IV. RESULTS AND DISCUSSION

1. Taxonomic Studies:

1.1. Hosts and Distribution of genus Aphytis in Egypt:

Available information about the genus *Aphytis* in Egypt was collected from literature generated during the years 1940 -1988 recording the infestation of 11 armored scale insects found on 16 host plants located in 6 governorates.

Samples of *Aphytis* species collected were associated with 26 armored scale insects on 20 host plants in 19 governorates in Egypt.

Data on the hosts and distribution of genus *Aphytis* are listed in Table (2). The table shows the number of host armored scale insects, the host plant of each species and their distribution in Egypt.

After collecting and analyzing this data, the present work showed that A. lingnanensis to be the most effective species of genus Aphytis, followed by A. diaspidis and A. mytilaspidis. A. lingnanensis and these species were collected from 11 species of armored scale insects on 6 plant hosts distributed over 4 governorates. A. diaspidis was collected from 6 species of armored scale insects found on 6 plant hosts distributed over 7 governorates and A. mytilaspidis was collected from 6 species of armored scale insects on 5 plant hosts found in 5 governorates.

A. chilensis was associated with 4 species of armored scale insects on 5 host plants found in 5 governorates. A. africanus, A. aonidiae, A. hispanicus and A. melinus were associated with 2 to 3 species of armored scale insects each. A. africanus and its host insects were collected from 5 host plant species in 5 governorates, A. aonidiae and its host insects were found on 3 plant hosts distributed over 3 governorates, A. hispanicus and its host insects were collected from 4 host plant species in 4 governorates and A. melinus and its host insects were found on 2 plant hosts in only 1

Table (2): Hosts and distribution of genus Aphytis in Egypt:

	Dismitted enough	Host plant	Distribution	Date
species	Diaspiula species		Doni Cuef	Feb. 1997
A soften control	A aurantii	C. sinensis	Delli-Suci	
A.ajrıcanus		Citrus sp.	Qalyubiya	Dec.,1996
	A. auranu	us shail)	Sharqiya	April ,1998
:	A. aurantn	Time of the	Matruh	July,1997
	A. aurantii	Ficus carica		A 1997
		Citrus sp.	Giza	Aug.,1771
	C. toolinami	Citrus sp.	Minya	April,1997
	C. doniaum	P. dactylifera	Arish	Sep.,1998
	C. doniaum	Fine witida	Cairo	June, 1999
	Lindingaspis floridana Ferris	files mine		May 1997
,	4 lauri	L. nobilis	Alexandria	Ividy
A. aoniaide	T. tutal t	Citrus sp.	Qalyubiya	March, 1998
	A. cilrina	Rosa sp.	Cairo	Aug.,1999
	A. auramu	M. indica	Behira	Sep.,1997
	H. Idiania	M indica	Sharqiya	Oct.,1999
	H. latanıa	M. marca		N (22h 1008
-	H latania	Olea sp.	Ismailia	Marcil, 1990
	A Joseph	P. malus	Alexandria	Oct.,1997
A.chilensis	A. rieurae			

Table (2): Cont'd.

Species	Disenidid energe	Host plant	Distribution	Date
Ü				7001
	C. dictyospermi	F. nitida	Minya	Dec.,1990
<u></u>		P. guajava	Minya	Sep.,1998
D.		Cactus sp.	Qalyubiya	Dec.,1998
H		M. indica	Ismailia	Aug.,1997
A chrysomphali A.		Citrus sp.	Kafr El- Shikh	Feb.,1997
<u>.</u>	C. dictyospermi	F. nitida	Qalyubiya	Nov.,1996 Dec.,1997
T	L. beckii	M. indica	Garbiya	Jan.,1997
	L. floridana	F. nitida	Qalyubiya	Dec.,1998
Pa	Parlatoria ziziphi (Lucas)	Cirrus sp.	Giza	March, 1998
4 coheni A.	A. aurantii	Citrus sp.	Alexandria	Dec.,1996
	A. aurantii	P. oleae	Arish	Oct .,1998
<u> </u>	A. aurantii	F. carica	Northern Coast	Nov.,1998
A. diaspidis - A.	A. aurantii	C. sinensis	Behira	Sep.,1997
	A. aurantii	Olea sp.	Alexandria	March, 1997
	A. aurantii	P. communis	Qalyubiya	Sep.,1998

Table (2): Cont'd.

1.5

	T	Host plant	Distribution	Date
species	Diaspidia species	101	Giza	Aug.,1998
ļ	A. nerii	Oleanaer sp.	Organ	1
	D coloracti	Cactus sp.	Beni-Suef	Feb.,1997
	T. I amin	Cactus sp.	Minufiya	Jan.,1998
·	H. Idianic:	M indica	Sharqiya	Sep.,1998
	H.latanıa	111: 1117: 11	Alexondria	Inly 1997
	H. latania	P. guajava	Alexallulla	Julyji
	I hockii	C. sinensis	Alexandria	Dec.,1996
	L. OCCANI	F. nitida	Assiut	Dec.,1998
	F. oteate	F nitida	Kafr El- Shikh	Feb.,1997
	F. oteae	Olag sp	Northern Coast	April,1998
	P. oleae			Δ11.0 1998
	P olege	Oleander sp.	GIZA	, , , , , , , , , , , , , , , , , , ,
-	D ologo	P. armeniaca	Ismailia	Jan.,1998
	r. oteae	P.communis	Qalyubiya	Sep.,1997
	I. Oleue		Minufiya	
	D alage	Rosa sp.	Cairo	Aug.,1999
- 1	1. Oteate	Olea sp.	Matruh	March, 1998
A. hispanicus	F, oteae	P. malus	Sharqiya	May,1997
- *	P. olede			

Table (2): Cont'd.

			Distribution	Date
Solvons	Diaspidid species	Host plant	Distribution	
sarade	Caichospermi	F. nitida	Sharqiya	Oct.,1998
	C. dichospermi	F. nitida	Qalyubiya	Dec.,1998
	Leculanis nallidula (Green)	M. indica	Suez	July,1997
	Insulapis puriama ()	M. indica	Ismailia	Dec.,1997
1 holoxanthus	C. aonidum	Citrus sp.	Giza	Jan.,1997
	C aonidum	Citrus sp.	Beni- Suef	Dec.,1997
1 lonidoscaphos	I. heckii	M. indica	Ismailia	March, 1997
A. iepidosapries	I heckii	M. indica	Sharqiya	Oct.,1998
	I. beckii	M. indica	Minufiya	Jan.,1998
	I herkii	M. indica	Behira	Feb.,1997
	L. cechii	M. indica	Daqahiiya	March, 1998
	L. occur.	C. sinensis	Beni-Suef	Feb.,1997
	L. Occini	C.sinensis	Alexandria	July,1997
1.1.	L. Decrete	Olea sp.	Fayoum -	June,1997
A. Hodnicus	L. recae	F. nitida	Giza	Dec.,1996
A. Imgnanensis	A. dal alini			

Table (2): Cont'd.

		Host plant	Distribution	Date
species	Diaspidid species			Sec. 1008
7	A aurantii	P. communis	Qaiyubiya	3ch.,179
	A novii	Oleander sp.	Giza	Aug.,1998
		Citrus sp.	Qalyubiya	Dec.,1998
	C. dictiospermi	F. nitida	Cairo	Aug.,1999
	C. aictyosperm. H. Jotonia	M. indica	Behira	Sep.,1997
	II. talanta	M. indica	Sharqiya	Sep.,1998
	I. puntumu Destrubi	Citrus sp.	Giza	March, 1998
	I. statpm	P vulgaris	Alexandria	May,1997
	F. periagona	F. nitida	Giza	March, 1998
A. melinus	A. aurantii	Citrus sp.	Minya	Jan.,1997
	A. auranni	Rosa sp.	Alexandria	Sep., 1998
	A norii	Oleander sp.	Giza	Aug.,1998
	D orbinocacti	Cactus sp.	Beni - Suef	Feb.,1997
•	D. echinocacii	*		

Table (2): Cont'd.

		Host mlant	Distribution	Date
species	Diaspidid species		A 1	Sep 1998
	H Jatamia	P. guajava	Alexandina	
	Chiongenie etantophri Cooley	Imperta cylindrica	Fayoum	Apr.,1997
A. mytilaspiais	Unionaspis similariti.	M. indica	Alexandria	Sep.,1998
	II. idiania H. Idtonia	M. indica	Ismailia	Aug.,1997
	II. tatania U Jatania	M. indica	Sharqiya	Sep.,1997
	II. tatama	F. carica	Matruh	July,1998
	Lepiaosapies jeun (Seren)	F. carica	Northern Coast	July,1997
	L. ulmi	Lebbak sp.	Minya	Nov.,1997
		V. vinifera	Beni- Suef	July,1998
	D 27000	P. armeniaca	Qalyubiya	Nov.,1996
•	F. Ojede	P. communis	Qalyubiya	Sep.,1998
A. opuntiae	A. aurantii	P. communis	Arish	Nov.,1997
	A. dulanti	p. guaiava	Alexandria	Aug.,1997
	A. duranni	0.1		

Table (2): Cont'd.

	Discuidid eneries	Host plant	Distribution	Date
sbecies	Diaspinia species			000
	A. aurantii	P. guajava	Gıza	Sep.,1998
	H. latania	M. indica	Ismailia	Aug.,1997
	H. latania	M. indica	Behira	Sep.,1997
	H. latania	M. indica	Sharqiya	Oct.,1999
4 naramaculicornis	D. echinocacti	Cactus sp.	Beni- Suef	Feb.,1998
	D. echinocacti	Opuntia sp.	Beni -Suef	March, 1997
	L. ulmi	V. vinifera	Beni- Suef	June, 1997
	P. oleae	Olea sp.	Northern Coast	Dec., 1996
	P oleae	P. communis	Ismailia	Aug.,1997
	P. oleae	P. malus	Fayoum	June, 1998
4 philippinensis	C. aonidum	Jasminum sp.	Giza	Dec.,1996
January	Quadraspidiotus pyri	F.carica	Minufiya	June,1997
	(Lichtenstein)		ſ	

Table (2): Cont'd.

. *. :

•				Date
			Distribution	Date
	This among the	Host plant		
species	Diaspinia species		Don Chef	Jan.: 1998
	T. L. Torresti	P. dactylifera	Delli-Daci	
A. phoenicis	F. plancharai		-5	Nov. 1997
-	n Limbordi	P. dactylifera	Alisii	
	F. otanichalai		Temailia	Sep1998
	To Llandowdi	P. dactylitera	Isinania	
_	F. blanchara	,	Oolsanhiya	Jan., 1997
,	11110 11	Oleander sp.	(alyun) a	
A. vandenboshi	A. neru			

governorate. The remaining *Aphytis* species were each associated with one species of armored scale insect on 1 to 2 plant hosts, in 1 to 2 governorates.

The study of the hosts and distribution of genus Aphytis in Egypt was first begun by Preisner and Hosny (1940). They recorded ten armored scale insects associated with four species of Aphytis on 14 host plants in different localities in Egypt. Since then, a further three species have been recorded along with their host plants and distribution, mostly in economic literature (i. e. Abdel-Fattah and El-Saadany (1979), Moursi and Hegazi (1983), Moursi and Mesbah (1985) and Hafez et al. (1987a).

A. lepidosaphes was recorded for the first time in Egypt by Abdel-Fattah and El-Saadany (1979). It is an effective parasitoid of L. beckii on Citrus sp. in Alexandria (Hafez et al., 1987b).

During this study, A. lepidosaphes and its armored scale insect hosts were collected in seven governorates (Alexandria, Behira, Beni-Suef, Daqahliya, Ismailia, Min.ufiyaand Sharqiya) on two host plants, Citrus sp. and M. indica.

Preisner and Hosny (1940) recorded A. diaspidis associated with P. oleae on five host plants all over the Delta and in Qena. Later, Hafez (1988) recorded this species associated with A. aurantii on Citrus sp. in Alexandria. During this work, four host species of armored scale insects of A. diaspidis have been newly recorded, namely A. nerii, H. latania, Hemiberlesia sp. and D. echinocacti in Beni-Suef, Giza, Min.ufiyaand Sharqiya. These were found on Cactus sp., Oleander sp., M. indicaand F. nitida, respectively.

A. mytilaspidis was recorded for the first time in Egypt by Preisner and Hosny (1940) associated with seven armored scale insects on nine host plants in Fayoum, Min.yaand all over the Nile Delta.

In the present work, two host species of armored scale insects are new records for A. mytilaspidis namely, A. lauri and C. stantophri.

Moursi and Hegazi (1983) and Moursi and Mesbah (1985) observed the important role of *Aphytis* sp. in controlling *L. riccae* in Egypt on *Olea* sp. In the present work the specific *Aphytis* species was identified as *A. libanicus* and was collected in Fayoum.

Hafez (1988) mentioned that A. hispanicus infested L. beckii in Alexandria. During the present work this species was recorded on three new species of armored scale insects, namely P. oleae, C. dictyospermi, I. Pallidula. These were found on Olea sp., P. communis, F. nitida and M. indica in Matruh, Sharqiya, Qalyubiya, Suez and Assiut, respectively

No systematic countryside survey of hosts and distribution of genus Aphytis has been conducted in Egypt, therefore, the hosts and distribution of A. africanus, A. aonidiae, A. chilensis, A. holxanthus, A. libanicus, A. opuntiae, A. paramaculicornis, A. philippinensis, A. phoenicisand A. vandenboshi (Table 2) are all recorded here for the first time in Egypt.

1. 2. Taxonomy:

Order Hymenoptera
Suborder Apocrita
Superfamily Chalcidoidea
Family Aphelinidae
Genus Aphytis Howard

In Egypt, no work previously carried out on the taxonomy of genus *Aphytis* (Fig. 1). Therefore the main purpose of the present work is to collect, describe and revise the species of genus *Aphytis* as known to occur in Egypt.



Fig. (1): General morphology of genus Aphytis (after Rosen and DeBach, 1)

This work is planned to throw light upon the high level of the *Aphytis* species categories as recently going on key is here constructed to helpin differentiation among the species under consideration. The following key deals with 18 species collected from different localities from Egypt.

Kev to A	Aphytis species attacking armored scale insects in Egypt:
1.	Female and male antennae 6-segmented, first funicle 2
	segment not triangular
	Female antennae 6-segmented, first funicle segment 3
	triangular, setae on head and thorax readily visble, male
	antennae 4-segmented Aphytis chilensis Howard
2(1).	Head with a distinct black bars and margins 3
,	.Head without black bars and margins 7
3 (2).	Rinarental species 4
3 (2).	Uniparental species
4 (3).	Antennal club about 3 times as long as wide
	. Antennal club less than three tims as long as wide
	Aphytis philippinensis DeBach and Rosen
5 (3).	Club 7 sensilla
, ,	.Club 6 sensilla 6
6 (5).	Mesoscutum 11 setae, propodeum 0.7 as long as
•	scutellum, 3 times as long as metanotum
	Aphytis vandenboshi DeBach and Rosen
	Mesoscutum 13 setae, propodeum 0.6 as long as
	scutellum, 4 times as long as metanotum

7(2)	Propodeal crenulae large and overlapping
	Propodeal crenulae either large but not overlapping or
	small
	Thoracic sterna dusky9
8(7).	Thoracic sterna immaculate
- (0)	Club 3. 2 times as long as wide
9(8).	Aphytis coheni DeBach. Club 3 times as long as wide
	Mesoscutum 12 setae, ovipositor 1.5 times as long as
10 (9).	Mesoscutum 12 setac, ovipestiti midtibia
	Mesoscutum 10 setae, ovipositor 1.9 times as long as
	Mesoscutum 10 setae, ovipositei ingagnensis Compere
	midtibia
11(8).	Club 3.4 to fully 4 times as long as wide
	.Club not more than 3.5 times as long as wide
12 (7).	Thoracic satae dark, propodeum snort
	Thoracic setae paler, propodeum long
13 (12).	Thoracic sterna dusky
	Thoracic sterna immaculate
14 (13)	Pale, margins of scutellum, propodeum, crenulae
	infuscate
	Dark, margins of scutellum, propodeum, crenulae
:	strongly infuscate
15 (13)	Pale vellow, posterior margin of scutellum narrowly 10
15 (15)	lined with blackish or fuscous, thoracic setae very dark
	Entirely pale yellow, posterior margin of scutellum
	concolorous, thoracic setae some what paler
4	
	,

Aphytis africanus Quednau (Fig. 2)

Aphytis africanus Quednau, 1964, J. Entomol. Soc. S. 27:112-113

Description:

Female:

Color: Thoracic sterna dusky, mesoscutum and the furca fuscous, the surrounding plates pale. Length 0.75mm.

