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Abstract
A possible discrepancy has been found between the results of a neutron
interferometry experiment and quantum mechanics. This experiment suggests
that the weak equivalence principle is violated at small length scales, which
quantum mechanics cannot explain. In this paper, we investigated whether
the generalized uncertainty principle (GUP), proposed by some approaches to
quantum gravity such as string theory and doubly special relativity theories,
can explain the violation of the weak equivalence principle at small length
scales. We also investigated the consequences of the GUP on the Liouville
theorem in statistical mechanics. We have found a new form of invariant
phase space in the presence of GUP. This result should modify the density
states and affect the calculation of the entropy bound of local quantum field
theory, the cosmological constant, black body radiation, etc. Furthermore, such
modification may have observable consequences at length scales much larger
than the Planck scale. This modification leads to a

√
A-type correction to the

bound of the maximal entropy of a bosonic field which would definitely shed
some light on the holographic theory.

PACS numbers: 04.60.Bc, 04.60.Cf, 04.70.Dy, 04.80.Cc, 04.60.Kz

1. Introduction

The existence of a minimal length is one of the most interesting predictions of some
approaches related to quantum gravity such as string theory and black hole physics. This
is a consequence of perturbation string theory since strings cannot interact at distances smaller
than their size. One of the interesting phenomenological implications of the existence of the
minimal measurable length is the modification of the standard commutation relation, between
position and momentum, in usual quantum mechanics to the so-called generalized uncertainty
principle (GUP). Recently, we proposed the GUP in [1, 2] which is consistent with doubly
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special relativity (DSR) theories, string theory and black hole physics and which ensures
[xi, xj ] = 0 = [pi, pj ] (via the Jacobi identity):

[xi, pj ] = ih̄

[
δij − α

(
pδij +

pipj

p

)
+ α2(p2δij + 3pipj )

]
(1.1)

�x�p � h̄

2
[1 − 2α〈p〉 + 4α2〈p2〉]

� h̄

2

[
1 +

(
α√
〈p2〉

+ 4α2

)
�p2 + 4α2〈p〉2 − 2α

√
〈p2〉

]
, (1.2)

where α = α0/MPlc = α0�Pl/h̄, MPl = Planck mass, �Pl ≈ 10−35 m = Planck length, and
MPlc

2 = Planck energy ≈ 1019 GeV. Various versions of the GUP have been proposed by
many authors, motivated by string theory, black hole physics, DSR, etc, see e.g. [6–11],
and for investigating phenomenological implications, see [3–5]. Note that equations
(1.1) and (1.2) are approximately covariant under DSR transformations [11]. Since DSR
transformations preserve both speed of light and invariant energy scale, it is not surprising that
equations (1.1) and (1.2) imply the existence of minimum measurable length and maximum
measurable momentum

�x � (�x)min ≈ α0�Pl (1.3)

�p � (�p)max ≈ MPlc

α0
. (1.4)

It can be shown that the following definitions

xi = x0i , pi = p0i

(
1 − αp0 + 2α2p2

0

)
, (1.5)

(with x0i , p0j satisfying the canonical commutation relations [x0i , p0j ] = ih̄δij , such that
p0i = −ih̄∂/∂x0i) satisfy equation (1.1). In [1], we have shown that any non-relativistic
Hamiltonian of the form H = p2/2m + V (�r) can be written as H = p2

0/2m − (α/m)p3
0 +

V (r) + O(α2) using equation (1.5), where the second term can be treated as a perturbation.
Now, the third-order Schrödinger equation has a new non-perturbative solution of the form
ψ ∼ eix/2ah̄. When applied to an elementary particle, it implies that the space which confines
it must be discrete:

L

ah̄
= L

a0�Pl
= 2pπ + θ, p ∈ N. (1.6)

This suggests that the space itself is discrete, and that all measurable lengths are quantized
in units of a fundamental minimum measurable length (which can be the Planck length).

Considering the relativistic case in [2] was important for many reasons. The relativistic
particles are natural candidates for studying the nature of spacetime near the Planck scale.
Also, most of the elementary particles in the nature are fermions, obeying some form of the
Dirac equation. Furthermore, it is easier to investigate whether the discreteness of space
exists in two and three dimensions by studying the Dirac equation with the GUP. We have
shown that to confine the particle in the D-dimensional box, the dimensions of the box
would have to be quantized in multiples of a fundamental length, which can be the Planck
length.

