Proposition 3.2.20 Let I be any class and (X_i, τ_i) be a GT_4 -space for all $i \in I$ and $f_i: X_i \to X$ be a surjective fuzzy open mapping for some $i \in I$. Then the final fuzzy topological space (X, τ) is also GT_4 .

Proof. Let F, G be disjoint closed subsets of X. Since f_i is surjective and continuous, then $f_i^{-1}(F)$, $f_i^{-1}(G)$ are also disjoint closed subsets of X_i . Because of that (X_i, τ_i) is normal it follows there are λ_i , $\mu_i \in L^{X_i}$ such that

$$\bigwedge_{z \in f_i^{-1}(F)} (\operatorname{int}_{\tau_i} \lambda_i)(z) \wedge \bigwedge_{w \in f_i^{-1}(G)} (\operatorname{int}_{\tau_i} \mu_i)(w) > \sup(\lambda_i \wedge \mu_i)$$

which means

$$\bigwedge_{x \in F} (\operatorname{int}_{\tau_i} \lambda_i)(f_i^{-1}(x)) \wedge \bigwedge_{y \in G} (\operatorname{int}_{\tau_i} \mu_i)(f_i^{-1}(y)) > \sup(\lambda_i \wedge \mu_i)$$

and this means

$$\bigwedge_{x \in F} (f_i(\operatorname{int}_{\tau_i} \lambda_i))(x) \wedge \bigwedge_{y \in G} (f_i(\operatorname{int}_{\tau_i} \mu_i))(y) > \sup(\lambda_i \wedge \mu_i).$$

Since f_i is fuzzy open, it follows $f_i(\operatorname{int}_{\tau_i}\lambda_i) \leq \operatorname{int}_{f_i(\tau_i)}(f_i(\lambda_i))$ for all $\lambda_i \in L^{X_i}$ and therefore

$$\bigwedge_{x \in F} (\operatorname{int}_{f_i(\tau_i)} f_i(\lambda_i))(x) \wedge \bigwedge_{y \in G} (\operatorname{int}_{f_i(\tau_i)} f_i(\mu_i))(y) > \sup(f_i(\lambda_i) \wedge f_i(\mu_i)).$$

Since $f_i(\lambda_i), f_i(\mu_i) \in L^X$, then we get that the final fuzzy topological space (X, τ) is normal. From Proposition 3.2.8 it follows that (X, τ) is GT_1 -space and hence it is GT_4 -space. \square

The following result is a direct consequence of Propositions 3.2.19 and 3.2.20.

Corollary 3.2.10 The fuzzy topological quotient space and the fuzzy topological sum space of GT_4 -spaces are also GT_4 .

3.3 The Relation Between The GT_i -Spaces and The FT_i -Spaces

This section is devoted to show that our notion of GT_i -spaces is more general than the notion of FT_i -spaces, defined by Kandil and El-Shafee in [34], for i = 0, 1, 2, 3, 4.

Definition 3.3.1 [34] A fuzzy topological space (X, τ) is called:

- (1) FT_0 if for all $x, y \in X$ with $x \neq y$ we have $x_{\alpha}\overline{q}\operatorname{cl}_{\tau}y_{\beta}$ or $\operatorname{cl}_{\tau}x_{\alpha}\overline{q}y_{\beta}$ for all $\alpha, \beta \in L_0$.
- (2) FT_1 if for all $x, y \in X$ with $x \neq y$ we have $x_{\alpha}\overline{q}\operatorname{cl}_{\tau}y_{\beta}$ and $\operatorname{cl}_{\tau}x_{\alpha}\overline{q}y_{\beta}$ for all $\alpha, \beta \in L_0$.
- (3) FT_2 if for all $x, y \in X$ and all $\alpha, \beta \in L_0$ we have $x_{\alpha}\overline{q}y_{\beta}$ implies there exist $\mathcal{O}_{x_{\alpha}}, \mathcal{O}_{y_{\beta}} \in \tau$ such that $\mathcal{O}_{x_{\alpha}}\overline{q}\mathcal{O}_{y_{\beta}}$.
- (4) FT_3 if it is FT_1 and for all fuzzy points x_t and all closed fuzzy sets f with $x_t \overline{q} f$ there are $\mathcal{O}_{x_t}, \mathcal{O}_f \in \tau$ such that $\mathcal{O}_{x_t} \overline{q} \mathcal{O}_f$.
- (5) FT_4 if it is FT_1 and for all $f, g \in \tau'$ with $f\overline{q}g$, there are \mathcal{O}_f , $\mathcal{O}_g \in \tau$ such that $\mathcal{O}_f\overline{q}\mathcal{O}_g$.