Head: Without black bars and margins, mandibles well developed with 2 denticles and a dorsal truncation, palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 5.4 times as long as wide, 1.3 times as long as club; pedicel 2 times as long as wide, 1.3 times as long as third funcil segment (F₃); first funcil segment (F₁) 0.8 times as long as wide; second funcil segment (F₂) 0.6 times as long as wide; F₃ 1.3 times as long as wide, 0.4 times as long as club, one sensillum; club 3 times as long as wide and 4 sensilla.

Thorax: Mesoscutum 12 setae, 1.3 times as long as scutellum; parapsis 4 setae; axilla 2 setae, scutellum 4 setae, 1.7 times as long as propodeum; metanotum as long as apodeme. Forewing 2.7 times as long

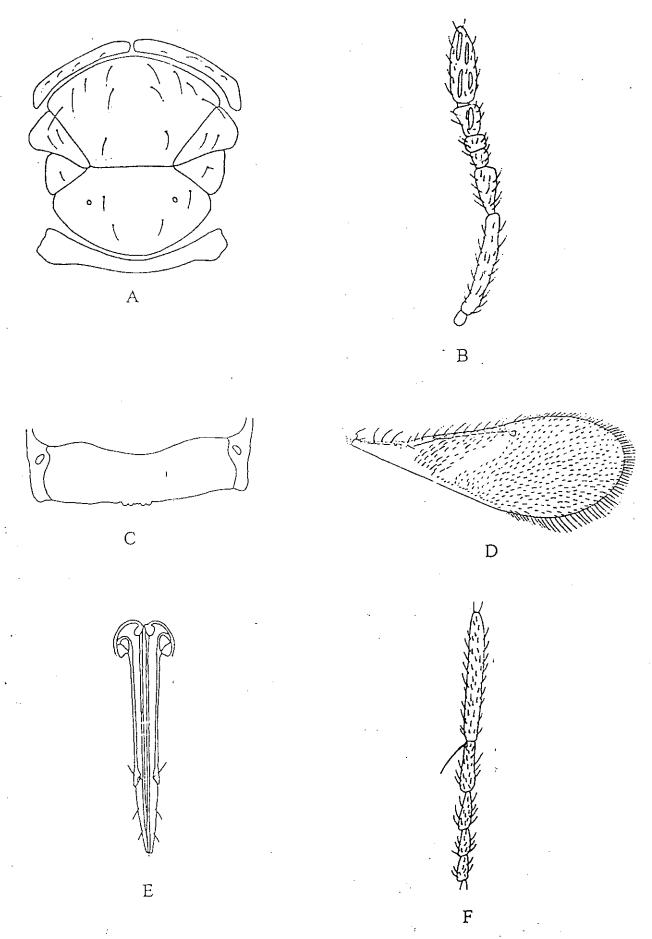


Fig. (2): Aphytis africanus Quednau. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

as wide, marginal vein 11 setae, submarginal vein 3 setae, 14 bullae, delta 47 setae in 5 rows, marginal fringe 0.2 times as long as the width of disk. Basitarsus 1.4 times as long as midtibial spur and midtibia 2.3 times as long as sheath, 0.7 times as long as ovipositor.

Gaster: Propodeum 0.6 times as long as scutellum, 4.6 times as long as metanotum, overlapping 6 crenulae. Ovipositor 1.5 times as long as midtibia, 3.7 times as long as sheath; sheath 0.4 times as long as midtibia. Tergite VII 2 setae, tergite VIII 4 setaeand syntergum 5-6 setae.

Male:

Similar to the female, but different in pedicel about 1.6 times as long as wide, F_3 1.2 longitudinal sensilla; club 2.3 longitudinal sensilla;

mesoscutum 10 setae; marginal vein with 8-10 setae. Length 0.60 mm.

Species group placement: Lingnanensis

Material examined: Specimens (20 slides, males and females), Qalyubiya; associated with A. aurantii on Citrus sp. V.23.1997.

Comments: A. africanus recorded here for the first time in Egypt associated with A. aurantii on Citrus sp. This species can be readily distinguished from A. lingnanensis by 3 setae on submarginal vein.

Aphytis aonidiae (Mercet)

(Fig. 3)

Aphelinus aonidiae Mercet 1911, Bd. R. Soc. Españ. Hist Nat., 11: 511-514.

Aphelinus aonidiae Mercet, 1912, Trab.Mus.Cienc.Nat.Madrid, 10: 63-67.

Aphytis aonidiae Mercet, 1930, Rev. Biol. Forest.Limmol; Ser.B, 2:51. Mercet, 1932, Eos, 8: 360: Compere, 1955, Univ. Calif. Publ. Entomol.

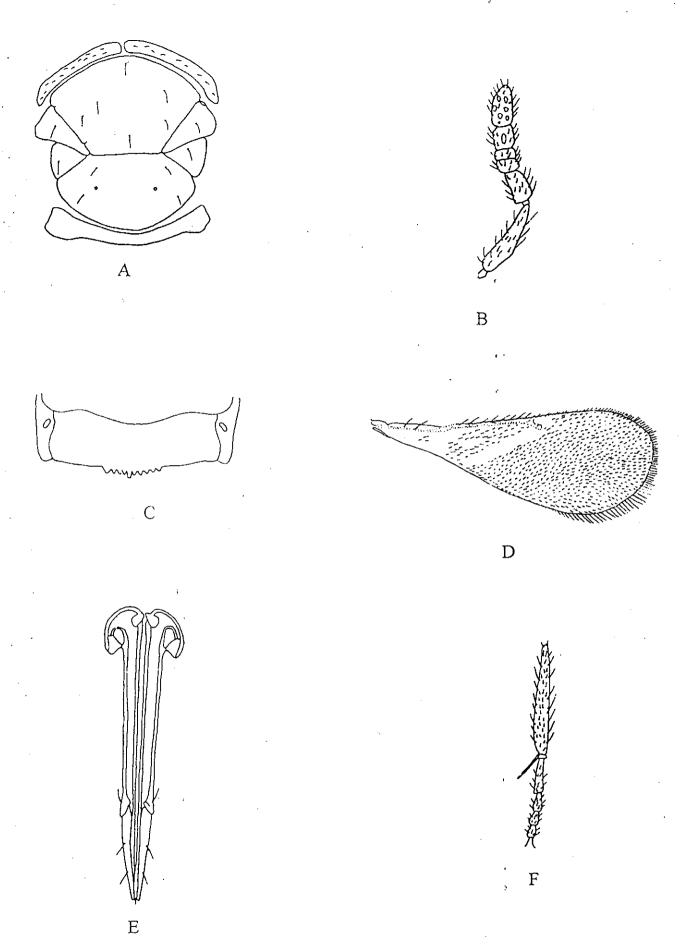


Fig. (3): Aphytis aonidiae (Mercet). Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Aphytis dubius: Compere, 1955, Univ. Calif. Publ. Entomol., 10: 310.

(Prospahelinus) dubius var. intermedia DeSantis 1948, Aphytis Rev. Mus. LaPlata, Zool. (N.S.), 5:129-130.

Publ. Calif. 1955, Univ. Compere, citrinus **Aphytis** Entomol.10:312-313.

Aphytis citrinus: Peak, 1963, Canad. Entomol. Suppl. 30: 249.

Description:

Female:

Color: Body pale yellow. Thoracic setae very dark and posterior margin of scutellum narrowly lined with blackish or fuscous. Length. 0.60mm.

Head: Without black bars and margins, mandibles well developed with 2 denticles, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 4.2 times as long as wide, 1.3 times as long as F₃; F₁ 0.8 times as long as wide; F₂ 0.5 times as long as wide, F₃ 1.2 times as long as wide, 0.5 times as long as club, one sensillum; club 2.2 times as long as wide and 6 sensilla.

Thorax: Mesoscutum 6 setae, 1.3 times as long as scutellum; parapsis 2 setae, axilla 2 setae; scutellum 4 setae, 1.3 times as long as propodeum; metanotum about 0.9 as long as apodeme. Forewing 2.6 times as long as wide, marginal vein 8 setae, submarginal vein 2 setae, 14 bullae, delta 49 setae in 5 rows, marginal fringe 0.2 as long as the width of disk. Basitarsus1.1 times as long as midtibial spur and midtibia 2.9 times as long as sheath, 0.7 as long as ovipositor.

Gaster: Propodeum short, 0.7 as long as scutellum, 5 times as long as metanotum, non-overlapping 10 crenulae, Ovipositor 1.6 times as long as midtibia, 4.6 times as long as sheath; sheath 0.35 as long as midtibia. Tergite VII 2 setae, tergite VIII 4 setaeand syntergum 5 setae.

Male:

Unkown.

Species group placement: Mytilaspidis.

Material examined: Specimens (7 slides, females), Alexandria; associated with A. lauri on L. nobilis, V.15.1997.

Comments: A. aonidiae recorded here for the first time in Egypt associated with A. lauri on L. nobilis. This species can be readily distinguished from the Egyptian Aphytis by the distinction that each parapsis has only one seta.

Aphytis chilensis Howard

(Fig. 4)

Aphytis chilensis Howard, 1900, Canad. Entomol., 32: 188.

Apehlinus longiclavae Mercet, 1911, Assoc. Españ.Prog.Crenc.Congr. Valencia,5:188.

Trichogrammatoidea signiphoroides Brethes, 1913, An. Mus. Nac. Nat. Buenos Aires, 24:99-100.

Aphelinus Capitis Rust, 1915, Entomol. News, 26: 73-74.

Aphelinus signiphoroides Brethes, 1916, An. Mus. Nac. Hist.Nat.Buenos Aires, 27: 429.

Aphytis riadi Delucchi, 1964, Rev. Path. Veg. Entomol. Agr., Fr. 43: 136-139.

Description:

Female:

Color: Body pale yellowish and transverse strongly pigmented black bar on occiput. The pupae are uniformly black ventrally. The meconial pellets 8-10 in number are unusual, almost square, distributed in two chairs along the slide of the pupae. Length: 0.90mm.

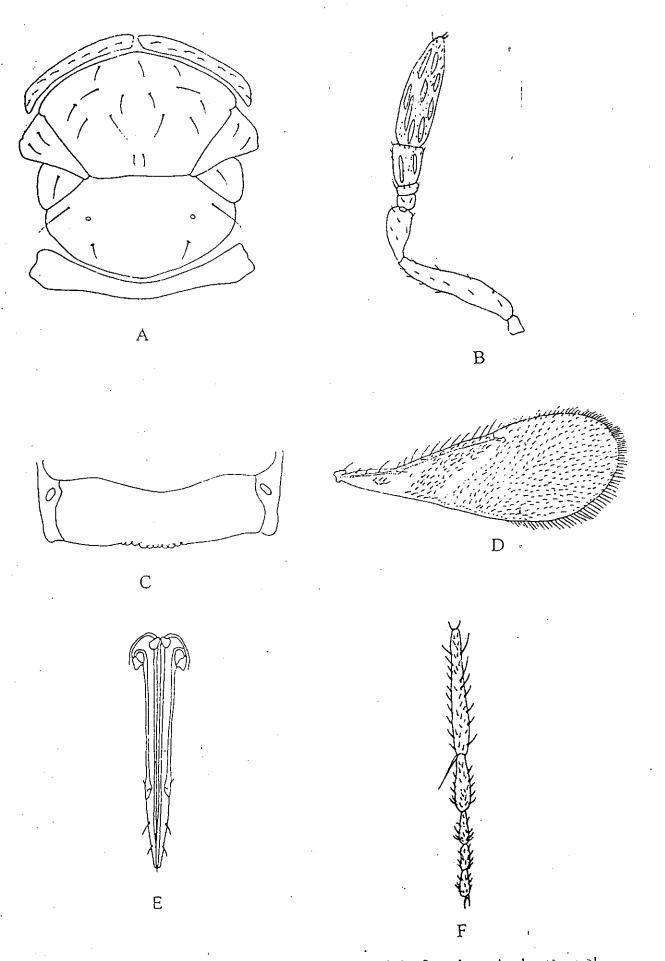


Fig. (4): Aphytis chilensis Howard. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing, E, ovipositor; F, tibial spur and basitarsus.

Head: Mandibles well developed with 2 denticles and a dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Male antennae 4-segmented, antennal scape 4.6 times as long as wide, 1.1 times as long as club; pedicel 1.8 times as long as wide, 1.3 times as long as F₃; F₁ 0.6 as long as wide; F₂ 0.7 as long as wide; F₃ 1.4 times as long as wide, 0.3 as long as club, 2 sensilla; club 3.4 times as long as wide and 9 sensilla. Setae on head readily visible.

Thorax: Mesoscutum 15 setae, 1.2 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae; 1.8 times as long as propodeum; metanotum about as long as apodeme. Forewing 2.6 times as long as wide, marginal vein 11 setae, submarginal vein 3 setae, 17 bullae, delta 55 setae in 5 rows, marginal fringe 0.2 as long as the width of disk. Basitarsus 1.1 times as long as midtibial spur and midtibia 1.8 times as long as sheath, 0.6 as long as ovipositor.

Gaster: Propodeum 0.6 as long as scutellum, 3.5 times as long as metanotum, non-overlapping 11 crenulae. Ovipositor 1.6 times as long as midtibia, 3 times as long as sheath; sheath 0.53 as long as midtibia. Tergite VII 2-4 setae, tergite VIII 6-8 setacand syntergum 2-4 setae.

Male:

Similar to the female, different in the structure and coloration of antennae. Antennae 4-segmented, antennal scape pale and pedicel faintly dusky. Length 0.75mm.

Material examined: Specimens (20 slides, males and females), Minya; associated with *C. dictyospermi* on *F. nitida* X.11.1998. Species group placement: Chilensis.

Comments: A. chilensis recorded in Algeria in North Africa and recorded here for the first time in Egypt associated with H. latania on M. indica. This species can be readily distinguished from other Egyptian Aphytis species by the male antennae, which are 4-segmented.

Aphytis chrysomphali (Mercet)

(Fig. 5)

Aphelinus chrysomphali Mercet, 1913, Bol. R. Soc.Españ.Hist.Nat.,18: 135-140.

Aphelinus quaylei Rust, 1915, Entomol. News, 26: 75.

Description:

Female:

Color: Body yellow and thoracic setae paler. Length 0.8mm.

Head: Without black bars and margins, mandibles well developed with 2 denticles and dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 5.8 times as long as wide, 1.1 times as long as club; pedicel 2.1 times as long as wide, 1.3 times as long as F₃; F₁ 0.8 as long as wide; F₂ 0.6 as long as wide; F₃ 1.2 times as long as wide, 0.3 as long as club, 2 sensilla, club 3.5 times as long as wide and 6 sensilla.

Thorax: Mesoscutum 10 setae, 1.3 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.5 times as long as propodeum; metanotum 0.8 as long as apodeme. Forewing 2.5 times as long as wide, marginal vein 10 setae, submarginal vein 2 setae, 15 bullae, delta 35 in 4 rows, marginal fringe 0.2 as long as the width of disk. Basitarsus nearly as long as midtibial spur and midtibia 1.9 times as long as sheath, 0.7 as long as ovipositor.

