fig. 11 plots the average running time of each algorithm on
each group, where the graphs in each group are compared with
each other in a self-join manner. It also shows the enumeration
time taken byCSI_GED algorithmagainst graph order, represented
by CSI_GED-Enum. The figure shows that A∗ and DF-GED fail to
run on higher-order groups, i.e., on groups consisting of graphs
with order well beyond 12 vertices for A∗ and 15 vertices for DF-
GED, for all datasets. The failure of A∗ is attributed to the lack of
memory—4GBof physicalmemory is not enough to store the huge
number of partial vertex maps needed by A∗. Though the memory
footprint of DF-GED is low, it does not show better performance
and much scalability over A∗. DF-GED’s failure is attributed to the
huge time required by upper bound computations. In contrast,
the low memory requirements and the efficient pruning capa-
bilities allow CSI_GED to run efficiently in any computational
environment. Moreover, on groups where A∗ and DF-GED can
run, CSI_GED significantly outperforms both competitors. It starts
with 2–3 orders of magnitude performance gap and increases with
graph order to become over three orders of magnitude. One of
the main reasons of the increasing performance gap is that A∗

and DF-GED explore exponentially growing space of vertex maps
with respect to graph order. Finally, the CSI_GED-Enum curve
shows that much of the CSI_GED’s time is consumed by the map
enumeration process. Thus, we can conclude that CSI_GED is a
highly efficient algorithm for computing the edit distance on small
graphs and scales gracefully with larger ones.

7.2. Effect of heuristics

7.2.1. Effect on processing time
In order to show the influence of the different heuristics on the

performance of CSI_GED, we injected these heuristics one by one
into the base algorithm and monitored the speedup achieved by
each heuristic. We use the term ‘‘Basic’’ for the baseline algo-
rithmwithout applying anyheuristics. ‘‘+h1’’ denotes the improved
version of Basic by incorporating the first heuristic (Section 5.1).
‘‘+h2’’ denotes the improved version of +h1 by incorporating the
second heuristic (Section 5.2). ‘‘+h3’’ denotes the improved version
of +h2 by incorporating the third heuristic (Section 5.3). These
experiments are carried out in the context of graph edit similarity
search. Fig. 12 plots the time of each algorithm version at different
τ on the different datasets. It is shown that Basic is unable to
finish within the time limit on AIDS_10K at τ > 4, on Chem_100K
at τ > 3 andon the synthetic datasets at τ > 6. It is also shown that

http://dtp.nci.nih.gov/docs/aids/aidsdata.html
http://www.comp.nus.edu.sg/~xiaoli10/data/segos/linux_segos.zip
http://www.comp.nus.edu.sg/~xiaoli10/data/segos/linux_segos.zip
http://www.comp.nus.edu.sg/~xiaoli10/data/segos/linux_segos.zip
https://pubchem.ncbi.nlm.nih.gov
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.iam.unibe.ch/fki/databases/iam-graph-database/
http://www.cse.ust.hk/graphgen/
http://www.cse.ust.hk/graphgen/
http://www.cse.ust.hk/graphgen/

102 K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106

Fig. 11. Performance comparison with A∗ algorithm against graph order.

Fig. 12. Effect of heuristics on the performance of CSI_GED.

each heuristic enabled our algorithm to finish at larger τ within the
time limit. For example, on AIDS_10K, +h1 could finish at τ = 5,
+h2 could finish at τ = 7 and +h3 could finish at τ = 10.Moreover,
the time of +h3 at τ = 8 is better than that of Basic at τ = 4.

The speedup achieved using each heuristic is clear from the fig-
ure; +h3 brought around 100x speedup over basic on Chem_100K
at τ = 3, 200x on AIDS_10K at τ = 4, 7x on Syn10K.E30.D10.L5
at τ = 6 and 26x on Syn10K.E30.D30.L5 at τ = 6. Even though
there is no speedup by +h3 over +h2 at small τ , the performance
gap becomes clear at τ > 4 on the real datasets and at τ ≥ 6 on
the synthetic ones. This performance boost from basic to +h3 is
attributed to the efficient and effective pruning strategies.

7.2.2. Effect on search space
We also estimated effects of the different heuristics on the

search space. In this experiment, we counted the number of inves-
tigated edgemaps before and after using each heuristic. By this we
can show howmanymaps have been excluded from computations
by employing a given heuristic. As previously, these heuristics have
been applied in succession, one after another, to see how much it
cuts the search space in addition to the previous ones.