By FT_{i} -space we mean the fuzzy topological space which fulfills the axiom FT_{i} .

In the following proposition will be shown that the class of GT_0 -spaces is larger than the class of FT_0 -spaces.

Proposition 3.3.1 Each FT_0 -space is GT_0 -space.

Proof. Let (X, τ) be an FT_0 -space and let $x, y \in X$ with $x \neq y$. Then from (1) in Proposition 1.2.1 it follows $x_{\alpha}\overline{q}y_{\beta}$ for all $\alpha, \beta \in L_0$ and thus $x_{\alpha}\overline{q}\operatorname{cl}_{\tau}y_{\beta}$. By (2) in

Proposition 1.2.1 we have $\mathcal{O}_{x_{\alpha}} \in \tau$ such that $\mathcal{O}_{x_{\alpha}} \overline{q} y_{\beta}$, that is, we have $f = \mathcal{O}_{x_{\alpha}} \in L^X$ with $y_{\beta} \leq f'$. Thus

$$f(y) \leq (1-\beta)$$
 and $\alpha \leq \operatorname{int}_{\tau} f(x)$

for all $\alpha, \beta \in L_0$. Taking $(1 - \beta) < \alpha$ we get $f \in L^X$ and $\alpha \in L_0$ such that

$$f(y) < \alpha \le \operatorname{int}_{\tau} f(x)$$
.

Hence, (X, τ) is GT_0 . \square

The following example shows that there are GT_0 -spaces which are not FT_0 -spaces.

Example 3.3.1 Let L = [0,1], $X = \{x,y\}$ with $x \neq y$ and let $\tau = \{\overline{0},\overline{1},x_{1/2}\}$. Then (X,τ) is a fuzzy topological space. Also, we have $x \neq y$ implies there is $f = x_1 \in L^X$ with $f(y) = 0 < 1/2 = \operatorname{int}_{\tau} f(x)$, and thus (X,τ) is GT_0 -space. Since the open fuzzy neighborhoods \mathcal{O}_{x_1} of x_1 and the open fuzzy neighborhoods \mathcal{O}_{y_1} of y_1 are only $\overline{1}$, it follows $x_1\overline{q}y_1$ implies $\mathcal{O}_{x_1}qy_1$ and $\mathcal{O}_{y_1}qx_1$ for all \mathcal{O}_{x_1} and \mathcal{O}_{y_1} . Hence, (X,τ) is not FT_0 -space.

The following proposition shows that GT_1 -spaces are more general than FT_1 -spaces.

Proposition 3.3.2 Each FT_1 -space is GT_1 -space.

Proof. Similarly as in Proposition 3.3.1. □

Here, an example for GT_1 -space which is not FT_1 -space is given.

Example 3.3.2 Let L = [0,1], $X = \{x,y\}$ with $x \neq y$ and let $\tau = \{\overline{0},\overline{1},x_{1/2},y_{1/2},x_{1/2} \vee y_{1/2}\}$. Then (X,τ) is a fuzzy topological space and there are $f = x_1 \in L^X$ and $g = y_1 \in L^X$ such that $x \neq y \in X$ implies

$$f(y) = 0 < 1/2 = int_{\tau}f(x)$$