The scope of this work is to investigate the effect of quantum gravity corrections on the
equivalence principle and the holographic entropy bound. In section 2, we investigate the
Heisenberg equations of motion in the presence of the GUP; we found that the acceleration
is no longer mass independent because of the mass dependence through the momentum p.
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Therefore, the equivalence principle is dynamically violated. In section 3, we tackle a naturally
arising question of whether the number of states inside a volume of the phase space does not
change with time in the presence of the GUP. So we calculate the consequences of the GUP
on the Liouville theorem in statistical mechanics. We applied our approach on the entropy
bound of local quantum field theory. This leads to a

√
A-type correction to the bound of the

maximal entropy of a quantum field.

2. The equivalence principle at short distance

Quantum mechanics does not violate equivalence principle. This can be shown from studying
the Heisenberg equations of motion. For simplicity, consider one−dimensional motion with
the Hamiltonian given by

H = P 2

2m
+ V (x). (2.1)

The Heisenberg equations of motion read

ẋ = 1

ih̄
[x,H ] = p

m
, (2.2)

ṗ = 1

ih̄
[p,H ] = −∂V

∂x
. (2.3)

These equations ensure that the momentum at the quantum level is p = mẋ and the
acceleration ẍ is mass independent like in classical physics. It is obvious that the equivalence
principle is preserved at the quantum level, and it is clear that this result possibly contradicts
experimental results [12].

Let us study equation (1.1) at the classical limit using the correspondence between
commutator in quantum mechanics and Poisson bracket in classical mechanics,

1

ih̄
[P̂ , Q̂] 	⇒ {P,Q}, (2.4)

so the classical limit of equation (1.1) gives

{xi, pj } = δij − α

(
pδij +

pipj

p

)
+ α2(p2δij + 3pipj ). (2.5)

The equations of motion are given by

ẋi = {xi,H } = {xi, pj } ∂H

∂pj

,

ṗi = {pi,H } = −{xj , pi} ∂H

∂xj

.

(2.6)

Consider the effect of the GUP on one−dimensional motion with the Hamiltonian given
by

H = P 2

2m
+ V (x). (2.7)

The equations of motion will be modified as follows:

ẋ = {x,H } = (1 − 2αp)
p

m
, (2.8)

ṗ = {p,H } = (1 − 2αp)

(
−∂V

∂x

)
, (2.9)

where the momentum p is no longer equal to mẋ.
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Using (2.8) and (2.9), we can derive the acceleration as

ẍ = −(1 − 6αp)
∂V

∂x
. (2.10)

Note that if the force F = − ∂V
∂x

is gravitational and proportional to the mass m, the
acceleration ẍ is not mass independent because of the mass dependence through the momentum
p. Therefore, the equivalence principle is dynamically violated because of the GUP. Since the
GUP is an aspect of various approaches to quantum gravity such as string theory and DSR
theories, as well as black hole physics, it is promising to predict the upper bounds on the
quantum gravity parameter compatible with the experiment that was done in [12]. This result
agrees, too, with cosmological implications of the dark sector where a long-range force acting
only between nonbaryonic particles would be associated with a large violation of the weak
equivalence principle [13]. The violation of the equivalence principle has been obtained, too,
in the context of string theory [14] where the extended nature of strings is subject to tidal
forces and do not follow geodesics.

3. The GUP and Liouville theorem

In this section, we continue our investigation of the consequences of our proposed commutation
relation of equation (1.1). What we are looking for is an analog of the Liouville theorem in
presence of the GUP. We should make sure that the number of states inside the volume of
the phase space does not change with time revolution in presence of the GUP. If this is the
case, this should modify the density states and affect the entropy bound of local quantum field
theory, the cosmological constant, black body radiation, etc. Furthermore, such modification
may have observable consequences at length scales much larger than the Planck scale. The
Liouville theorem has been studied before with different versions of GUP, see e.g. [15].