Fig. 13 plots the average number of edge maps investigated
by each algorithm version on the different datasets at different
τ . The figure shows that each heuristic has reduced the search
space posed by the previous algorithm version. The space cut is
remarkable for the second and third heuristics on the real data and
for the first heuristic on synthetic data. Notice, for example on the
AIDS dataset, that the search space of +h3 at τ = 4 is 104 times
smaller than that of basic and 103 times smaller than that of +h2.
The same trend occurs on the Chem_100kdataset. For the synthetic
dataset, +h1 has the most impact.

7.3. Effect of label indexing on lookahead

The data plotted for (‘‘+h3’’) in Figs. 12 and 13 include the base
lookahead pruning with the label indexing improvement (Section
5.3.1). Here, in this set of experiments, we quantify howmuch im-
provement is brought to the lookahead pruning by label indexing.
For this purpose, we show the effects on the performance of +h3
w.r.t. both edit thresholds and the number of edge labels. Two
variant of +h3 are used in the experiments labeled as ‘‘+h3 with
label indexing’’ and ‘‘+h3 without label indexing’’.

K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106 103

Fig. 13. Effect of heuristics on reducing the search space of CSI_GED.

Fig. 14. Effect of label indexing: different thresholds.

7.3.1. Effect w.r.t. edit threshold
Fig. 14 plots the total response time of +h3 variants on the

different datasets and at different τ . The figure shows that at small
values of τ , ‘‘+h3 without label indexing’’ beats ‘‘+h3 with label
indexing’’ on all datasets. However, on larger τ , label indexing
gradually increases the lookahead performance. On AIDS, for ex-
ample, lookahead with label indexing enabled CSI_GED to finish
within the time limit at τ = 10, which could not be possible
without label indexing. The initial degradation brought by label
indexing is due to the preprocessing time taken on preparing the
look-up tables. Fortunately, this time is in seconds and does not
affect the overall performance, and this preprocessing time is well
rewarded at higher τ .

7.3.2. Effect w.r.t. # of labels
Fig. 15 shows the total response time of +h3 variants on the

synthetic datasetswhen edge labels are increased in each synthetic
dataset from 6–10 labels and the edit threshold is fixed at (τ =

16). It is clear from the figure that lookahead with label indexing
enabled CSI_GED to finish within the time limit when there is only
6 edge labels, which is not possible without label indexing. Also, at
higher values of labels, there is a big improvement; it is about a
factor of 3 performance improvement.

7.4. Evaluating the first upper bound of CSI_GED

7.4.1. Approximation quality and computation time
In this experiment, in order to test the quality of the first upper

bound obtained by CSI_GED, abbreviated as FUB, we compare
it against the one obtained by the state-of-the-art upper bound
computation methods such as Assignment Edit Distance (AED)
method [29]. The comparison was done to show how far is the dis-
tance value produced by each method from the exact edit distance
GED.

To perform this experiment, 50 random graphs were selected
from each dataset, onwhich self-join is applied using eachmethod.
For each method the mean relative overestimation of the exact
graph edit distance (φo)6 is calculated. Obviously, the smaller φo is,
the better (i.e. nearer to the exact distance) is the approximation.
We also aim at investigating the mean run time φt in order to
correlate the distance accuracy achieved by each method with
run time. We use a publicly available Java implementation of AED
method [15].7

6 In [38], φo is defined for a pair of graphs G1 and G2 as: φ0 =
|λ−GED|

GED , where
λ and GED are the approximate and exact graph edit distances between G1 and G2 ,
resp.
7 http://www.fhnw.ch/wirtschaft/iwi/gmt.

http://www.fhnw.ch/wirtschaft/iwi/gmt

104 K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106

Fig. 15. Effect of label indexing: different number of edge labels.

Fig. 16. Performance comparison with GSimJoin against edit threshold.

Table 1
φo and φt using the exact and approximation algorithms.
Dataset/edit cost AIDS Chem_1M SynD10 SynD30

φo φt φo φt φo φt φo φt

GED 0% 1.89 0% 0.006 0% 18.5 0% 0.56
FUB 32.52% 0.00024 43.86% 0.00014 38.19% 0.00036 44.41% 0.00032
AED 68.13% 0.00156 78.24% 0.00102 88.31% 0.00256 54.53 0.00180

Table 1 shows φt and φo of FUB, AED and GED values for the
different datasets. First, it is clear thatφo = 0 for GED. For the others,
FUB shows smaller losses in accuracy thanAED. The accuracy losses
of FUB are almost half of those produced by AED on most of the
datasets. The only exception is SynD30 dataset, where the two
methods have closed accuracy losses; 44% for FUB compared to 54%
for AED. These results confirm that CSI_GED always produces FUB
values which are closer to the exact values than those produced
by AED on all datasets. In addition to the good results on FUB
tightness, the average run time φt of CSI_GED to get FUB values
is better than that with AED method; it is about 7 times faster. In
conclusion, we can see that CSI_GED initially provides tight upper
bound values at a very good response time compared with the
current overestimation methods.