Gaster: Propodeum 0.7 as long as scutellum, 6 times as long as metanotum, non-overlapping 13 crenulae. Ovipositor 1.7 times as long as midtibia, 2.9 times as long as sheath; sheath 0.5 as long as midtibia. Tergite VII 2 setae, tergite VII 4 setaeand syntergym 6 setae.

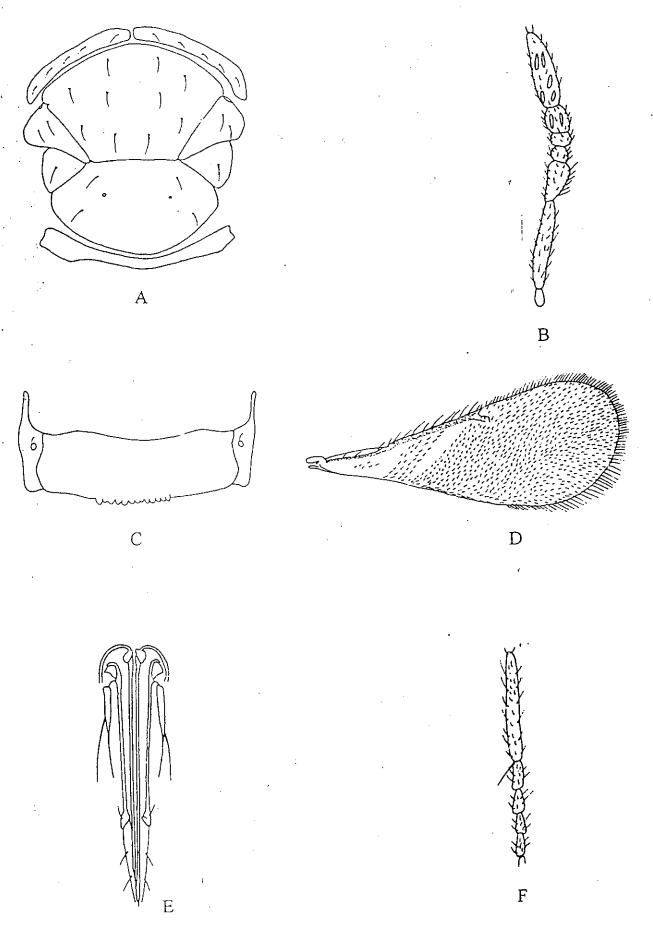


Fig. (5): Aphytis chrysomphali (Mercet). Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Male:

Similar to the female; differing mainly in the antennal scape, which is 5 times as long as wide, pedicel 1.6 times as long as wideand club short. Length 0.65mm.

Species group placement: Chrysomphali.

Material examined: Specimens (20 slides, males and females), Qalyubiya; associated with C. dictyospermi on F. nitida III.15.1997.

Comments: A. chyrsomphali recorded for the first time in Egypt by Priesner and Hosny (1940), associated with A. aurantii and C. ficus (both on Citrus sp.) with Chrysomphalus personatus (Comstock) on M. indica, with P. oleae on Olea sp. In the present work, it is associated with P. ziziphi on Citrus sp. in Giza. It differs from A. lepidosaphes in 12 setae on mesoscutum and scutellum 1.6 times as long as propodeum.

Aphytis coheni DeBach

(Fig. 6)

Aphytis coheni DeBach, 1960, Ann. Entomol. Soc. Amer., 53: 705

Description:

Female:

Color: Body yellow; thoracic sterna, pedicel, funicleand distinctly dusky. Length 0.90mm.

Head: Without black bars and margins, mandibles well developed with 2 denticles and dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 5.4 times as long as wide, 1.4 times as long as club; pedicel; 1.7 times as long as wide, 1.2 times as long as F₃; F₁ 0.8 as long as wide; F₂ 0.6 as long as wide; F₃ 1.5 times as long as wide, 0.5 as long as club, 2 sensilla; club 3.2. times as long as wide and 5 sensilla.

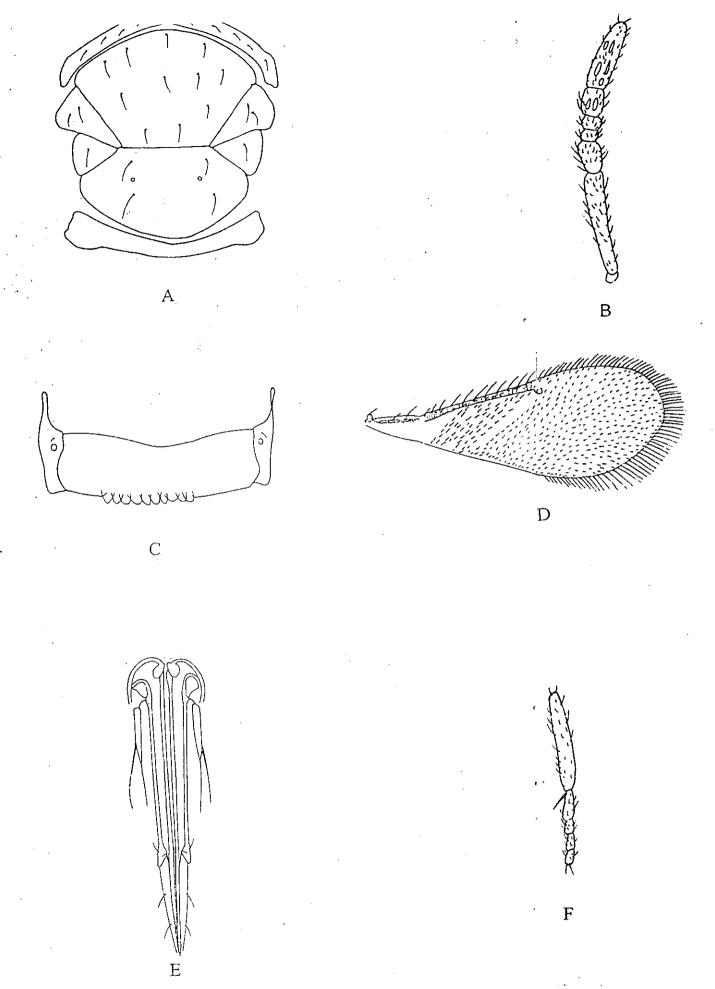


Fig. (6): Aphytis, coheni DeBach. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Thorax: Mesoscutum 11 setae, 1.3 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.3 times as long as propdeum; metanotum as long as apodeme. Forewing 2.6 times as long as wide, marginal vein 11 setae, submarginal vein 2 setae, 19 bullae, delta 55 setae in 6 rows, marginal fringe 0.2 as long as the width of disk. Basitarsus 1.3 times as long as midtibial spur and midtibia twice as long as sheath, 0.5 as long as ovipositor.

Gaster: Propodeum 0.8 as long as scutellum, 4.3 times as long as metanotum, overlapping 10 crenulae; ovipositor 1.9 times as long as midtibia, 3.2 times as long as sheath; sheath 0.5 as long as midtibia. Tergite VII 2 setae, tergite VIII 4 setaeand syntergum 5-8 setae.

Male:

Similar to the female, differing mainly in the number of delta setae (28-49). Length 0.79mm.

Species group placement: Lingnanensis.

Material examined: Specimens (20 slides, males and females), Alexandria; associated with A. aurantii on Citrus sp., XI.12.1998.

Comments: A. coheni recorded for the first time in Egypt by Hafez (1988) associated with A. aurantii on Citrus sp., but in this work, it is associated with A. aurantii on Olea sp. in Arish. It differs from A. lingnanensis by pronounced pigmentation of the thoracic sterna.

Aphytis diaspidis (Howard)

(Fig. 7)

Aphelinus diaspidis Howard, 1881, U.S. Commiss. Agr. Rept. for 1880, p.55.

Aphelinus fuscipennis Howard, 1881, U.S. Commiss. Agr. Ann. Rept. for 1880, p. 356.

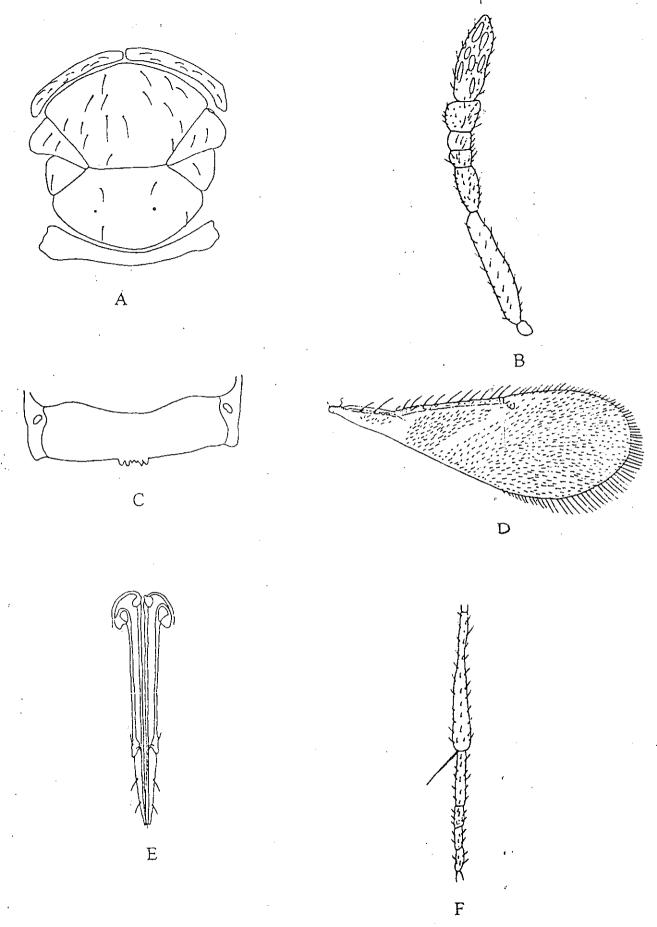


Fig. (7): Aphytis diaspidis (Howard). and Rosen. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Aphelinus ovidii Girault, 1919, Hymenoptera Chalcidoidea nova Australiensis. Priv. Publ. Brisbane, 3pp. page 1.

Aphytis opuntiae Risbec (née Mercet), 1952, Mem.Ins.Sci.Madagascar, Ser. E., 2: 150-152.

Prospaphelinus madagascariensis Risbec, 1952, Mem.Ins.Sci. Madagascar,Ser.E.,2:156-158.

Aphytis risbeci Annecke and Insley, 1971, S. Afr. Dep. Agr.Tech.Serv. Entomol.Mem.,23: 29 (new name for A. opuntiae Risbec).

Description:

Female:

Color: Body dark yellow, head blackish, mesoscutum infuscated.

Length 1mm.

Head: With distinct black bars and margins, mandibles well developed, with 2 denticles and a dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 6 times as long as wide, 1.3 times as long as club; pedicel 1.8 times as long as wide, 1.5 times as long as F₃; F₁ 0.8 as long as wide; F₂ 0.7 as long as wide; F₃ 1.1 times as long as wide, 0.3 as long as club, one sensillum; club 3 times as long as wide and 7 sensilla.

Thorax: Mesoscutum 16 setae, 1.3 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.4 times as long as propodeum; metanotum slightly as long as apodeme. Forewing 2.6 times as long as wide, marginal vein 11 setae, submarginal vein 2 setae, 17 bullae, delta 75 setae in 7 rows, marginal fringe 0.2 as long as the width of disk. Basitarsus 1.2 times as long as midtibial spur and midtibia 2.4 times as long as sheath, 0.8 as long as ovipositor.

Gaster: Propodeum 0.8 as long as scutellum, 3 times as long as metanotum, non-overlapping 6 crenulae. Ovipositor 1.3 times as long as midtibia, 3.2 times as long as sheath; sheath 0.41 as long as midtibia. Tergite VII 4 setae, tergite VIII 8 setae and syntergum 12 setae.

Male:

Unknown.

Species group placement: Proclia

Material examined: Specimens (20 slides females), females), Northern Coast; associated with P. oleae on Olea sp., IV.4.1997.

Comments: A. diaspidis recorded for the first time in Egypt by Priesner and Hosny (1940), associated with P. oleae on P. armeniaca (apricot), P. communis (pear), Rosa sp. (rose), Oleander sp. and F. nitida, but in the present work, it is recorded on a new host plant (Olea sp.) but on the same host insect. According to Rosen and DeBach (1979) procliagroup differs from other groups in the genus Aphytis by the distinct black bars and margins on the head. This species can be readily distinguished from the other members of proclia group in that the club has 7 sensilla.

Aphytis hispanicus (Mercet)

(Fig. 8)

1912, Mercet, hispanica maculicornis var. Aphelinus Trab.Mus.Oenc. Nat. Madrid, Ser.Zool.,10:81-82.

Nac.Hist Mus. argentinus Brethes, An. 1916, Aphelinus Nat.Buenos Aires, 27: 428-429.

Aphelinus bovelli Malenotti, 1918, Redia, 13: 78-81.

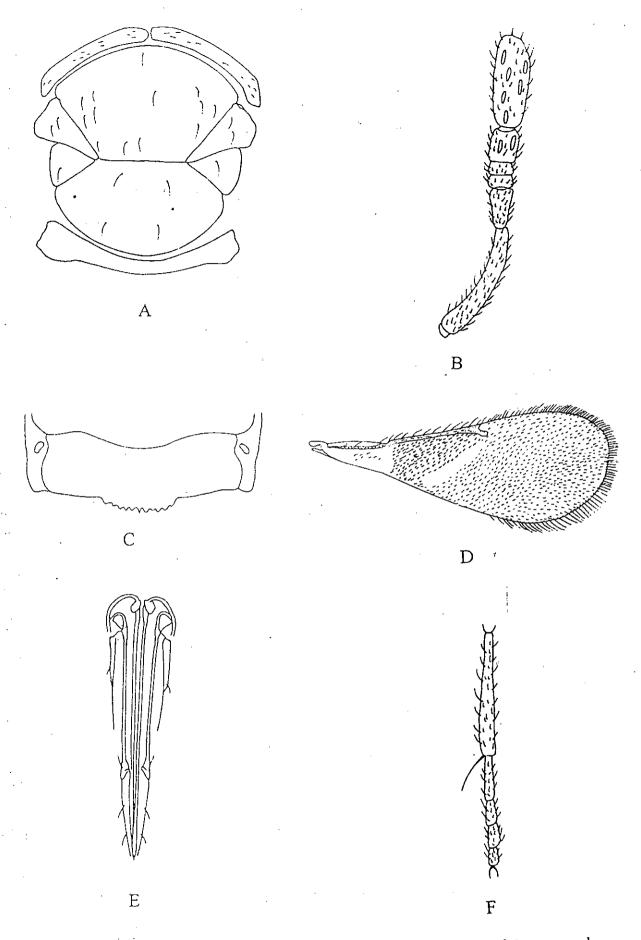


Fig. (8): Aphytis hispanicus (Mercet). Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Description:

Female:

Color: Body pale yellow, antennal scape pale with longitudinal fuscous stripe, pedicel and funicel strongly infuscated and apical third of club blackish. Length 0.85mm.

Head: With distinct black bars and margins, mandibles well developed with 2 denticles and a dorsal truncation, max.illary palpi 2segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 5.2 times as long as wide, 1.2 times as long as club; pedicel 1.8 times as long as wide, somewhat as long as F₃; F₁ 0.7 as long as wide; F₂ 0.4 as long as wide; F₃ 1.5 times as long as wide, 0.4 as long as club, 2 sensilla; club 2.8 times as long as wide and 6 sensilla.