Since we are seeking the number of states inside a volume of the phase space that does not
change with time, we assume that the time evolutions of the position and momentum during
δt are

x ′
i = xi + δxi,

p′
i = pi + δpi,

(3.1)

where

δxi = {xi, pj } ∂H

∂pj

δt,

δpi = −{xj , pi} ∂H

∂xj

δt.

(3.2)

The infinitesimal phase space volume after this infinitesimal time evolution is

dDx′ dDp′ =
∣∣∣∣∂(x ′

1, . . . , x
′
D, p′

1, . . . , p
′
D)

∂(x1, . . . , xD, p1, . . . , pD)

∣∣∣∣ dDx dDp . (3.3)

Using equation (3.1), the Jacobian reads to the first order in δt ,∣∣∣∣∂(x ′
1, . . . , x

′
D, p′

1, . . . , p
′
D)

∂(x1, . . . , xD, p1, . . . , pD)

∣∣∣∣ = 1 +

(
∂δxi

∂xi

+
∂δpi

∂pi

)
+ · · · . (3.4)
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Using equation (3.2), we obtain(
∂δxi

∂xi

+
∂δpi

∂pi

)
1

δt
= ∂

∂xi

[
{xi, pj } ∂H

∂pj

]
− ∂

∂pi

[
{xj , pi} ∂H

∂xj

]

=
[

∂

∂xi

{xi, pj }
]

∂H

∂pj

+ {xi, pj } ∂2H

∂xi∂pj

∂H

∂xj

−
[

∂

∂pi

{xj , pi}
]

∂H

∂xj

− {xj , pi} ∂2H

∂pj∂xi

= −
[

∂

∂pi

{xj , pi}
]

∂H

∂xj

= − ∂

∂pi

[
δij − α

(
pδij +

pipj

p

)]
∂H

∂xj

= ∂

∂pi

α

(
pδij +

pipj

p

)
∂H

∂xj

= α(D + 1)
pj

p

∂H

∂xj

. (3.5)

The infinitesimal phase space volume after this infinitesimal evolution up to the first order
in α and δt is

dDx′ dDp′ = dDx dDp
[

1 + α(D + 1)
pi

p

∂H

∂xi

δt

]
. (3.6)

Now we are seeking the analog of the Liouville theorem in which the weighted phase
space volume is invariant under time evolution. Let us check the infinitesimal evolution of
(1 − αp′) up to the first order in α and δt ,

(1 − αp′) = 1 − α

√
p′

ip
′
i

= 1 − α[(pi + δpi)(pi + δpi)]
1
2

≈ 1 − α(p2 + 2piδpi)
1
2

≈ 1 − α

[
p2 − 2pi{xi, pj }∂H

∂xj

δt

] 1
2

≈ 1 − α

[
p − 1

p
(pj − 2αppj )

∂H

∂xj

δt

]

≈ (1 − αp) + α
pj

p
(1 − 2αp)

∂H

∂xj

δt

≈ (1 − αp)

[
1 + α

pj

p

1 − 2αp

1 − αp

∂H

∂xj

δt

]

≈ (1 − αp)

[
1 + α

pj

p

∂H

∂xj

δt

]
. (3.7)

Therefore, we obtain to the first order in α and δt ,

(1 − αp′)−D−1 = (1 − αp)−D−1

[
1 − (D + 1)α

pj

p

∂H

∂xj

δt

]
. (3.8)

This result in the following expression is invariant under time evolution:

dDx′ dDp′

(1 − αp′)D+1
= dDx dDp

(1 − αp)D+1
. (3.9)
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If we integrate over the coordinates, the invariant phase space volume of equation (3.9)
will be

V dDp
(1 − αp)D+1

, (3.10)

where V is the coordinate space volume. The number of quantum states per momentum space
volume can be assumed to be

V

(2πh̄)D

dDp
(1 − αp)D+1

. (3.11)

The modification in the number of quantum states per momentum space volume in (3.11)
should have consequences on the calculation of the entropy bound of local quantum field
theory, the cosmological constant, black body radiation, etc. In this paper, we are investigating
its consequences on the entropy bound of a local quantum field. In the following two
subsections, we briefly introduce the holographic entropy bound proposed by ’t Hooft [16] and
the entropy bound of the local quantum field proposed by Yurtsever and Aste [17, 18, 20]. In
subsection (3.2), we treat the effects of the GUP on the entropy bound of the local quantum
field.

