CONTENTS

	Page
I- Introduction.	
1. Microbial enzymes in relation to their activities	1
2. Pectinases and pectic substances	1
3. Application of pectinases	6
 Acidic pectinases 	10
Sparkling clear juices	11
Apple	11
Juice extraction	11
Clarification	12
4. Solid state fermentation (SSF) processes	7
4.1 Definition of the (SSF) methods	7
4.2 Characteristics	8
4.3 Advantages of SSF	9
II. Review of literature	16
III. Materials and methods	31
3. Construction of galacturonic acid standard curves	31
4. Protein determination	32
4.1 Standard curve for protein determination	32
4.2 Determination of the total water-soluble proteins	33
5. Growth and maintenance medium	34
6. Agro-industrial wastes	35
6.1 Potato peels wastes (PPW)	35
6.2 Other agro-industrial wastes	35

5. Production media	35
5.1 Basal media	35
5.2 Potato peels basal medium (PPBM)	36
1. Isolation of bacteria	31
2. Purification of bacterial isolates	31
8. Identification of the most potent bacterial isolates	36
8.a Media used	36
8.a.1 Nutrient agar medium (NA)	36
8.a.2 King, ward and Raney's media	36
8.a.3 Hugh and leifson (OF) medium	37
8.a.4 Methyl red (MR) test medium	37
8.a.5 Levan production medium	38
8.a.6 Citrate medium	38
8.a.7 Urea medium	39
8.a.8 Gelatin agar medium	39
8.a.9 Czapek-Dox's tributyrin medium (CDTM)	39
8.a.10 Pectinase medium	40
8.a.11 Cellulase agar medium	40
8.b Morphological characteristics	41
(a) Staining	41
(i) The Gram stain	41
(a) Gram's crystal violet	41
(b) Gram's iodine	42
(c) Gram's safranin	42
(ii) Endospore staining	42
Motility medium	42

9. Biochemical tests methods	43
9.1 Aceton production	43
9.2 Blood haemolysis test	44
9.3 Carbohydrate fermentation	44
9.4 Catalase test	45
9.5 Cytochrome (oxidase test)	45
9.6 MacConkey agar	46
9.7 Nitrate reduction	46
9.8 Starch hydrolysis	47
9.9 Urease test	47
9.10 Oxidation of fermentation (OF) of glucose	48
9.11 Citrate utilization	48
9.12 Catalase activity	49
9.13 Gelatin hydrolysis	49
9.14 Hydrogen sulphide production	49
9.15 Potassium cyanide	49
9.16 Levan formation	49
9.17 Lipase enzyme production	50
9.18 Potassium hydroxide test	50
9.19 Methyl red (MR) reaction	50
9.20 Pectinolytic activity	50
9.21 Production of cellulase	51
10. Characterization test reagent and methods	51
10.1 Acid mercuric chloride	51
10.2 Lugol's iodine solution	51
10.3 Kovac's reagents	51

10.4 Hydrogen peroxide	52
10.5 Methyl red solution	52
10.6 α-Naphthol solution	52
10.7 Nitrate test reagents	52
10.8 Oxidase test reagents	52
11. Qualitative screening test media, methods, and	53
conditions (first survey)	
11.1 Pectinolytic enzyme production medium	53
11.2 Pectinase production and activity assay medium	53
12. Qualitative screening test media, methods and	54
conditions (second survey).	
12. (a) 1. Pectinolytic enzyme production medium (PEPM)	54
12. (b) Analysis of reducing sugar by Nelson's technique	55
Reagents	55
12. (b) 1. Nelson's reagent	55
12. (b) 2. Arsenomolybdate reagent	55
13. Preparation of cell-free filtrate (CCF)	56
14. Parameters controlling the polygalacturonase	56
productivities	
14.1 Different inoculum sizes	56
14.2 Different substrate concentration	56
14.3 Different incubation period	57
14.4 Different pH values	57
14.5 Different temperatures	57
14.6 Different nitrogen sources	58
14.7 Different carbon sources	58

14.8 Different amino acids	58
14.9 Different vitamin requirements	59
14.10 Different flask volumes	59
15. Purification of polygalcturonase produced using	60
potato peels under solid state fermentation (SSF)	
conditions	
15.1 Polygalacturonase production	60
15.2 Preparation of cell-free filtrate	60
15.3 Ammonium sulphate fractionation	61
15.4 Dialysis	61
15.5 Applying column chromatography technique	62
15.5 (a) Applying on sephadex G-200	62
15.6 Amino acid analytical data for the purified	63
enzymes	
16. SDS-PAGE	63
16.1 Detection of protein using silver stain	64
17. Factors affecting the purified polygalacuronase	65
activities	
17.1 Effect of incubation temperatures	65
17.2 Different substrate concentrations	65
17.3 Different pH values	65
17.4 Different enzyme concentrations	65
17.5 Heat stability	66
17.6 pH stability	66
18. Factors affecting on the application of	
polygalacturonase in the clarification of juava juice.	66

18.1 Substrate volumes.	66
18.2 Polygalacturonase concentrations.	67
18.3 Different temperatures.	67
18.4 pH values.	67
Results (Section A)	68
(A) Qualitative screening for selection of the most potent	68
bacterial isolates pectinase producer (First survey by	
clearing zon technique)	
(B) Qualitative screening for selection of the most potent	68
bacterial isolates pectinase producer (second survey by	
clearing zone technique).	
(C) Quantitative screening for selection of the most potent	71
pectinase producer bacterial isolates (second survey by	
Nelson's technique, 1944).	
(D) Identification of the three most potent bacterial isolates	75
Section (B)	
Parameters controlling the polygalacturonase (PG)	78
productivity	
1. Different inocula size	78
2. Different substrate concentrations	78
3. Different incubation periods	81
4. Different initial pH values.	81
5. Different incubation temperatures	81
6. Different nitrogen sources	85
7. Different carbon sources	85

9. Different vitamins	90
10. Different flask volumes	90
Section (B)	95
Purification of polygalacturonase produced by B. firmus-	95
I-10104, allowed to grow on S. tuberosum (ST) peels	
under solid state fermentation conditions	
Subsection (I): Purification of polyalacturonase	95
Step (1): Enzyme production and preparation of CFF	96
Step (2): Fractional precipitation by ammonium sulphate	96
Step (3): Concentration by dialysation against sucrose	99
Step (4): Purification on sephadex G-200 gel column	99
Step (5): Amino acid analysis of the purified enzyme	99
Step (6): Gelectrophorasis analysis of the purified enzyme	99
Amino acid analysis of the purified polygalacturonase	104
Subsection II	106
Characterization of the purified enzyme produced by B.	106
firmus-I-10104 at 37 °C	
1. Effect of incubation temperature	106
2. Effect of different substrate concentrations on the	106
purified enzyme activity	
3. Effect of different pH values on the activity of purified	109
enzyme	
4. Different concentrations of the purified enzyme in	109
relation to its activity	
5. Thermostability of the purified enzyme	109
5. Thermostability of the purified enzyme6. pH stability of the purified enzyme activity	109 109

Biotechnological application of purified PG in	115
clarification of Juava Juice	
Applying of the purified PG in the clarification of Juava	115
Juice using Nelson's technique	
1. Effect of different substrate (Juava Juice)	115
concentrations in the clarification of Juava juice	
2. Effect of different enzyme concentrations on he	117
clarification of Juava Juice	
3. Effect of different incubation temperatures on the	117
clarification of Juava Juice	
4. Effect of different pH values on the clarification of	117
Juava juice	
Discussion	121
Summary	141
References	145
Arabic summary	