Thorax: Mesoscutum 13 setae, 1.2 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.3 times as long as propodeum; metanotum the same length as apodeme. Forewing 2.7 times as long as wide, marginal vein 11 setae, submarginal vein 2 setae, 20 bullae, delta 143 setae in 10 rows, marginal fringe 0.3 as long as width of disk. Basitarsus 1.1 times as long as midtibial spur and midtibia 2.4 times as long as sheath, 0.7 as long as ovipositor.

Gaster: Propodeum 0.6 as long as scutellum, 4 times as long as metanotum, non-overlapping 11 crenulae. Ovipositor 1.5 times as long as midtibia, 3.7 times as long as sheath; sheath 0.41 as long as midtibia. Tergite VII 2-6 setae, tergite VIII 5-9 setae and syntergum 7-12 setae.

Male:

Unknown.

Species group placement: Proclia.

Material examined: Specimens (20 slides, 20 lines), Ismailia; associated with I. pallidula on M. indica III.14.1998.

Comments: A. hispanicus recorded for the first time in Egypt by Hafez (1984), associated with three armored scale insects attacking two host plants. This species can be readily distinguished from A. paramaculicornis and A. vandenboshi in 14 and 11 setae on mesoscutum and scutellum 1.4 and 1.5 as long as propodeum, respectively.

Aphytis holoxanthus DeBach (Fig. 9)

Aphytis holoxanthus DeBach, 1960, Ann. Entomol.Soc.Amer., 53: 704-705.

Description:

Female:

Color: Entirely yellow, thoracic sterna immaculate, a short black streak at base of the forewing. Length 0.95mm.

Head: Without black bars and margins, mandibles well developed with 2 denticles and dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 5 times as long as wide, 1.2 times as long as club; pedicel twice as long as wide, 1.4 times as long as 3 F₃; F₁ 0.8 as long as wide; F₂ 0.6 as long as wide; F₃ 1.5 times as long as wide, 0.4 as long as club, 2 sensilla; club 3.2 times as long as wide and 5 sensilla.

Thorax: Mesoscutum 12 setae, 1.3 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.3 times as long as propodeum; metanotum as long as apodeme. Forewing 2.5 times as long as wide, marginal vein 11 setae, submarginal vein 2 setae, 15 bullae, delta 38 setae in 5 rows, marginal fringe 0.1 as long as width of disk. Basitarsus nearly as long as midtibial spur and midtibia 1.8 times as long as sheath, 0.45 as long as ovipositor.

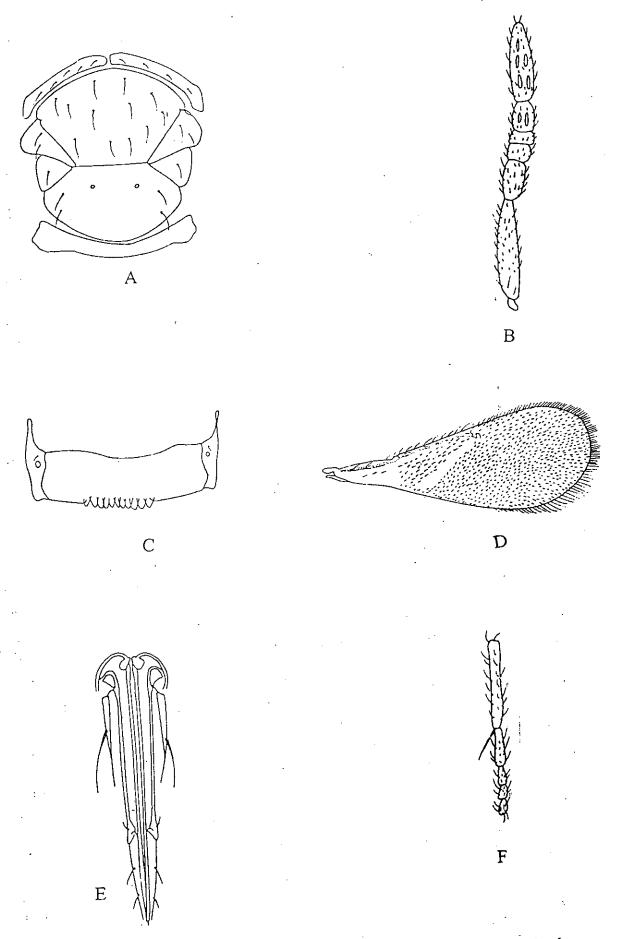


Fig. (9): Aphytis holoxanthus DeBach. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Gaster: Propodeum 0.7 as long as scutellum, 4.3 times as long as metanotum, overlapping 11 crenulae. Ovipositor 2.1 times as long as midtibia, 4 times as long as sheath; sheath 0.56 as long as midtibia. Tergite VII 2 setae, tergite VIII 4 setaeand syntergum 6 setae.

Male:

Similar to the female but different in club 2-3 sensilla and delta 24-33 setae. Length 0.80mm.

Species group placement: Lingnanensis.

Material examined: Specimens (20 slides, males and females), Giza; associated with *C. aonidum* on *Citrus* sp. XI.22.1998.

Comments: A holoxanthus recorded in the present work for the first time associated with C aonidum on Citrus sp. This species can be readily distinguished from A. melinus in pale setae on the thorax and head; antennal club long, slender and ovipositor, sheath short.

Aphytis lepidosaphes Compere (Fig. 10)

Aphytis lepidosaphes Compere, 1955, Univ. Calif. Publ. Entomol., 10: 307.

Description:

Female:

Color: Body yellow, thoracic setae paler. Thoracic sterna infuscated and scutellum lined with black. Length 1.0mm.

Head: Without black bars and margins, mandibles well developed with 2 denticles and a dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 5 times as long as wide, 1.7 times as long as club; pedicel 1.7 times as long as wide, 1.5 times as long as F₃; F₁ 0.7 as long as wide; F₂ 0.6 as long as

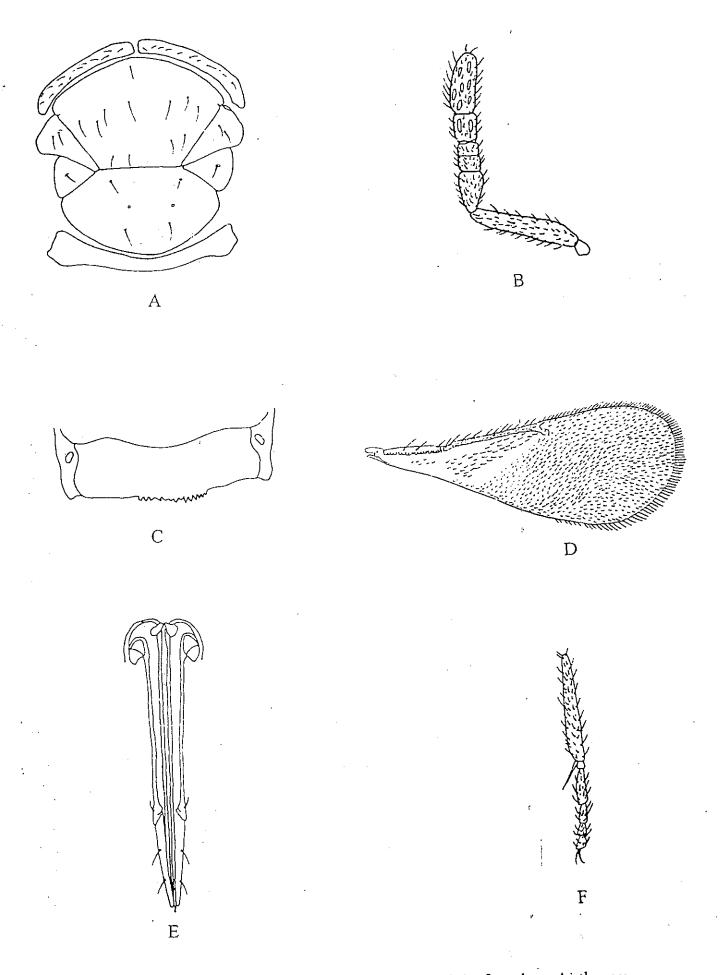


Fig. (10): Aphytis lepidosapes Compere. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

wide; F_3 1.2 times as wide, 0.4 as long as club, 2 sensilla; club 2.8 times as long as wide and 7 sensilla.

Thorax: Mesoscutum 12 setae, 1.2 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae; 1.6 times as long as propodeum; metanotum 1.1 times as long as apodeme. Forewing 2.6. times as long as wide, marginal vein 12 setae, submarginal vein 2 setae, 18 bullae, delta 44 setae in 4 rows, marginal fringe 0.1 as long as width of disk. Basitarsus 1.3 times as long as midtibial spur and midtibia 2.1 times as long as sheath, 0.6 as long as ovipositor.

Gaster: Propodeum 0.6 as long as scutellum, 4.5 times as long as metanotum, non-overlapping 12 crenulae; ovipositor 1.9 times as long as midtibia, 4 times as long as sheath; sheath 0.4 as long as midtibia. Tergite VII 2 setae, tergite VIII 4 setaeand syntergum 6 setae.

Male:

Similar to the female but different in club 3-5 sensilla, crenulae 6-11, delta 20-31 setae in 3-4 rows, marginal vein 8-10. Length 0.80mm.

Species group placement: Chrysomphali.

Material examined: Specimens (20 slides, males and females), Ismailia; associated with L. beckii on M. indica VI.1.1998.

Comments: A. lepidosaphes recorded for the first time in Egypt by Hafez (1984) associated with L. beckii on C. sinenensis. It differs from A. chrysomphali by the number of setae on mesoscutum and the relative length of propodeum, metanotum and scutellum. This species is characterized by specific host insects and plants.

Aphytis libanicus Traboulsi (Fig. 11)

Aphytis libanicus T raboulsi, 1969, Ann. Soc. Entomol. Fr. (N.S.), 5: 66-67.

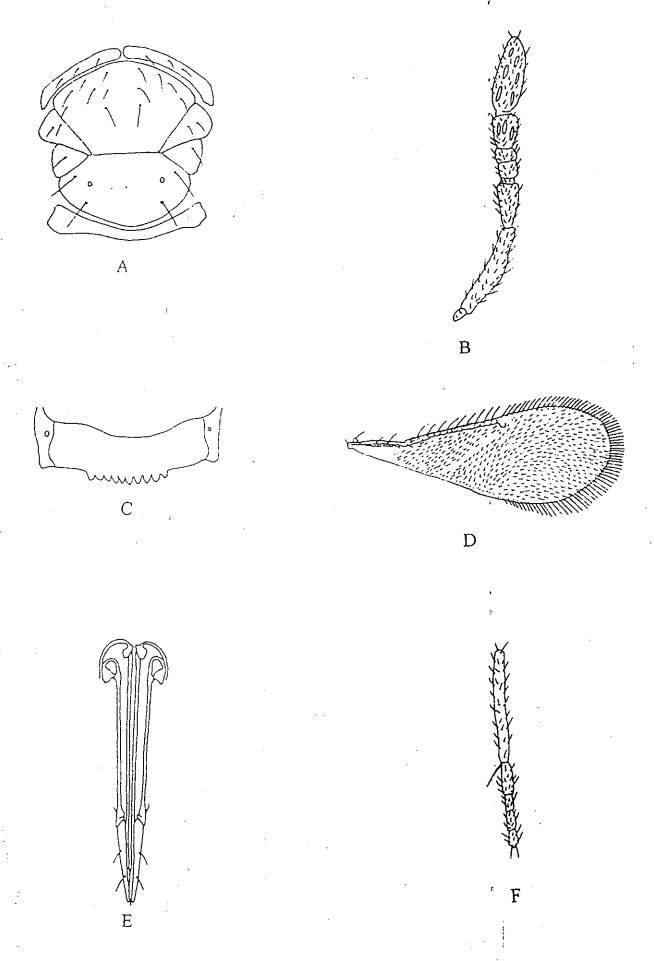


Fig. (11): Aphytis libanicus Traboulsi. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Description:

Female:

Color: Body yellow, without any fuscous markings and thoracic setae paler. Length 0.80mm.

Head: Without black bars and margins, mandibles well developed with 2 denticles and a dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 4.2 times as long as wide, 1.3 times as long as club; pedicel 1.6 times as long as wide, 1.1 times as long as F₃; F₁ 0.7 as long as wide; F₂ 0.5 as long as wide; F₃ 1.2 times as long as wide, 0.4 as long as club, one sensillum; club 2.5 times as long as wide and 6 sensilla.

Thorax: Mesoscutum 11 setae, 1.3 times as long as scutellum; parapsis 4 setae, axilla 2 setae; scutellum 4 setae, 1.6 times as long as propodeum; metanotum the same length as apodeme. Forewing 2.5 times as long as wide, marginal vein 11 setae, submarginal vein 2 setae, 16 bullae, delta 42 setae in 5 rows, marginal fringe 0.2 as long as width of disk. Basitarsus 1.2 times as long as midtibial spur and midtibia 2.5 times as long as sheath, 0.6 as long as ovipositor.

Gaster: Propodeum 0.6 as long as scutellum, 4 times as long as metanotum, non-overlapping 10 crenulae. Ovipositor 1.8 times as long as midtibia, 4.5 times as long as sheath; sheath 0.4 as long as midtibia. Tergite VII 2 setae, tergite VIII 4 setaeand syntergum 5 setae.

Male:

Unknown.

Species group placement: Mytilaspidis.

Material examined: Specimens (15 slides, females), Fayoum; associated with *L. riccae* on *Olea* sp., XII.3.1996.

Comments: A. libanicus recorded here for the first time in Egypt associated with L. riccae on Olea sp. This species can be readily distinguished from A. aonidiae in thoracic sterna immaculate and thoracic setae very dark. It is also characterized by specific host plant and insect.

Aphytis lingnanensis Compere (Fig. 12)

Aphytis lingnanensis Compere, 1955, Univ. Calif. Publ. Entomol., 10: 303-305.

Description:

Female:

Color: Body yellow, longitudinal of the furca blackish, posterior margin of scutellum lined with black and thoracic sterna dusky. Length 0.85mm.

Head: Without black bars and margins, mandibles well-developed with 2 denticles and a dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 5.6 times as long as wide, 1.2 times as long as club; pedicel 1.8 times as long as wide, 1.2 times as long as long as wide; F₂ 0.6 as long as wide; F₃ 1.3 times as long as wide, 0.4 as long as club, 2 sensilla; club 3 times as long as wide and 7 sensilla.

Thorax: Mesoscutum 10 setae, 1.2 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.4 times as long as propodeum; metanotum as long as apodeme. Forewing 2.6 times as long as wide, marginal vein 12 setae, submarginal vein 2 setae, 12 bullae, delta 40 setae in 5 rows, marginal fringe 0.1 as long as width of disk. Basitarsus 1.3 times as long as midtibial spur and midtibia 1.9 times as long as sheath, 0.52 as long as ovipositor.