3.1. The holographic entropy bound and local quantum field theory

The entropy of a closed spacelike surface containing the quantum bosonic field has been studied
by ’t Hooft [16]. For the field states to be observable for outside world, ’t Hooft assumed that
their energy inside the surface should be less than 1/4 times its linear dimensions, otherwise
the surface would lie within the Schwarzschild radius [16].

If the bosonic quantum fields are confined to closed spacelike surface at a temperature T,
the energy of the most probable state is

E = a1ZT 4V, (3.12)

where Z is the number of different fundamental particle types with mass less than T and a1 a
numerical constant of order 1, all in natural units.

Now turning to the total entropy S, it is found that it is given by

S = a2ZV T 3, (3.13)

where a2 is another numeric constant of order 1.
The Schwarzschild limit requires that

2E <
V
4
3π

. (3.14)

Using equation (3.12), one finds

T < a3Z
− 1

4 V − 1
6 , (3.15)

so the entropy bound is given by

S < a4Z
1
4 V

1
2 = a4Z

1
4 A

3
4 , (3.16)

where A is the boundary area of the system. At low temperatures, Z is limited by a
dimensionless number; then this entropy is small compared to that of a black hole, if the
area A is sufficiently large. The black hole is the limit of the maximum entropy

Smax = 1
4A. (3.17)

Therefore, for any closed surface without worrying about its geometry inside, all physics
can be represented by degrees of freedom on this surface itself. This implies that the quantum

6
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gravity can be described by a topological quantum field theory, for which all physical degrees
of freedom can be projected onto the boundary [16]. This is know as the holographic principle.

According to Yurtsever’s paper [17], the holographic entropy bound can be derived from
elementary flat-spacetime quantum field theory when the total energy of Fock states is in
a stable configuration against gravitational collapse by imposing a cutoff on the maximum
energy of the field modes of the order of the Planck energy. This leads to an entropy bound of
holographic type.

Consider a massless bosonic field confined to a cubic box of size L, as has been done in
[17–21]; the total number of the quantized modes is given by

N =
∑

�k
1 → L3

(2π)3

∫
d3 �p = L3

2π2

∫ 


0
p2 dp = 
3L3

6π2
, (3.18)

where 
 is the UV energy cutoff of the LQFT. The UV cutoff makes N finite. The Fock states
can be constructed by assigning the occupying number ni to these N different modes,

| �〉 =| n(�k1), n(�k2), . . . , n(�kN)〉 →| n1, n2, . . . , nN 〉. (3.19)

The dimension of the Hilbert space is calculated by the number of occupancies {ni} which
is finite if it is bounded. The non-gravitational collapse condition leads to finiteness of the
Hilbert space:

E =
N∑

i=1

niωi � EBH = L. (3.20)

It can be observed that the N-particle state with one particle occupying one mode (ni = 1)
corresponds to the lowest energy state with N modes simultaneously excited. In this case,
it should satisfy the gravitational stability condition of equation (3.20). Hence, the energy
bound is given by

E → L3

2π2

∫ 


0
p3 dp = 
4L3

8π2
� EBH . (3.21)

The last inequality implies


2 � 1

L
. (3.22)

The maximum entropy is given by

Smax = −
W∑

j=1

1

W
ln

1

W
= ln W, (3.23)

where the bound of W is determined by

W = dimH <

N∑
m=0

zm

(m!)2
�

∞∑
m=0

zm

(m!)2
= I0(2

√
z) ∼ e2

√
z√

4π
√

z
. (3.24)

Here I0 is the zeroth-order Bessel function of the second kind. z is given by

z =
N∑

i=1

Li → L3

2π2

∫ 


0

[
EBH

p

]
p2 dp = 
2L4

4π2
. (3.25)

Using the UV–IR relation of equation (3.22), the bound can be given as follows:

z � L3. (3.26)

7
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Since the boundary area of the system is given by

A ∼ L2, (3.27)

the bound for the maximum entropy of equation (3.23) will be given by

Smax = ln W � A3/4. (3.28)

This is just a brief summary of determining the entropy bound by using the local quantum
field theory (LQFT).