7.4.2. Classification accuracy
In this experiment we show the impact of the first overestima-

tion (FUB) produced byCSI_GED on the task of graph classification.
Two real datasets, AIDS and Protein, are used in this experiment.
In AIDS two classes are distinguished, namely active and inactive,
which represent the activity of the chemical compounds against
HIV. In Protein, six classes (EC 1, EC 2, EC 3, EC 4, EC 5, EC 6) are
identified, corresponding to enzyme class labels from the BRENDA

enzyme database.8 For the task of graph classification, we ran-
domly selected 100 graphs from each dataset for training. For
testing 250 AIDS graphs and 100 Protein graphs are used. The AIDS
and Protein datasets with class labels are obtained from the IAM
graph database.9

Graph classification is performed with respect to the k-nearest
neighbor classifier (KNN) based on the approximate distances FUB
and AED, resp. Nearest neighbors are selected in the training set
and the independent test set is used to measure the classification
accuracy. Finally, the number of nearest neighbors has been set in
the experiments to k = 1, 3, 5, 7.

Table 2 shows the classification accuracy achieved at different
values of k using the two GED estimates. First, it is worth noticing
that changing the value of k does not affect the accuracy achieved
on the AIDS dataset using both GED estimates. On the contrary,
on the Protein dataset the classification accuracy deteriorates as k
increases. Also, the classification accuracy is comparable for most
k values using both GED estimates on the Protein dataset. On the
other hand, on AIDS, the accuracy is better with our method than
with AEDmethod at all k values, approaching the largest difference
in accuracy, △ = 16%, at k = 3 for the benefit of our method.

8 www.brenda-enzymes.org.
9 http://www.fki.inf.unibe.ch/databases/iam-graph-database.

http://www.brenda-enzymes.org
http://www.fki.inf.unibe.ch/databases/iam-graph-database

K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106 105

Fig. 17. Scalability on (1) dataset cardinality [a–d]; and (2) graph density [e].

Table 2
Classification accuracy in percentage, and accuracy difference △ of FUB when compared with AED.
Dataset/edit cost AIDS Protein

k = 1 k = 3 k = 5 k = 7 k = 1 k = 3 k = 5 k = 7

FUB 95.6% 97.6% 96% 94% 25.5% 13.5% 11.5% 9.5%
AED 84% 81.6% 81.2% 80.4% 25% 16.5% 11% 9%

△ +11.6% +16% +14.8% +13.6% +0.5% −3% +0.5% +0.5%

7.5. Evaluation as a GESS query method

Here, we evaluate CSI_GED as a GESS query method. To do
so, we compared CSI_GED with the state-of-the-art, indexing-
based GESS methods such as GSimJoin [10,16] on real and syn-
thetic graphs by varying τ .10 GSimJoin is a path-based q-gram
approach [10,16]. It filters data graphs based on the number of
matching q-gramswith those of the query, aswell as a global lower
bound on GED. GSimJoin uses indexing to accelerate bounds’
computations. It also uses an improved version of A∗ as a verifier.
The executable of GSimJoin was obtained from their authors.
As q-gram based approaches, the performance of GSimJoin is
influenced by the gram size. For the real data, the best performance
was achieved when q = 4, and when q = 1 for the synthetic ones.
This variance is attributed to the fact that graph density influences
the number of path-based q-grams. The greater the graph density,
the more path-based q-gram in a graph.