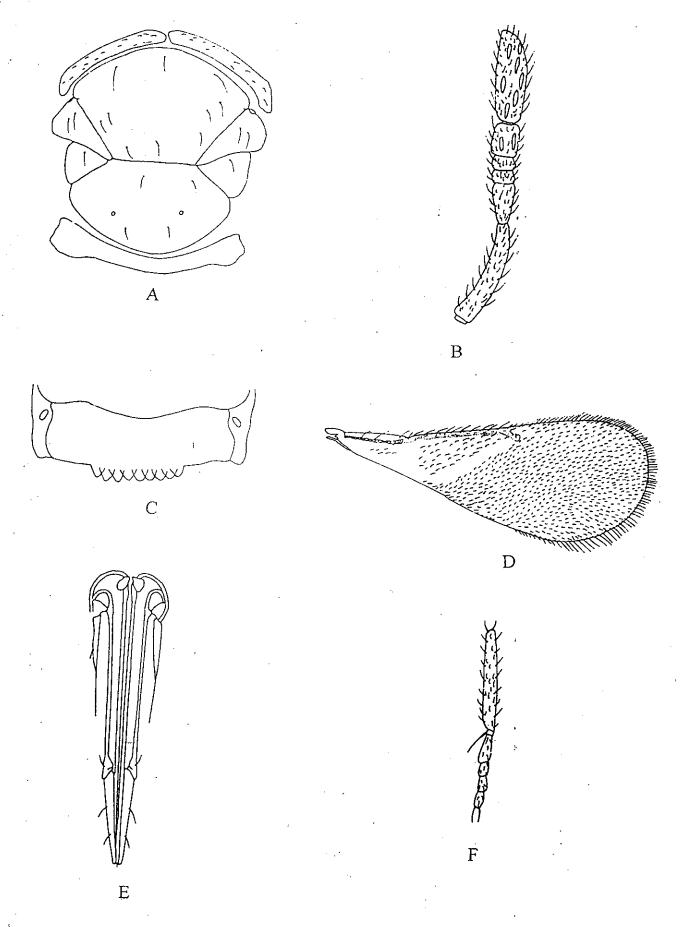


Fig. (12): Aphytis lingnanensis Compere. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Gaster: Propodeum 0.7 as long as scutellum, 4.6 times as long as metanotum, overlapping 9 crenulae; ovipositor 1.9 times as long as midtibia, 3.7 times as long as sheath; sheath 0.51 as long as midtibia. Tergite VII 2 setae, tergite VIII 4 setae and syntergum 5-8 setae.

Male:

Similar to female, but differs in club (3-5 sensilla). Length 0.70mm.

Species group placement: Lingnanensis.

Material examined: Specimens (20 slides, males and females), Giza; associated with A. aurantii on F. nitida I.10.1997.

Comments: A. lingnanensis recorded for the first time in Egypt by Hafez (1984) associated with A. aurantii and L. beckii on Citrus sp. in Alexandria. It is distinguished from Egyptian Aphytis by strongly overlapping crenulae and long propodeum.

Aphytis melinus DeBach

(Fig. 13)

Aphytis melinus DeBach, 1959, Ann. Entomol. Soc. Amer., 52: 361-362.

Description:

Female:

Color: Body yellow and thoracic sterna immaculate.Length 0.90mm.

Head: Without black bars and margins, mandibles well-developed with 2 denticles and dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 6 times as long as wide, 1.2 times as long as club; pedicel 1.8 times as long as wide, 1.5 times as long as F₃; F₁ 0.8 as long as wide; F₂ 0.6 as long as

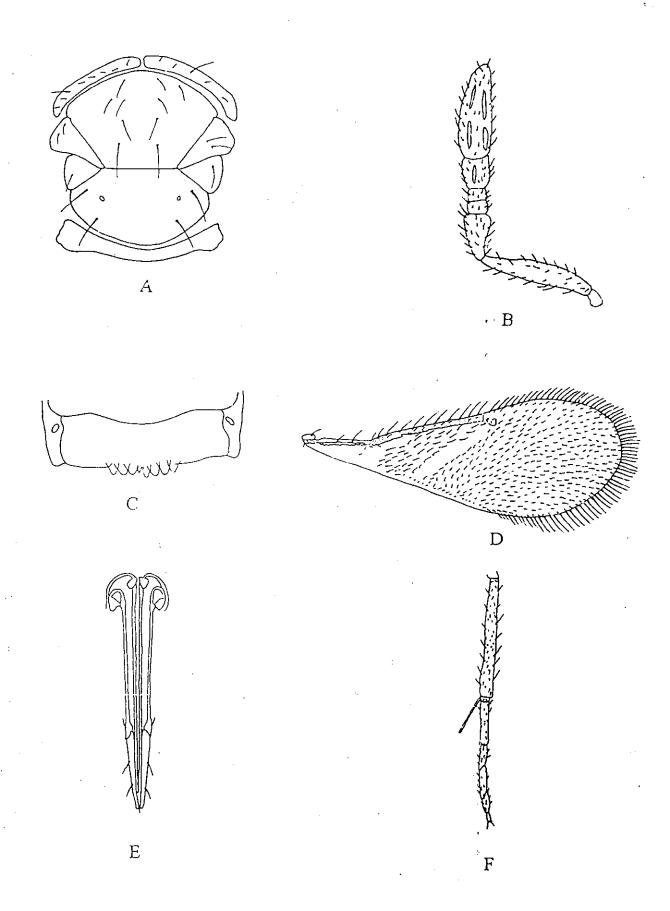


Fig. (13): Aphytis melinus DeBach. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

wide; F_3 1.2 tim es as long as wide, 0.3 as long as club, one sensillum; club 3.4 times as long as wide and 6 sensilla.

Thorax: Mesoscutum 10 setae, 1.3 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.4 times as long as propodeum; metanotum the same length as apodeme. Forewing 2.7 times as long as wide, marginal vein 11 setae, submarginal vein 2 setae, 12 bullae, delta 44 setae in 6 rows, marginal fringe 0.2 as long as width of disk. Basitarsus 1.1 times as long as midtibial spur and midtibia 1.8 times as long as sheath, 0.6 as long as ovipositor.

Gaster: Propodeum 0.7 as long as scutellum, 4.6 times as long as metanotum, overlapping 8 crenulae. Ovipositor 1.6 times as long as midtibia, 3.1 times as long as sheath and 0.51 as long as midtibia. Tergite VII 6-7 setae, tergite VIII 6 setae and syntergum 6 setae.

Male:

Similar to female. Length 0.80mm.

Species group placement: Linguanensis.

Material examined: Specimens (20 slides, males and females), Minya; associated with A. aurantii on Citrus sp. III.13.1997.

Comments: A. melinus was recorded for the first time in Egypt by Hafez (1984) associated with A. aurantii and H. latania on P. guajava. It is very similar to A. holoxanthus in coarse dark setae on the thorax and head; antennal club robust and ovipositor, sheath long.

Aphytis mytilaspidis (LeBaron)

(Fig. 14)

Agonioneurus albidus Westwood, 1837, Phill. Mag. Ser. 3, 10: 422.

Aphelinus mytilaspidis LeBaron, 1870, Amer. Entomol. Bot., 2: 360-362.

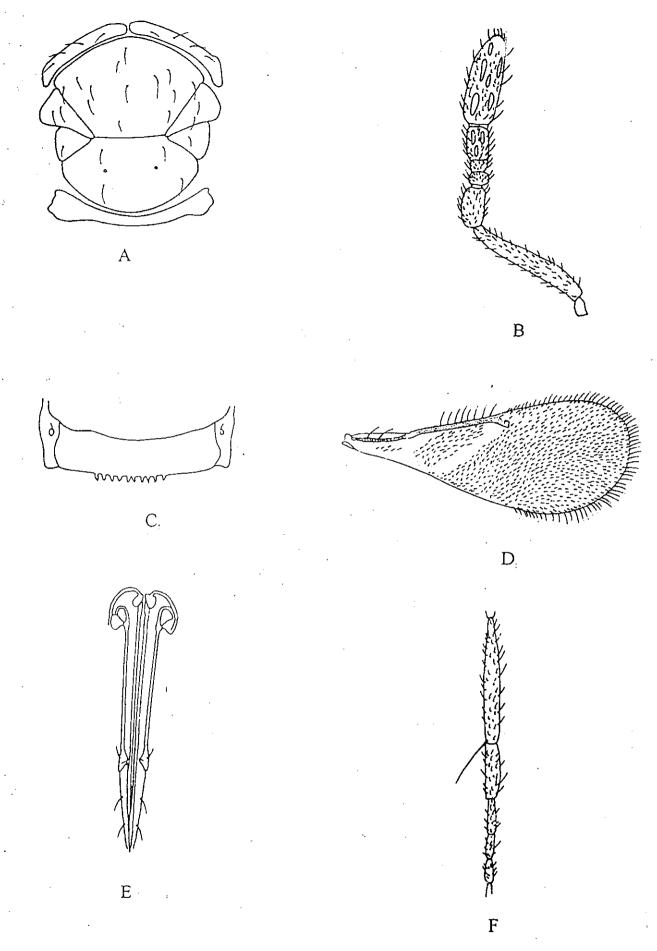


Fig. (14): Aphytis mytilaspidis (LeBaron). Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Description:

Female:

Color: Body pale yellow, thoracic setae dark, thoracic sterna dusky, margins of scutellum and propodeum, crenulae infuscate. Length 1.1mm.

Head: Without black bars and margins, mandibles well-developed, with 2 denticles and a dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 6.3 times as long as wide, 1.4 times as long as club; pedicel 1.8 times as long as wide, 1.1 times as long as F₃; F₁ 0.7 as long as wide; F₂ 0.6 as long as wide; F₃ 1.5 times as long as wide, 0.4 as long as club, 3 sensilla; club 2.7 times as long as wide and 6 sensilla.

Thorax: Mesoscutum 13 setae, 1.4 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.7 times as long as propodeum; metanotum slightly as long as apodeme. Forewing 2.5 times as long as wide, marginal vein 6 setae, submarginal vein 2 setae, 18 bullae, delta 55 setae in 6 rows, marginal fringe 0.1 as long as width of disk. Basitarsus 1.1 times as long as midtibial spur and midtibia 2.7 times as long as sheath, 0.7 as long as ovipositor.

Gaster: Propodeum 0.7 as long as scutellum, 3 times as long as metanotum, non-overlapping 10 crenulae. Ovipositor 1.4 times as long as midtibia, 3.8 times as long as sheath; sheath 0.37 as long as midtibia. Tergite VII 2 setae, tergite VIII 4-6 setaeand syntergum 8-11 setae.

Male:

Similar to female but differing in the pedicel (about 1.3 times as long as wideand club 3-4 sensilla). Length 0.95mm.

Species group placement: Mytilaspidis.

Material examined: Specimens (20 slides, males and females), Qalyubiya; associated with P. oleae on P. armeniaca VIII.28.1997.

Comments: A. mytilaspidis was recorded for the first time in Egypt by Priesner and Hosny (1940) associated with A. aurantii on Citrus sp., Aspidioutus cyanophylli (Signoret) on Alternanthera sp., H. latania on P. guajava, A. hederae on Jasmin.um sp., Russellaspis pustulans (Cockerell) on F. carica, C. striata on Cupressus sp. and Thuja sp., D. echinocacti on O. vulgaris, L. ulmi on V. vinifera and P. oleae on P. armeniaca. This species is distinguished from Egyptian Aphytis by a short propodeum and small crenulae.

Aphytis opuntiae (Mercet)

(Fig. 15)

Aphelinus opuntiae Mercet, 1912, Trab. Mus. Cienc. Nat. Madrid, 10: 84-87.

Description:

Female:

Color: Body dark yellow, thoracic setae dark, thoracic sterna dusky, margins of scutellum, propodeumand crenulae strongly infuscated. Length 0.90mm.

Head: Without black bars and margins, mandibles well-developed with 2 denticles, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 6 times as long as wide, 1.3 times as long as club; pedicel 1.8 times as long as wide, 1.3 times as long as F₃; F₁ 0.7 as long as wide; F₂ 0.5 as long as wide; F₃ 1.5 times as long as wide, 0.5 as long as club, 2 sensilla; club 3 times as long as wide and 6 sensilla.

Thorax: Mesoscutum 10 setae, 1.4 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.5 times as long as propodeum; metanotum as long as apodeme. Forewing 2.5 times as long as wide, marginal vein 11 setae, submarginal vein 2 setae, 18 bullae, delta

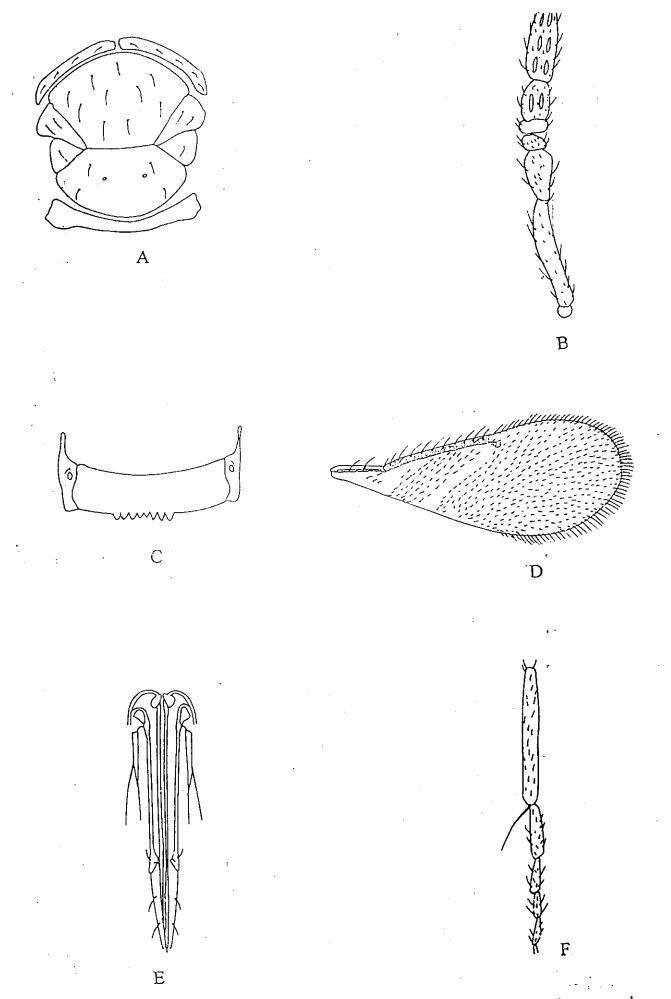


Fig. (15): Aphytis opuntiae (Mercet). Adult female: A, thorax and metanotum B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

55 setae in 6 rows, marginal fringe 0.1 as long as width of disk. Basitarsus 1.2 times as long as midtibial spur and midtibia 2.5 times as long as sheath, 0.7 as long as ovipositor.

Gaster: Propodeum 0.7 as long as scutellum, 3.6 times as long as metanotum, non-overlapping 8 crenulae; ovipositor 1.4 times as long as midtibia, 3.5 times as long as sheath; sheath 0.4 as long as midtibia. Tergite VII 2 setae, tergite VIII 4-6 setaeand syntergum 6-8 setae.

Male:

Similar to female. Length 0.80mm.

Species group placement: Myitlaspidis.

Material examined: Specimens (20 slides, males and females), Alexandria; associated with A. aurantii on P. guajava IX.4.1997.

Comments: A. opuntiae is recorded here for the first time associated with A. aurantii on Citrus sp. It differs from A. mytilaspidis in pale yellow and mesoscutum without a pair of blotches.

Aphytis paramaculicornis DeBach and Rosen (Fig. 16)

Aphytis paramaculicornis DeBach and Rosen, 1976, Ann. Entomol. Soc. Amer., 69: 542-543.

Description:

Female:

Color: Body pale yellow and apical part of club blackish. Length 1.0mm.