3.2. The effect of GUP on the holographic entropy bound and LQFT

Consider a massless bosonic field confined to a cubic box of size L, as has been done in
subsection 3.1, but now with including the GUP modification. Using equation (3.11), the total
number of the quantized modes will be modified as follows:

N → L3

2π2

∫ 


0

p2 dp

(1 − αp)4
≈ L3

2π2

(

3

3
+ α
4

)
. (3.29)

We note that the total number of states is increased due to GUP correction. Note that this
result is valid subject to

1

α
> 
, (3.30)

otherwise, the number of states will be infinite or negative number. This means that α gives a
boundary on the cutoff 
.

Now turning to the modifications implied by the GUP on the energy bound up to the first
order of α, we find

E → L3

2π2

∫ 


0

p3 dp

(1 − αp)4
≈ L3

2π2

(

4

4
+ α

4
5

5

)
� EBH . (3.31)

Using equations (3.20) and (3.22) with the last inequality (3.31), we obtain the following
UV–IR relation up to the first order of α,

L3

8π2

(

4 + α

16
5

5

)
� L,


4

(
1 + α

16


5

)
� 1

L2
,


2 � 1

L

(
1 − 8α

5L
1
2

)
.

(3.32)

On the other side, the modified maximum entropy has been calculated according to the
following procedure:

Smax = ln W, (3.33)

with W ∼ e2
√

z. Since z is given up to the first order of α by

z → L3

2π2

∫ 


0

[
EBH

p

]
p2 dp

(1 − αp)4
≈ L4

2π2

(

2

2
+ α

4
3

3

)
, (3.34)

one finds the bound when using the UV–IR relation in equation (3.32)

z � L4

4π2

(

2 + α

8
3

3

)
,

z � L4

4π2

(
1

L

(
1 − 8α

5L
1
2

)
+ α

8

3L
3
2

)
,

z � L3 +
16αL

5
2

15
.

(3.35)
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Using the boundary area of the system of equation (3.27), we find that the bound for the
maximum entropy will be modified as follows:

Smax = ln W � A3/4 +
16α

30
A1/2, (3.36)

which clearly shows that the upper bound is increased due to the GUP. This means that the
maximum entropy that can be stored in a bounded region of space has been increased due to
the presence of the GUP or, in other words, by considering the minimal length in quantum
gravity. This shows that the conjectured entropy of the truncated Fock space corrected by
the GUP disagrees with ’t Hooft’s classical result which requires disagreement between the
micro-canonical and canonical ensembles for a system with a large number of degrees of
freedom due to the GUP-correction term. Then the holographic theory does not retain its
good features. On the other side, since the GUP implies the discreteness of space by itself as
proposed in [1–3], the discreteness of space will not leave the continuous symmetries such as
rotation and Lorentz symmetry intact, which means by other words that the holographic theory
does not retain its good features [22]. Possibilities of violating holographic theory near the
Planck scale have been discussed by many authors, see e.g [23]. This seems that holographic
theory does not retain its good features by considering the minimal length in quantum
gravity.

4. Conclusions

In this paper, we tackle the problem of studying the possible discrepancy that has been found
between the results of the neutron interferometry experiment and quantum mechanics. We
investigated whether the GUP can explain the violation of weak equivalence principle at small
length scales. We have shown that, by studying the Heisenberg equations of motions in the
presence of the GUP, the acceleration is no longer mass independent because of the mass
dependence through the momentum p. Therefore, the equivalence principle is dynamically
violated.

We also investigated the consequences of the GUP on the Liouville theorem. We found
a new form of an invariant phase space in the presence of the GUP. In the future, it would
be appropriate to apply our approach on the calculations of the cosmological constant, black
body radiation, etc. We applied our approach on the calculation of the entropy bound of local
quantum field theory. This led to a

√
A-type correction to the bound of the maximal entropy

of a bosonic field. This showed that the conjectured entropy of the truncated Fock space
corrected by GUP disagrees with ’t Hooft’s classical result. This agreed with the discreteness
of space implications which does not leave the continuous symmetries such as translation,
rotation and full Lorentz symmetry intact, and hence the holographic theory does not retain
its good features due to the discreteness of space.
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