Fig. 16 shows the effect of increasing τ on the performance of
algorithms. It reports the total response time of each algorithm at

10 Other GESS methods do exist, such as SEGOS [35], Pars [24], Mixed [34] and
ML-Index [39]. Experimentation in [10,16,24] revealed that GSimJoin outper-
forms SEGOS and is slightly outperformed by Pars. For instance, Pars is reported
to be 3x faster than GSimJoin on a small subset of AIDS. Also, experimentation
in [39] show ML-Index slightly outperforms Pars. Our experimentation show that
CSI_GED is 330x faster than GSimJoin on AIDS_10K at τ = 5. Although the
executable of Mixed [34] is available, it is excluded from comparisons because it
uses an approximated GED verifier and therefore its final results are not precise.

different τ . If there is noplotted data for an algorithmat some τ val-
ues, itmeans the algorithmcouldnot finishwithin the time limit on
our machine for that value. CSI_GED shows the best performance
on all datasets. For τ values where GSimJoin can finish, CSI_GED
outperforms GSimJoin by over two orders of magnitude on the
real datasets, and by up to two orders of magnitude on the syn-
thetic ones. On synthetic data, GSimJoin starts faster at smaller
τ , then both algorithms become comparable at τ = 4. For larger
τ , CSI_GED beats GSimJoin, and the performance gap increases
with τ . In fact, the filtering quality and time of GSimJoin are
not the main reasons for this low performance, A∗ performance is
another reason. Even though a far less graph matching operations
are performed in the candidate verification phase ofGSimJoin, the
low performance of A∗ prevents GSimJoin from being competi-
tive with CSI_GED. On the other hand, CSI_GED implicitly uses
effective lower and upper bounds as well as ordering and pruning
strategies to quickly confine the search space.

7.6. Evaluating scalability

In order to test the scalability of CSI_GED against the dataset
cardinality, we ran CSI_GED and GSimJoin on different subsets
of the real datasets. Fig. 17(a–d) shows the total response time of
both algorithms on the generated subsets of AIDS at τ = 5, of
Chem_1M at τ = 7, of Linux at τ = 16 and of Protein at τ = 8,
resp. Since GSimJoin failed to run on Chem_1M, Linux and Protein
at the chosen thresholds, we could not report on its scalability for
these datasets. On AIDS dataset (Fig. 17(a)), where GSimJoin can

106 K. Gouda, M. Hassaan / Information Systems 80 (2019) 91–106

run, the two methods are not very sensitive to this parameter, and
the running time grows slowly. However, CSI_GED shows the best
performance. The performance gain is consistentwith the previous
experiments. Fig. 17(b)–(d) show that CSI_GED scales gracefully
on the other real datasets.

Fig. 17(e) shows the effect of changing the density of synthetic
graphs on the performance of algorithms at τ = 6. It shows
CSI_GED scales gracefully with this parameter. GSimJoin, on the
other hand, shows less sensitivity, and the performance gap with
CSI_GED decreases with increasing density. In fact, this efficiency
is brought to GSimJoin by A∗. Since the size of synthetic graphs is
fixed to 30 edges each, the graph order decreases with increasing
density; it is about 6 vertices at higher density. A∗ is efficient on
comparing small and dense graphs.

8. Conclusions

For a long time graph edit distance computation are performed
using the search paradigm A∗. Existing A∗-based methods have
shown inability to compare large graphs. To enable comparison on
larger and distance graphs, this paper introduced CSI_GED, a novel
edge-centric approach for computing graph edit distance through
common sub-structure isomorphism enumeration. CSI_GED uti-
lizes backtracking combined with efficient heuristics to quickly
search the edge-mapping space for those inducing optimal edit
paths. Experiments showed that CSI_GED is highly efficient for
computing graph edit distance; it outperforms the state-of-the-
art methods by over three orders of magnitude. It is also shown
that CSI_GED scales the computation gracefully to larger and
distant graphs on which current methods fail to run. Moreover,
CSI_GED is evaluated as a stand-alone graph edit similarity search
query method. The experiments showed that CSI_GED is effective
and scalable, and outperforms the state-of-the-art indexing-based
methods by over two orders of magnitude.

References

[1] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in
pattern recognition, Int. J. Pattern Recognit. Artif. Intell. 18 (2004) 265–298.

[2] A. Khan, Y. Wu, C. Aggarwal, X. Yan, Nema: Fast graph search with label
similarity, PVLDB 6 (2013) 181–192.

[3] N.H. Pham, H.A. Nguyen, T.T. Nguyen, J.M. Al-Kofahi, T.N. Nguyen, Complete
and accurate clone detection in graph-based models, in: ICSE, 2009, pp. 276–
286.

[4] K. Borgwardt, C. Ong, S. Schnauer, S. Vishwanathan, A. Smola, H.-P. Kriegel,
Protein function prediction via graph kernels, Bioinformatics 21 (2005) 47–
56.

[5] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: A versatile graph
matching algorithm and its application to schema matching, in: ICDE, 2002,
pp. 117–128.