Head: With distinct black bars and margins, mandibles well-developed with 2 denticles and a dorsal truncation, max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 5 times as long as wide, 1.1 times as long as club; pedicel 1.8 times as long as wide, 1.1 times as long as wide; F₂ 0.6 as

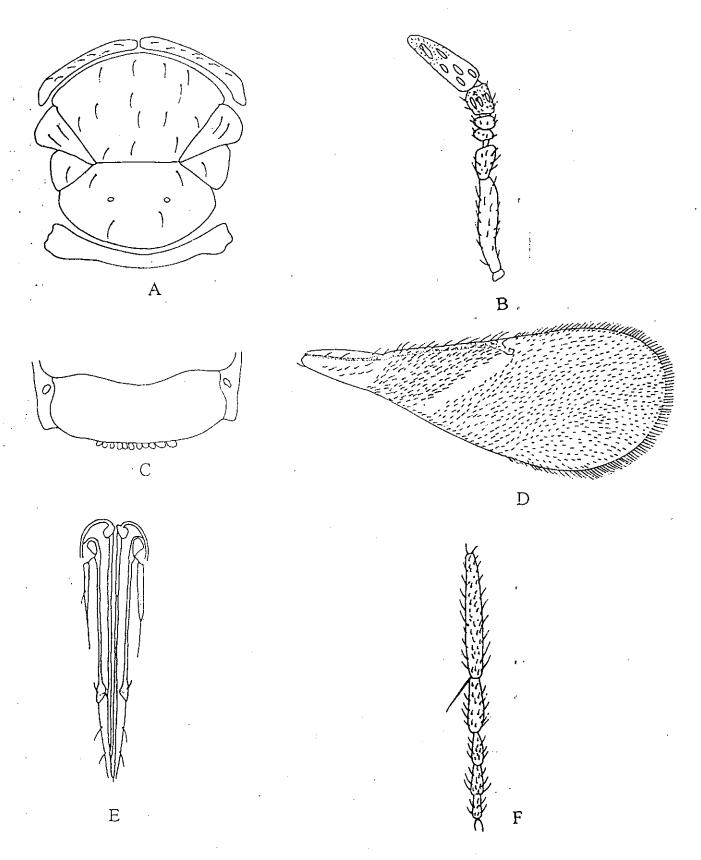


Fig. (16): Aphytis paramaculicornis DeBach and Rosen. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

long as wide; F₃ 1.2 times as long as wide, 0.4 as long as club, 3 sensilla; club 3.1 times as long as wide and 6 sensilla.

Thorax: Mesoscutum 14 setae, 1.3 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.4 times as long as propodeum; metanotum the same length as apodeme. Forewing 2.9 times as long as wide, marginal vein 13 setae, submarginal vein 2 setae, 19 bullae, delta 130 setae in 10 rows, marginal fringe 0.1 as long as width of disk. Basitarsus 1.3 times as long as midtibial spur and midtibia 1.9 times as long as sheath, 0.6 as long as ovipositor.

Gaster: Propodeum 0.7 as long as scutellum, 4.3 times as long as metanotum, non-overlapping 11 crenulae. Ovipositor 1.6 times as long as midtibia, 3 times as long as sheath; sheath 0.53 as long as midtibia. Tergite VII 6 setae, tergite VIII 4 setaeand syntergum 6 setae.

Male:

Similar to female. Length 0.85mm.

Species group placement: Proclia.

Material examined: Specimens (20 slides, males and females), Northern Coast; associated with *P. oleae* on *Olea* sp. XII.17.1996.

Comments: A. paramaculicornis is recorded here for the first time in Egypt associated with P. oleae on Olea sp. This species can be readily distinguished from A. hispanicus and A. vandenboshi in 13 and 1 setae on mesoscutum and scutellum 1.3 and 1.5 as long as propodeum, respectively.

Aphytis philippinensis DeBach and Rosen (Fig. 17)

Aphytis philippinensis DeBach and Rosen, 1976, Ann. Entomol. Soc. Amer., 9:543.

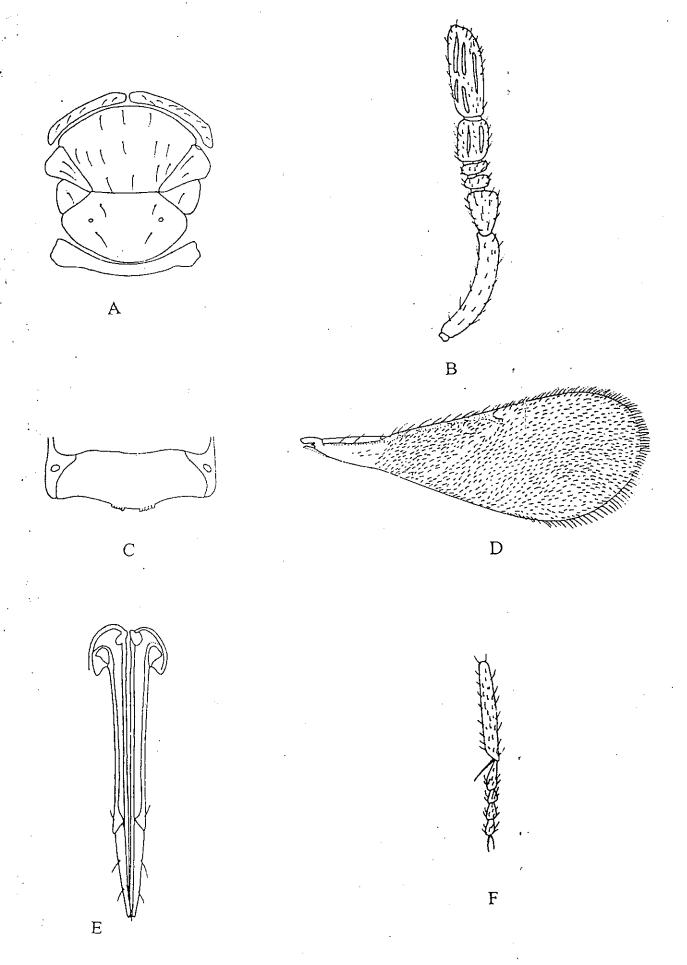


Fig. (17): Aphytis philippinensis DeBach and Rosen. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Description:

Female:

Color: Body yellowish with blackish markings and wing veins lined with brownish. Length 1.0 mm.

Head: With distinct black bars and margins, mandibles well-developed, with 2 denticles and dorsal truncation; max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 5.7 times as long as wide, 1.2 times as long as club; pedicel 1.8 times as long as wide, 1.1 times as long as F_3 ; F_1 0.6 as long as wide; F_2 0.4 as long as wide; F_3 1.5 times as long as wide, 0.4 as long as club, 2 sensilla; club 2.8 times as long as wide and 5 sensilla.

Thorax: Mesoscutum 13 setae, 1.3 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.3 times as long as propodeum; metanotum 1.3 times as long as apodeme. Forewing 2.7 times as long as wide, marginal vein 10 setae, submarginal vein 2 setae, 21 bullae, delta 130 setae in 14 rows, marginal fringe 0.1 as long as the width of disk. Basitarsus 0.9 as long as midtibial spur and midtibia 2.6 times as long as sheath, 0.7 as long as ovipositor.

Gaster: Propodeum 0.8 as long as scutellum, 5 times as long as metanotum, non-overlapping 10 crenulae. Ovipositor 1.7 times as long as midtibia, 4.3 times as long as sheath; sheath 0.39 as long as midtibia. Tergite VII 4-7 setae, tergite VIII 4 setae and syntergum 12-17 setae.

Male:

Similar to the female. Length 0.85mm.

Species group placement: Proclia.

Material examined: Specimens (9 slides, males and females), Giza; associated with C. aonidum on Jasmin.um sp. XII.17.1997.

Comments: A. philippinensis is recorded here for the first time in Egypt associated with C. aonidum on Citrus sp. This species can be readily distinguished from the other members of the Egyptian Proclia group by the number of club sensilla.

Aphytis phoenicis DeBach and Rosen (Fig. 18)

Aphytis phoenicis DeBach and Rosen, 1976, Ann. Entomol. Soc. Amer., 69: 543-544.

Description:

Female:

Color: Body pale yellow, thoracic setae very dark and thoracic sternae immaculate. Uniparental species. Length 0.60mm.

Head: Without black bars and margins, mandibles well-developed, with 2 denticles and dorsal truncation; max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 4.6 times as long as wide, 1.4 times as long as club, pedicel 2 times as long as wide, 1.1 times as long as F₃; F₁ 0.7 as long as wide; F₂ 0.4 as long as wide; F₃ 1.3 times as long as wide, 0.5 as long as club, one sensillum; club 2.8 times as long as wide and 5 sensilla.

Thorax: Mesoscutum 7 setae, 1.2 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.6 times as long as propodeum; metanotum 0.8 as long as apodeme. Forewing 2.7 times as long as wide, marginal vein 7 setae, submarginal vein 2.5 setae, 15 bullae, delta 26 setae in 4 rows, marginal fringe 0.1 as long as the width of disk. Basitarsus 1.1 times as long as midtibial spur and midtibia twice as long as sheath, 0.5 as long as ovipositor.

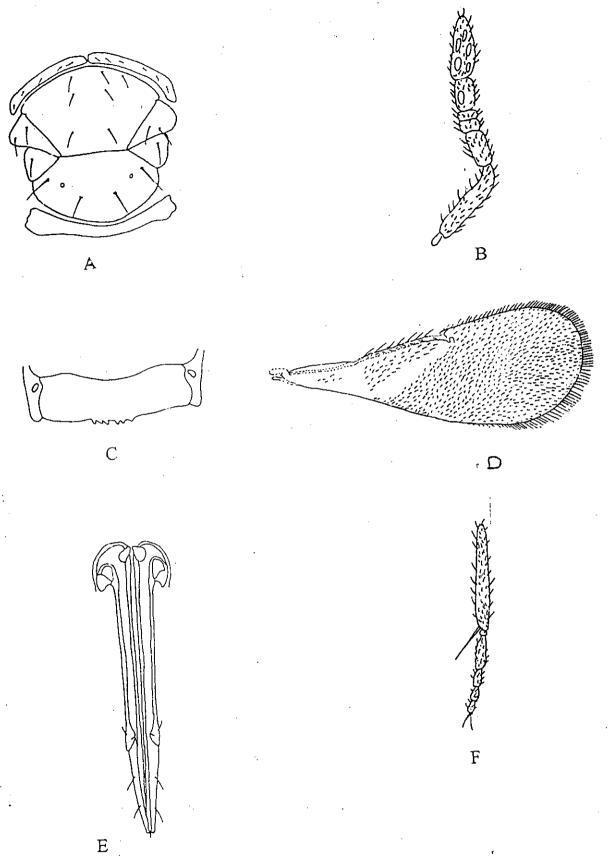


Fig. (18): Aphytis phoenicis DeBach and Rosen. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

Gaster: Propodeum 0.6 as long as scutellum, 4 times as long as metanotum, non-overlapping 6 crenulae. Ovipositor 1.9 times as long as midtibia, 3.9 times as long as sheath; sheath 0.49 as long as midtibia. Tergite VII 2 setae, tergite VIII 4 setaeand syntergum 5 setae.

Species group placement: Mytilaspidis.

Material examined: Specimens (15 slides, females only), Ismailia; associated with *P. blanchardi* on *P. dactylifera* XI.10.1998.

Comments: A. phoenicis is recorded here for the first time in Egypt associated with P. blanchardi on P. dactylifera. This species can be readily distinguished from A. aonidiae in ovipositor 4.6 times as long as sheath and characterized by specific host insects and plants.

Aphytis vandenboshi DeBach and Rosen (Fig. 19)

Aphytis vandenboshi DeBach and Rosen, 1976, Ann. Entomol. Soc. Amer., 69:543.

Description:

Female:

Color: Body pale yellowish and the tip of club blackish. Uniparental species. Length 0.90mm.

Head: With black bars and margins, mandibles well-developed, with 2 denticles and dorsal truncation; max.illary palpi 2-segmented, labial palpi 1-segmented. Antennae 6-segmented, antennal scape 4.6 times as long as wide, 1.4 times as long as club, pedicel 1.6 times as long as wide, 1.1 times as long as F₃; F₁ 0.8 as long as wide; F₂ 0.7 as long as wide; F₃ 1.1 times as long as wide, 0.4 as long as club, one sensillum club 2.8 times as long as wide and 6 sensilla.

Thorax: Mesoscutum 11 setae, 1.3 times as long as scutellum; parapsis 4 setae; axilla 2 setae; scutellum 4 setae, 1.5 times as long as

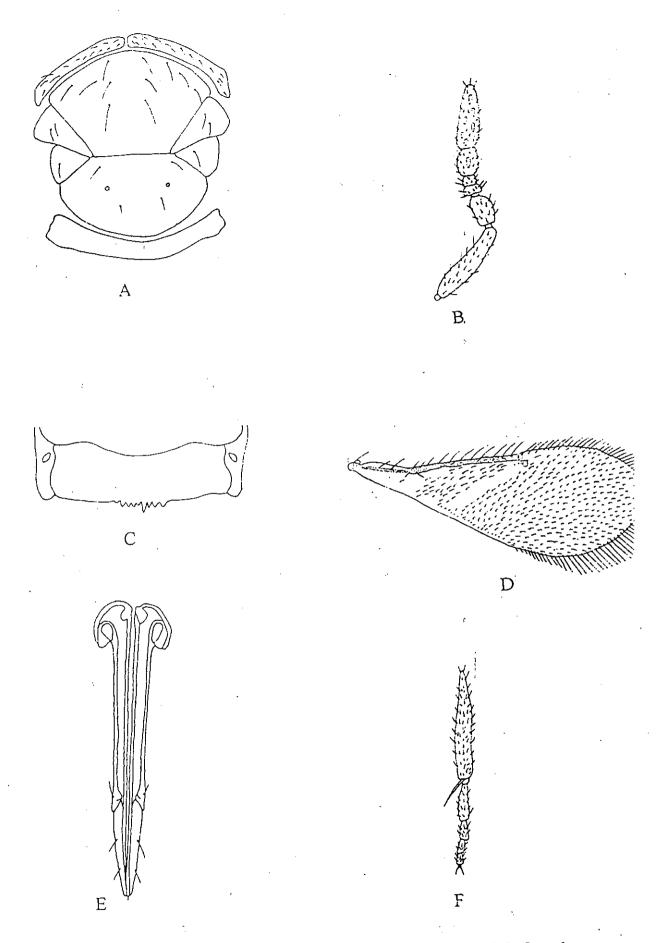


Fig. (19): Aphytis vandenboshi DeBach and Rosen. Adult female: A, thorax and metanotum; B, antenna; C, propodeum and crenulae; D, forewing; E, ovipositor; F, tibial spur and basitarsus.

propodeum; metanotum 1.2 times as long as apodeme. Forewing 2.6 times as long as wide, marginal vein 9 setae, submarginal vein 2 setae, 16 bullae, delta 90-94 setae in 10 rows, marginal fringe 0.2 as long as the width of disk. Basitarsus 1.2 times as long as midtibial spur and midtibia 2.5 times as long as sheath, 0.8 as long as ovipositor.

Gaster: Propodeum 0.7 as long as scutellum, 3 times as long as metanotum, non-overlapping 9 crenulae. Ovipositor 1.3 times as long as midtibia, 3.2 times as long as sheath; sheath 0.4 as long as midtibia. Tergite VII 3-5 setae, tergite VIII 6-10 setaeand syntergum 10-14 setae.

Species group placement: Proclia.

Material examined: Specimens (7 slides, females only), Qalyubiya; associated with A. nerii on Oleander sp. XII.15.1997.

Comments: A vandenboshi is recorded here for the first time in Egypt associated with A. nerii on Oleander sp. This species can be readily distinguished from A. hispanicus and A. paramaculicornis in 13 and 14 setae on mesoscutum and scutellum 1.3 and 1.4 as long as propodeum, respectively.

Rosen and DeBach (1979) treated 90 valid species of the genus *Aphytis* throughout the world. Rosen (1994) documented the great advance in *Aphytis* research that above occurred since, 1979.

In Egypt, Priesner and Hosny (1940) recorded and collected for the first time in Egypt A. chrysomphali, A. diaspidis, A. maculicornisand A. mytilaspidis associated with different armored scale insects. A. lepidosaphes was recorded for the first time in Egypt associated with L. beckii by Abdel-Fattah and El-Saadany (1979). Later, Hafez (1984) collected and recorded A. coheni, A. hispanicus, A. lingnanensis and A. melinus as new records in Egypt.

The present work dealt with 18 species of the genus Aphytis in Egypt. The major characteristics which differentiate these species are: the

number of setae on the mesoscutum, the setae of the submarginal vein and parapsis; the presence or absence of overlapping crenulae; the length of the propodeum, the variations in the relative lengths of the propodeum, scutellum and metanotum; the number of sensilla on the club; the length of the ovipositor and variations in the relative lengths of the midtibia and basitarsus.

