From (1.2) and (1.7) we have

$$\lim \mathcal{F}(x) = \bigwedge_{A \in \rho_m(\mathcal{F})} \bigwedge_{f \in A} \bigvee_{M \le \mathcal{N}(x)} \mathcal{M}(f) \neq 1$$

or

$$\lim \mathcal{F}(y) = \bigwedge_{B \in \rho_m(\mathcal{F})} \bigwedge_{g \in B} \bigvee_{\mathcal{M} < \mathcal{N}(y)} \mathcal{M}(g) \neq 1.$$

But

$$\lim \mathcal{F}(x) = \bigwedge_{f \in A \in \rho_m(\mathcal{F})} \bigvee_{\mathcal{M} \leq \mathcal{N}(x)} \mathcal{M}(f) \neq 1$$

implies $\mathcal{M} \not\leq \mathcal{N}(x)$ and thus we have $\mathcal{M} \not\leq \mathcal{N}(x)$ or $\mathcal{M} \not\leq \mathcal{N}(y)$. Hence, (X, τ) is GT_2 -space. \square

The following example shows that there are GT_2 -spaces which are not WT_2 -spaces.

Example 3.4.3 Let L = [0,1], $X = \{x,y\}$ with $x \neq y$ and let $\tau = \{\overline{0},\overline{1},x_1 \lor y_{1/4},x_{1/4}\lor y_1,x_{1/4}\lor y_{1/4}\}$. Then (X,τ) is a fuzzy topological space and there are $f = x_1 \lor y_{1/4} \in L^X$ and $g = x_{1/4} \lor y_1 \in L^X$ such that

$$\operatorname{int}_{\tau} f(x) \wedge \operatorname{int}_{\tau} g(y) = 1 > 1/4 = \sup(f \wedge g),$$

that is, $\mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist and thus (X, τ) is GT_2 -space. Since $\tau' = \{\overline{0}, \overline{1}, x_{3/4}, y_{3/4}, x_{3/4} \vee y_{3/4}\}$ and $\operatorname{cl}_{\tau} x_1 = \operatorname{cl}_{\tau} y_1 = \overline{1}$, then (X, τ) is not WT_1 -space and since every WT_2 -space is WT_1 -space, then (X, τ) is also not WT_2 -space.

3.5 The Relation Between The GNT_i -Spaces and The NT_i -Spaces

Now, we are going to study the relation between the GNT_i -spaces and the NT_i -spaces for i = 0, 1, 2 defined in [52].

Definition 3.5.1 [52] A fuzzy neighborhood space (X, \mathcal{V}) , in sense of Lowen [48], is called:

- (1) NT_0 if for all $x, y \in X$ with $x \neq y$ there are $f \in \mathcal{V}(x)$, $g \in \mathcal{V}(y)$ such that $f(y) \wedge g(x) < \varepsilon$ for all $\varepsilon \in L_0$.
- (2) NT_1 if for all $x, y \in X$ with $x \neq y$ there is $f \in \mathcal{V}(x)$ such that $f(y) < \varepsilon$ for all $\varepsilon \in L_0$.
- (3) NT_2 if $adh \mathcal{V}(x) = x_1$ for all $x \in X$, where $adh \mathcal{V}(x)$ is the fuzzy subset of X defined ([48]) by

$$\mathrm{adh}\mathcal{V}(x)(y) = \bigwedge_{f \in \mathcal{V}(x)} \Big(\bigwedge_{g \in \mathcal{V}(y)} \sup(f \wedge g) \Big) \tag{3.1}$$

for all $y \in X$.

By NT_{i} -space we mean the fuzzy neighborhood space which fulfills the axiom NT_{i} .

Recall here that the fuzzy neighborhood space (X, \mathcal{V}) in sense of Lowen can be identified with the third type of global fuzzy neighborhood spaces (X, h) which is called global prefilter-related fuzzy neighborhood spaces ([27]). This identification is given in Section 1.6 of this thesis by (1.22) and (1.23).

The following proposition shows that the fuzzy separation axiom GNT_0 for global fuzzy neighborhood spaces is more general than the fuzzy separation axiom NT_0 for fuzzy neighborhood spaces in sense of Lowen.

Proposition 3.5.1 For each fuzzy neighborhood space (X, V) in sense of Lowen which is NT_0 , the global prefilter-related fuzzy neighborhood space (X, h) identified with (X, V), by (1.22) and (1.23), is GNT_0 .

Proof. Let (X, \mathcal{V}) be an NT_0 -space and let $x \neq y$ in X. Then there are $f \in \mathcal{V}(x)$, $g \in \mathcal{V}(y)$ such that $f(y) \wedge g(x) < \varepsilon$ for all $\varepsilon \in L_0$. From (1.23) we get

$$\dot{y}(f) = f(y) < \bigvee_{g \in \mathcal{V}(x), g \wedge \bar{\alpha} \leq f} \alpha = h(\dot{x})(f).$$

Hence, $\dot{y} \not\leq h(\dot{x})$ and therefore (X, h) is GNT_0 -space. \square

In the following we introduce an example showing that there is a GNT_0 -space and the identified fuzzy neighborhood space in sense of Lowen is not NT_0 .

Example 3.5.1 Let (X, τ) be the fuzzy topological space given in Example 3.3.1 and let (X, h) be the global fuzzy neighborhood space identified with (X, τ) . By means of Example 3.3.1 we have (X, τ) is GT_0 -space and thus by Proposition 2.2.1 (X, h) is GNT_0 -space. Let $(X, \mathcal{V} = (\mathcal{V}(x))_{x \in X})$ be the fuzzy neighborhood space in sense of Lowen identified with (X, h). For all $f \in \mathcal{V}(x)$, $g \in \mathcal{V}(y)$ we have from (1.22) that

$$\operatorname{int}_{\tau} f(x) = \operatorname{int}_{\tau} g(y) = 1$$

and thus $f = g = \overline{1}$. Hence, $f(y) \wedge g(x) = 1$, that is, there is $\varepsilon = 1$ such that for all $f \in \mathcal{V}(x)$, $g \in \mathcal{V}(y)$ we have $f(y) \wedge g(x) = \varepsilon$ and therefore (X, \mathcal{V}) is not NT_0 -space.

In the following proposition will be shown that the notion GNT_1 for global fuzzy neighborhood spaces is more general than the notion NT_1 for fuzzy neighborhood spaces in sense of Lowen.

Proposition 3.5.2 Let (X, V) be a fuzzy neighborhood space in sense of Lowen which is NT_1 , then the global prefilter-related fuzzy neighborhood space (X, h) identified with (X, V) is also GNT_1 .

Proof. Similarly as in Proposition 3.5.1. □

For the case of NT_1 -spaces we have the following counterexample.

Example 3.5.2 Let (X, h) be the global fuzzy neighborhood space identified with the fuzzy topological space (X, τ) given by $X = \{x, y\}$ with $x \neq y$ and $\tau = \{\overline{0}, \overline{1}, x_1, y_1\}$. Then by Proposition 2.3.1, (X, h) is GNT_1 -space.

But from (1.22) we have $\mathcal{V}(x) = \{(x_1 \vee y_\alpha) \in L^X \mid \alpha \in L\}$ and $\mathcal{V}(y) = \{(x_\beta \vee y_1) \in L^X \mid \beta \in L\}$ and thus $(x_1 \vee y_\alpha)(y) = \alpha$, $(x_\beta \vee y_1)(x) = \beta$ for all $\alpha, \beta \in L$. Taking