[6] J. Raymond, E. Gardiner, P. Willett, Rascal: Calculation of graph similarity
using maximum common edge subgraphs, Comput. J. 45 (6) (2002) 631–644.

[7] Z. Zeng, A. Tung, J. Wang, J. Feng, L. Zhou, Comparing stars: On approximating
graph edit distance, PVLDB 2 (1) (2009) 25–36.

[8] H. He, A. Singh, Closure-tree: An index structure for graph queries, in: ICDE,
2006, pp. 38–49.

[9] G. Wang, B. Wang, X. Yang, G. Yu, Efficiently indexing large sparse graphs for
similarity search, IEEE Trans. Knowl. Data Eng. 24 (3) (2012) 440–451.

[10] X. Zhao, C. Xiao, X. Lin, W. Wang, Efficient graph similarity joins with edit
distance constraints, in: ICDE, 2012, pp. 834–845.

[11] A. Robles-Kelly, E. Hancock, Graph edit distance from spectral seriation, IEEE
Trans. Pattern Anal. Mach. Intell. 27 (3) (2005) 365–378.

[12] M. Neuhaus, H. Bunke, Edit distance-based kernel functions for structural
pattern classification, Pattern Recognit. 39 (2006) 1852–1863.

[13] P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100–107.

[14] K. Riesen, S. Fankhauser, H. Bunke, Speeding up graph edit distance compu-
tation with a bipartite heuristic, in: MLG, 2007, pp. 21–24.

[15] K. Riesen, S. Emmenegger, H. Bunke, A novel software toolkit for graph edit
distance computation, in: GbRPR, 2013, pp. 142–151.

[16] X. Zhao, C. Xiao, X. Lin, W. Wang, Y. Ishikawa, Efficient processing of graph
similarity queries with edit distance constraints, VLDB J. 22 (2013) 727–752.

[17] E. Schadt, S. Friend, D. Shaywitz, A network view of disease and compound
screening, Nat. Rev. Drug Discov. 8 (4) (2009) 286–295.

[18] K. Gouda,M. Hassaan, CSI_GED: An efficient approach for graph edit similarity
computation, in: ICDE, 2016, pp. 265–276.

[19] H. Bunke, On a relation between graph edit distance and maximum common
subgraph, Pattern Recognit. Lett. 18 (8) (1997) 689–694.

[20] L. Brun, B.B. Gaüzère, S. Fourey, Relationships between graph edit distance
and maximal common structural subgraph, Technical Report (GREYC), 2012,
http://hal.archives-ouvertes.fr/hal-00714879.

[21] W. Zheng, L. Zou, X. Lian, J. Yu, S. Song, D. Zhao, How to build templates for
rdf question/answering — an uncertain graph similarity join approach, in:
SIGMOD, 2015, pp. 1809–1824.

[22] E. Krissinel, K. Henrick, Common subgraph isomorphism detection by back-
tracking, Softw.-Pract. Exp. 34 (2004) 591–607.

[23] F. Abu-Khzam, N. Samatova, M. Rizk, M. Langston, The maximum common
subgraph problem: Faster solutions via vertex cover, in: AICCSA, 2007, pp.
367–373.

[24] X. Zhao, C. Xiao, X. Lin, Q. Liu, W. Zhang, A partition based approach to
structure similarity search, PVLDB 7 (3) (2013) 25–36.

[25] Z. Abu-Aisheh, R. Raveaux, J.Y. Ramel, P. Martineau, An exact graph edit
distance algorithm for solving pattern recognition problems, in: ICPRAM,
2015, pp. 271–278.

[26] L. Chang, X. Feng, X. Lin, L. Qin, W. Zhang, Efficient graph edit distance com-
putation and verification via anchor-aware lower bound estimation, 2017,
https://arxiv.org/abs/1709.06810.

[27] X. Chen, H. Huo, J. Huan, J.S. Vitter, Fast computation of graph edit distance,
2017, https://arxiv.org/abs/1709.10305.

[28] D. Blumenthal, J. Gamper, Exact computation of graph edit distance for
uniform and non-uniform metric edit costs, in: GbRPR, 2017, pp. 211–221.

[29] K. Riesen, H. Bunke, Approximate graph edit distance computation by means
of bipartite graph matching, Image Vis. Comput. 27 (7) (2009) 950–959.

[30] D. Justice, E. Hero, A binary linear programming formulation of the graph edit
distance, IEEE Trans. Pattern Anal. Mach. Intell. 28 (8) (2006) 1200–1214.