Eighteen species as described according to recent concepts. Tenof them are recorded here as new records in Egypt, these being: A. africanus, A. aonidiae, A. chilensis, A. holoxanthus, A. libanicus, A. opuntiae, A. paramaculicornis, A. philippinensis, A. phoenicisand A. vandenboshi. A key is provided for the recognition of these different species of Aphytis.

Abd-Rabou (1997b), Hafez (1984) and Priesner and Hosny (1940) recorded A. maculicornis associated with P. oleae, but in this work the parlatoria scale, P. oleae was associated with A. paramaculicornis. These results indicate that the forementioned researchers misidentified A. paramaculicornis as A. maculicornis in their observations.

A specific host is vital for some species of Aphytis to flourish. The present work indicated that L. beckii, L. riccae and P. blanchardi are the most favorable hosts of A. lepidosaphes, A. libanicus and A. phoenicis, respectively.

2. Population dynamics of genus Aphytis and its role in the biological control of armored scale insects in Egypt:

In the present work the population dynamics of 18 species of genus *Aphytis* in Egypt was conducted on ten host plants infested by eleven armored scale insects in seven distinctive weather factors governorates.

The results indicate that some species e.g. A. holoxanthus, A. melinusand A. paramaculicornis have a good role in supressing the population of C. aonidum, A. aurantii and P. oleae, respectively.

This in turn will associated in different biological control activities and increase their effectiveness in reduction pest population under different weather factors and to find out the best methods for raising this parasitoid efficiencies.

2.1. On Aphytis africanus associated with Aonidiella aurantii on citrus sp. in Qalyubiya:

The Data in Table (3) and Fig. (20) shows that in 1997, the numbers of Aphytis africanus associated with A. aurantii on citrus trees recorded the first peak on January 1st (at 21.7°C max., 7.9°C min. and 65.0% RH) and reached the highest peak on November 1st (at 27.6°C max., 15.1°C min.and 61.0% RH). The numbers of parasitoids were 183 and 431 respectively. The rate of parasitism recorded the first peak of 11.7% on January 1st decreasing afterwards and then increasing again to record the second peak of 14.6% on October 1st (at 30.9°C max., 17.0°C min. and 59.6% RH). In 1998 (Fig. 21) the numbers of parasitoids achieved the first peak of 110 on January 1st (at 18.0°C max., 7.1°C min. and 68.0% RH), reached the highest peak of 561 on November 1st (at 28.2°C max., 16.8°C min. and 62.5% RH). The rate of parasitism achieved its first peak of 4.7% on January 1st, after which it decreased to reach zero on April 1st (at 26.1°C max., 16.2°C min.and 57.5% RH), but then began to increase gradually to reach another peak of 13.4% on September 15th (at 33.6°C max., 18.6°C min.and 56.8% RH). A. africanus is an important parasitoid of the California red scale in South Africa (Rosen and DeBach, 1979).

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis africanus resulted from Aonidiella aurantii on citrus sp. in Qalyubiya, in relation to weather factors during 1997 and 1998. **Table (3):**

					i					1998		
				1997							5	F. 242
Date		Para	Parasitoid	Daily me	mean weather factors	r factors	M. of coales	Parasitoid	itoid	Daily mean weather factors	n weather	Iactors
Date of	No. of scales				mperature) O.L.	INO. OI SCAICS	2	70 Q	Temperature	rature	RH%
samping		No.	R%	Min	Max	KH%		·ovi	IV /0	Min	Max	
1		163	11.7	7.0	21.7	65.0	2350	110	4.7	7.1	18.0	68.0
Jan. I"	1/61	100	7.11	6.7	20.0	62.0	2547	95	3.8	7.9	8.61	60.7
15"	167/	171	0.7	0.7	200	0.09	3111	58	1.9	8.2	21.6	63.3
Feb. 1"	1657	116	6.5	5.0 5.0	. o.c	0000	3184	40	<u> </u>	7.8	19.5	65.0
15 th	1869	138	7.4	8.0	20.0	33.0	3658	3,5	90	7.9	21.8	2.99
Mar.1*	2060	109	5.3	9.0	21.0	01.3	3030	7 2	0.0	7.4	21.2	58.5
15 th	2267	140	8.9	6.8	23.7	60.4	4182	2 0	5 -	16.2	26.1	57.5
April.18	2483	115	4.6	10.6	24.1	9.65	4599	۶ د	> 4	12.5	28.5	56.0
15th	2770	4	3.4	15.0	29.3	59.3	2020	70	2 -	18.0	34.5	53.5
May 1st	3074	46	1.5	14.9	31.1	60.1	5864	/ø:		10.1	37.5	280
1 tany . I	3452	57	1.4	19.0	34.5	55.5	6282	183	6.7	17.7	24.1	24.0
- I	3871	- -	1.6	19.5	34.4	26.0	6449	216	4.5	18.4	25.5	0.00
June, I	7100	110	2.7	21.7	36.1	53.9	5083	218	4.2	8.8	55.5	0.50
<u>.</u>	4100	136	· ·	22.1	36.0	56.2	4813	277	5.8	21.3	35.9	28.2
July. I.	20/5	25.	2 5	22.3	35.3	64.1	4035	309	7.7	21.3	35.9	28.5
SI	33/3	103	7,7	22.5	34.5	61.5	3608	355	9.6	24.5	37.7	9.19
Aug. I	1067	155	600	21.6	33.0	60.5	3076	314	10.2	22.7	34.6	8.4.8
	7897	147	201	200	32.6	59.3	2870	346	12.1	21.5	37.0	56.5
Sep. 1	2483	72		18.5	317	583	3645	487	13.4	18.4	33.6	26.8
15.	7707	797	777	17.0	30.0	20 6	4892	384	7.9	19.0	33.8	57.0
Oct. 1"	2889	422	9 4 6	17.5	7.00	8 19	1699	446	6.7	17.5	28.5	29.0
15"	3054	380	C.71	15.1	7.67	01:0	8057	561	7.0	16.8	28.2	62.5
Nov. 1"	3563	431	1.2.1	13.1	0.72	67.7	7351	284	3.9	16.2	25.6	0.09
15th	7580	349	11.7	0.1.0	52.4	7.79	6654	291	4.2	14.7	26.7	58.5
Dec. 1"	2809	306	10.9	10.1	20.8	60.3	6283	277	4.4	7.6	20.9	57.5
15"	2548	523	7.7	† ./	60.0	21.75						

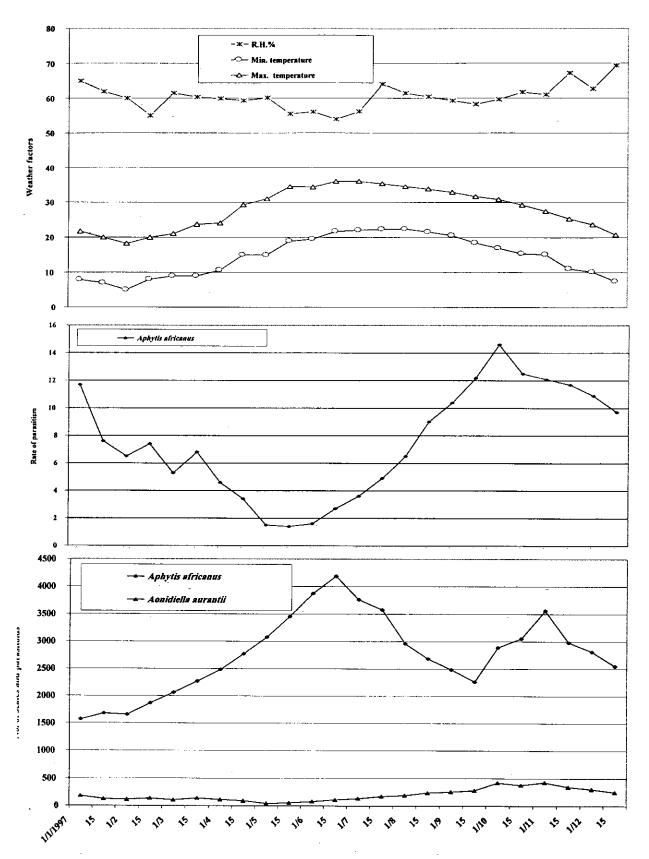


Fig. (20): Number scale stages, number of parasitoid individuals and rate of parasitism (R%) of *Aphytis africanus* resulted from *Aonidiella aurantii* on *citrus* sp. in Qalyubiya, in relation to weather factors during 1997.

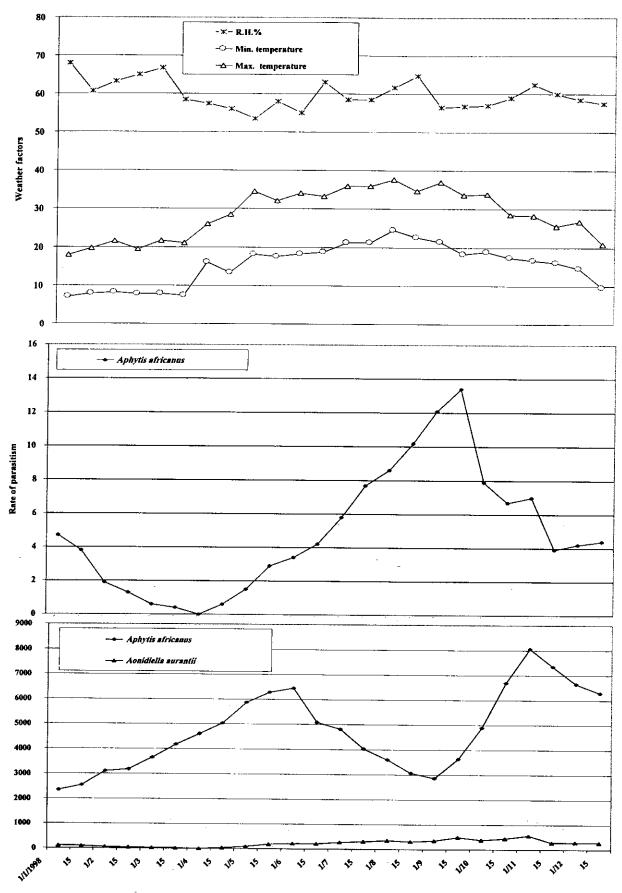


Fig. (21): Number scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis africanus resulted from Aonidiella aurantii on citrus sp. in Qalyubiya, in relation to weather factors during 1998.

Statistical analysis indicated that D.Mx.T., D.Mn.T.and D.M.R. had insignificant effect on the rate of parasitism in the first year. In the second year, the effects of D.Mx.T. and D.M.R.H. were highly significant $(R^2 = 0.9617, P < 0.01)$, while D.Mn.T. did not show any significant effect on the rate of parasitism (Table, 4).

2.2. Aphytis aonidiae associated with Aonidia lauri on Laurus nobilis in Alexandria:

Rates of parasitism by this species during the two seasons were very low. In 1997 (Table, 5 and Fig. 22) only two females were collected on May 1st (at 26.3°C max., 13.7°C min.and 63.5% RH)and only one female on August 1st (at 30.0°C max., 23.5°C min.and 68.8% RH). In 1998, one female was collected in August 1st (at 32.1°C max., 26.1°C min.and 76% RH), three on August 15th (at 31.4°C max., 25.5°C min.and 70.0% RH) and one on September 1st (at 32.7°C max., 24.6°C min.and 64% RH) (Table, 5 and Fig. 23).

Gulamahamad and DeBach (1978) stated that this species is the most common and widespread of parasitoid, constituting nearly 80% of all parasitism

2.3. Aphytis chilensis associated with Chrysomphalus dictyospermi on Ficus nitida in Min.ya:

This parasitoid was absent from March 1st (at 21.2°C max., 7.6°C min. and 62.5% RH) to August 15th (at 31.9°C max., 18.4°C min. and 66.0% RH) during the first year 1997 (Table 6 and Fig. 24) and from February 1st (at 23.7°C max., 7.6°C min.and 63.0% RH) to September 1st (at 37.4°C max., 22.0°C min.and 52.5% RH) during the second year 1998 (Table, 6 and Fig. 25). Two peaks were recorded annually for this species during the two successive years. In the present work, the average

Table (4): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis africanus on Aonidiella aurantii in Qalyubiya

Year			1997					1998		The state of the s
Daily mean weather factors	SS	df	Ms	Œ	Ъ	SS	df	Ms	<u> </u>	Q
D.MX.T.	1.576		1.576	2.705	0.1048 18.382	18.382		18.382	18.382 32.231	0.0001
D.MN. T.	0.232		0.232	0.398	0.5298	1.781	······································	1.781	3.103	0.0828
D.M.R.H	1.879	1	1.879	3.226	0.1611	5.857		5.857	10.207	0.0021

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis aonidiae resulted from Aonidia Lauri on Laurus nobilis. in Alexandria, in relation to weather factors during 1997 and 1998. **Table (5):**

				1997						1998		
Date of	No of scalar	Para	Parasitoid	Daily me	mean weather factors	r factors	N S	Parasitoid	sitoid	Daily mean weather factors	n weather	factors
sampling	No. of scales	Ž	70 C		perature	DIT6/	No. of scales	7	/وبد	Temperature	rature	DITO.
		INO.	N /0	Min	Max	KII 70		Ö	K70	Min	Max	% E
	102	•	_	8.8	19.8	71.6	142	1	-	6.8	18.6	73.6
	121	-	-	10.0	18.0	68.0	191	,	,	7.8	19.4	71.4
	137	-		7.2	16.0	68.4	176	•		9.4	19.8	75.5
	161	-	-	11.1	18.4	63.2	190	•		9.2	18.0	65.7
	184	-	•	10.8	19.3	63.8	215	•	1	9.4	20.2	71.0
	188	•	-	9.6	19.4	61.6	225	ı		7.6	19.3	0.09
	209	•	-	8.6	19.1	62.2	239	,		8.6	22.9	64.0
	332	•	-	13.7	24.3	66.5	254	1	•	14.3	24.1	64.0
May. 1st	228	2	6.0	13.7	26.3	63.5	206		•	17.2	27.7	63.6
	167	1	ı	17.8	27.6	70.4	681		•	17.6	26.3	0.79
	159	1	1	18.5	29.1	65.0	190	•	ı	9.61	27.3	72.0
	138	-	•	22.5	30.9	68.1	<i>LL</i> 1	•	1	15.8	8.62	64.0
	117	-		23.3	30.1	72.2	163	,	1	22.4	30.5	68.0
	126	-	•	24.4	30.6	66.4	191	,	1	23.2	31.1	74.0
	158	1	0.7	23.5	30.0	8.89	180	1	<i>L</i> :0	26.1	32.1	76.0
	167	•	•	23.7	29.8	64.6	202	3	1.2	25.5	31.4	70.0
	151	•	-	22.3	28.9	9.77	160	-	5.7	24.6	32.7	64.0
	208	•		6.71	27.6	88.0	242		1	20.7	29.3	59.0
	237	,	-	18.6	27.9	66.5	267	ı	•	19.9	29.7	0.99
15 th	245	•	•	16.0	26.7	63.8	275		ı	16.9	26.7	65.0
	256	•	-	15.0	24.6	73.5	284		•	15.4	25.8	70.0
	277	•	-	11.8	23.4	73.3	325	,	ı	13.4	23.8	70.0
	291	ŀ	-	2.6	22.0	62.1	374	•	•	13.5	22.8	0.69
	313	•		171	10.6	74.4	310			70	100	6 66

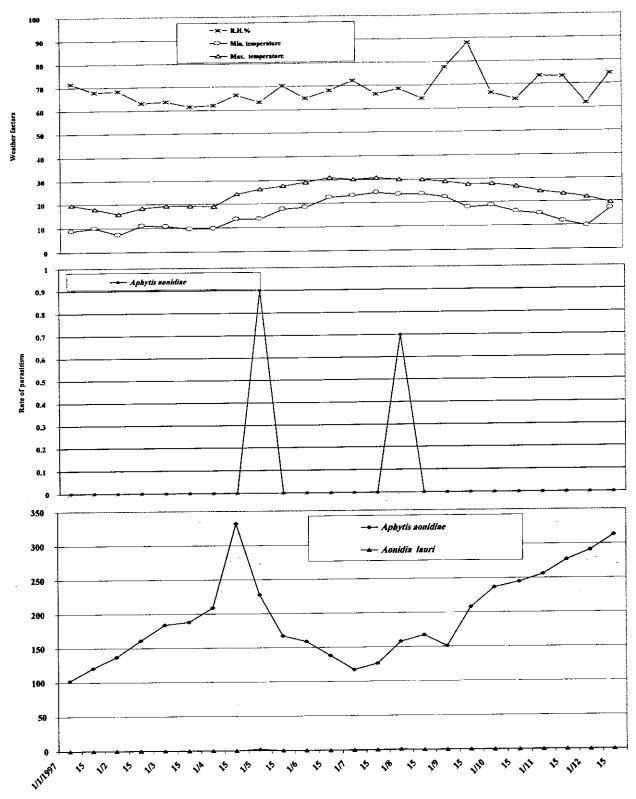


Fig. (22): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis aonidiae resulted from Aonidia Lauri on Laurus nobilis. in Alexandria, in relation to weather factors during 1997.