[31] K. Gouda, M. Arafa, T. Calders, Bfst_ed: A novel upper bound computation
framework for the graph edit distance, in: SISAP, 2016, pp. 3–19.

[32] K. Gouda,M. Arafa, T. Calders, A novel hierarchical-based framework for upper
bound computation of graph edit distance, Pattern Recognit. 80 (2018) 210–
224.

[33] J. Munkres, A network view of disease and compound screening, J. Soc. Ind.
Appl. Math. 5 (1957) 32–38.

[34] W. Zheng, L. Zou, X. Lian, D. Wang, D. Zhao, Efficient graph similarity search
over large graph databases, IEEE Trans. Knowl. Data Eng. 27 (4) (2015) 964–
978.

[35] X. Wang, X. Ding, A.K.H. Tung, S. Ying, H. Jin, An efficient graph indexing
method, in: ICDE, 2012, pp. 210–221.

[36] K. Gouda, M. Arafa, An improved global lower bound for graph edit similarity
search, Pattern Recognit. Lett. 58 (2015) 8–14.

[37] Y. Chen, X. Zhao, C. Xiao, W. Zhang, J. Tang, Efficient and scalable graph
similarity joins in mapreduce, Sci. World J. 2014.

[38] A. Fischer, C. Suen, V. Frinken, K. Riesen, H. Bunke, Approximation of graph
edit distance based on Hausdorff matching, Pattern Recognit. 48 (2) (2015)
331–343.

[39] Y. Liang, P. Zhao, Similarity search in graph databases: Amulti-layered index-
ing approach, in: ICDE, 2017, pp. 783–794.

Karam Gouda is a Professor at the department of Information Systems, Benha Uni-
versity, Egypt. He received his Ph.D. in computer science from Kyushu University,
Japan, in 2002. His research interest spans the areas of datamining, graphmatching
and graph data management.

Mosab Hassaan received the Ph.D. degree in computer science from Benha Univer-
sity in 2013. He is a lecturer of computer science at the Faculty of Science, Benha
University. His current research interests include data mining and databases.

http://refhub.elsevier.com/S0306-4379(18)30095-4/sb1
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb1
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb1
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb2
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb2
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb2
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb3
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb3
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb3
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb3
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb3
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb4
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb4
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb4
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb4
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb4
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb5
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb5
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb5
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb5
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb5
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb6
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb6
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb6
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb7
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb7
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb7
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb8
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb8
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb8
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb9
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb9
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb9
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb10
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb10
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb10
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb11
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb11
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb11
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb12
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb12
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb12
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb13
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb13
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb13
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb14
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb14
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb14
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb15
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb15
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb15
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb16
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb16
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb16
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb17
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb17
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb17
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb18
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb18
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb18
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb19
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb19
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb19
http://hal.archives-ouvertes.fr/hal-00714879
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb21
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb21
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb21
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb21
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb21
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb22
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb22
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb22
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb23
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb23
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb23
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb23
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb23
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb24
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb24
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb24
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb25
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb25
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb25
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb25
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb25
https://arxiv.org/abs/1709.06810
https://arxiv.org/abs/1709.10305
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb28
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb28
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb28
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb29
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb29
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb29
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb30
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb30
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb30
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb31
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb31
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb31
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb32
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb32
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb32
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb32
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb32
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb33
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb33
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb33
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb34
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb34
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb34
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb34
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb34
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb35
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb35
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb35
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb36
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb36
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb36
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb38
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb38
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb38
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb38
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb38
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb39
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb39
http://refhub.elsevier.com/S0306-4379(18)30095-4/sb39

	A novel edge-centric approach for graph edit similarity computation
	Introduction
	Related Work
	Preliminaries
	Problem Statement
	GED Computation: A* Approach

	CSI_GED: A Novel GED computation approach
	CSIs Enumeration

	Optimizing CSI_GED
	Ordering Heuristic
	Maximizing Initialization Cost
	Look-ahead Based Pruning
	Improving lookahead using label indexing

	Application: Graph edit similarity search Problem
	Experimental Results
	Evaluation Against Graph Order
	Effect of Heuristics
	Effect on processing time
	Effect on search space

	Effect of Label Indexing on Lookahead
	Effect w.r.t. edit threshold
	Effect w.r.t. # of labels

	Evaluating the First Upper Bound of CSI_GED
	Approximation quality and computation time
	Classification accuracy

	Evaluation as a GESS Query Method
	Evaluating Scalability

	Conclusions
	References