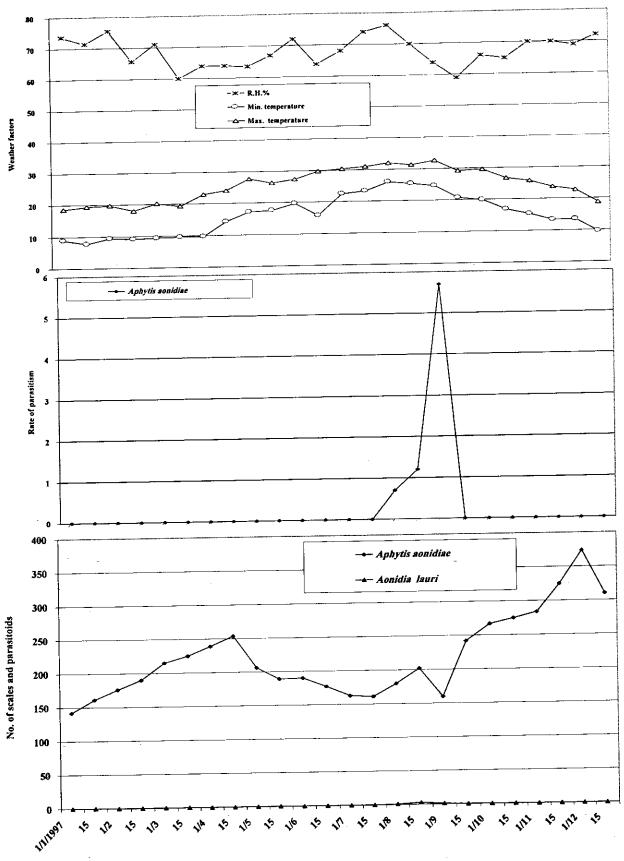


Fig. (23): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of *Aphytis aonidiae* resulted from *Aonidia Lauri* on *Laurus* nobilis. in Alexandria, in relation to weather factors during 1998.

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis chilensis resulted from Chrysomphalus dictyospermi on Ficus nitida in Minya, in relation to weather factors during 1997 and 1998. **Table** (6):

				1997	-					1998	i	
70400		Para	Parasitoid	Daily me	mean weather factors	r factors	•	Parasitoid	itoid	Daily mean weather factors	n weather	factors
pate of	No. of scales			Tempe	nperature	, 0,1,1	No. of scales	, I	790	Temperature	rature	%Ha
Smirdmas		ģ	% %	Min	Max	KH%		NO.	IX 70	Min	Max	W. 1
Ion 18	\$19	=	2.0	5.9	20.3	65.0	640	3	0.5	6.7	18.6	70.2
Jam. I	478	4	0.8	5.8	17.8	0.89	653	2	0.3	5.7	21.0	61.9
Eo.h. 18t	450	6	0.4	3.9	18.2	59.0	289	•	•	7.6	23.7	63.0
ren. 1	205	, ("	0.4	5.9	19.8	0.09	755	-		8.1	20.3	62.5
151 m. 18t	567	, .	; ;	7.6	21.2	62.5	988	-	•	7.6	21.1	59.8
IVISIT.1	799			12.2	22.0	50.3	831	-	•	5.9	21.9	54.0
13	431			11.2	22.6	44.9	019		-	6.6	26.3	53.5
April. I	757		_	16.7	29.2	49.7	597	•	•	13.2	28.9	51.5
CI III	454			17.4	31.5	47.8	492		•	18.6	39.0	47.5
IVLMY. I	076			21.3	32.2	44.4	396	•	,	18.5	34.6	49.5
13	503			23.4	34.4	41.4	352	-	•	19.2	32.2	53.0
June. I	676			21.9	36.0	44.7	397	1	•	19.9	34.5	51.0
T. 180	0/0			24.4	34.4	45.6	522		-	21.2	37.2	50.0
July. I	737			24.3	35.1	50.2	586			21.0	37.8	53.5
13 14 14	1278			23.8	33.0	57.0	701	•		23.6	38.7	57.5
Aug. 1	1277	-		18.4	31.9	0.99	874	•	•	22.0	35.2	55.2
11	1301		0.2	19.5	33.8	50.0	1100	-	•	22.0	37.4	52.5
Sep. 1	1456	, ,	0.5	18.7	29.4	62.0	1495	5	0.4	18.5	32.5	58.0
14 5	1197	17	14	19.3	31.8	66.2	1560	16	1.0	18.4	33.5	54.5
18th	805	2	19	11.9	28.4	66.2	1316	23	1.8	15.5	28.2	58.0
No. 1st	505	2 2	17	13.4	25.4	67.0	1071	27	2.3	14.6	26.7	61.0
NOV. I	133	2 2	25	9 5	24.4	67.5	354	52	2.9	21.1	26.1	58.0
11 34 A	918	e e	333	6.4	19.7	68.5	807	15	1.9	10.2	23.9	57.0
Dec. A	790	24	30	9.9	19.4	66.7	920	6	1.0	6.5	18.2	61.5
CI	200	;	***			 				i		

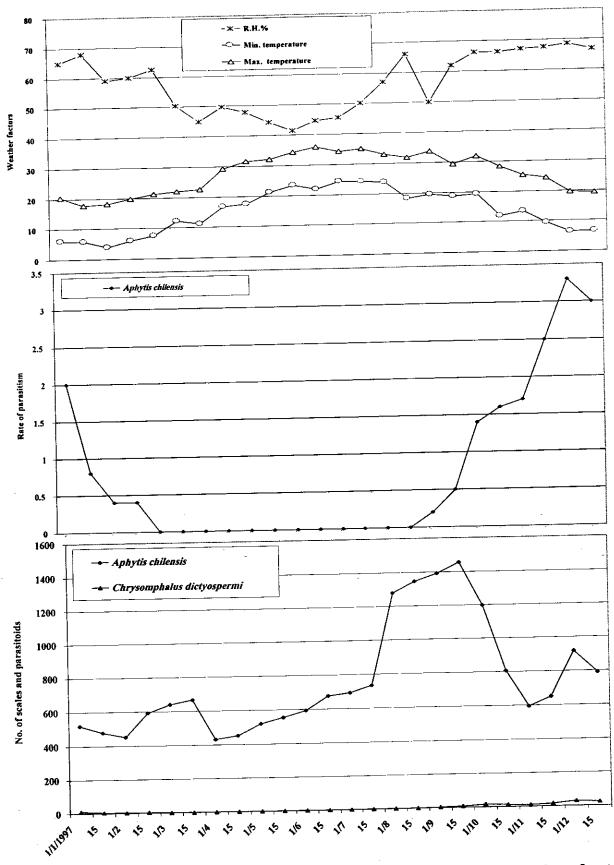


Fig. (24): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis chilensis resulted from Chrysomphalus dictyospermi on Ficus nitida in Minya, in relation to weather factors during 1997.

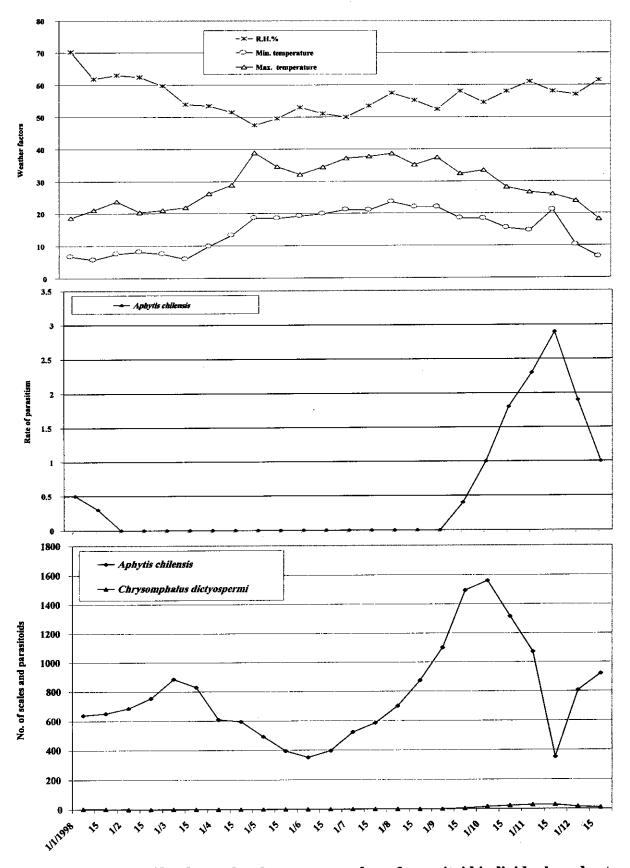


Fig. (25): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of *Aphytis chilensis* resulted from *Chrysomphalus dictyospermi* on *Ficus nitida* in Minya, in relation to weather factors during 1998.

percentage of parasitism was 0.7% in the first year and 0.5% in the second year. Average parasitism by this species on A. nerii was 60% in Italy on C. limonum.(Liotta, 1983 a).

This species has a good effect in controlling some armored scale insects in different countries all over the world. (Liotta *et al.*, 1985; Rosen and DeBach, 1979).

Statistical analysis indicated that D.Mx.T., D.Mn.T. and D.M.R.H. were of insignificant effect on the rate of parasitism in the first year. In the second year, the effect of D.Mn.T. was highly significant ($R^2 = 0.2120$, P < 0.01), while those of D.Mx.T. and D.M.R.H. were insignificant (Table, 7).

2.4. Aphytis chrysomphali associated with Chrysomphalus dictyospermi on Ficus nitida in Qalyubiya:

During the two years of this work, *A. chrysomphali* was present abundunt. In 1997 (Table, 8 and Fig. 26), two peaks were recorded. The first peak of parasitism was 29.1% on January 1st (at 21.7°C max., 7.9°C min.and 65% RH). After this peak, the percentage of parasitism declined gradually to reach 0.6% on August 1st (at 34.5°C max., 22.4°C min.and 61.5% RH). The second peak was 41.4% on November 15th (at 25.4°C max., 11.0°C min.and 67.2% RH).

During 1998, the peak of parasitism was estimated at 21.1% and occurred on January 15th (at 19.4°C max., 7.8°C min.and 71.4% RH). After this peak, the percentage of parasitism declined sharply to reach zero on July 1st (at 30.5°C max., 22.4°C min.and 68.0% RH). The parasitoid activity was observed to restart on August 15th (at 31.4°C max., 25.5°C min.and 70.0% RH)and gradually increased to reach its highest peak 36.8% on December 1st (at 22.8°C max., 13.5°C min.and 69.0% RH) (Table, 8 and Fig. 27).

Table (7): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytischilensis on Chrysomphalus dictyospermi in Minya.

								1998		
Year			1997							
						·		<u> </u>		٩
Daily mean	SS	df	Ms	Æ	<u>A</u>	SS	df	Ms.		4
weather factors									0,00	03700
			9	2000	0.8703	0.828		0.828	1.259 0.2027	0.2027
T XM C	0.242		0.242	0.027	0.070					(
Division			\ (1010	0 3782	8.797		8.797	13.382 0.0005	0.0005
D.MN. T.	7.105	 -	7.105	0.70	70.00					06900
	7070	_	0.494	0.055	08157	2.369		2.369	3.604	0.0020
D.M.R.H	0474	4	: :							

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis chrysomphali resulted from Chrysomphalus dictyospermi on Ficus nitida in Qalyubiya, in relation to weather factors during 1997 and 1998. **Table** (8):

				1997						1998		
Date of		Para	Parasitoid	Daily me	mean weather factors	r factors	W	Parasitoid	itoid	Daily mean weather factors	n weather	factors
sampling	No. of scales	;	4	Tempe	Temperature	חדת	No. of scales	Š.	700	Temperature	ature	%На
		ė Ž	× %	Min	Max	KH%		.00.	0/ N	Min	Max	WI //
.Jan. 1#	1203	350	29.1	6.7	21.7	65.0	2258	389	17.2	7.1	18.0	68.0
15 ^{tb}	1782	383	21.5	7.0	20.0	62.0	2443	343	21.1	7.9	19.8	60.7
Feb. 1st	693	126	18.5	5.0	18.3	0.09	1043	127	12.2	8.2	21.6	63.3
15th	725	107	14.8	8.0	20.0	55.0	1173	128	10.9	7.8	19.5	65.0
Mar.1st	836	011	13.1	9.0	21.0	61.5	1328	120	9.0	7.9	21.8	66.7
15th	945	102	10.8	8.9	23.7	0.09	1236	104	8.4	7.4	21.2	58.5
April 1st	1440	141	9.1	10.6	24.1	59.5	1259	83	9.9	16.2	26.1	57.5
15th	1493	16	7.7	15.0	29.3	59.0	1580	94	6.1	13.5	28.5	56.0
May 1st	1142	28	5.4	14.9	31.1	59.5	1405	44	3.1	18.2	34.5	53.5
154	993	51	5.1	19.0	34.5	55.5	1241	24	2.0	17.7	32.1	58.0
Inne 1st	376	16	4.2	19.5	34.4	56.0	1027	8	8.0	18.4	34.1	55.0
15 th	840	22	2.6	21.7	36.1	53.9	1008	4	0.4	18.8	33.3	63.0
July 1st	1528	14	3.1	22.1	36.0	56.2	959	0	0	21.3	35.9	58.5
15th	1352	6	1.1	22.3	35.3	64.1	519	0	0	21.3	35.9	58.5
Ang. 1st	1753		9.0	22.4	34.5	61.5	757	0	0	24.5	37.7	61.8
1 Cth	1534	73	4.8	21.6	33.8	60.5	878	24	2.8	22.7	34.6	64.8
Sen 1st	1758	154	8.8	20.6	32.9	59.3	1390	119	9.8	21.5	37.0	56.5
15th	1829	253	13.5	18.5	31.7	58.3	1508	175	11.2	18.4	33.6	8.99
Oct. 1#	1952	320	16.3	17.0	30.9	59.6	1919	466	24.9	19.0	33.8	57.0
15th	1465	443	30.2	15.3	29.3	61.8	2134	510	23.9	17.5	28.5	29.0
Nov 1st	1232	432	35.9	15.1	27.6	61.0	1513	296	19.3	16.8	28.2	62.5
150	1005	417	41.4	11.0	25.4	67.2	1236	359	29.1	16.2	25.6	0.09
Dec. 1"	746	295	39.6	10.1	23.7	62.7	1269	467	36.8	14.7	26.7	58.5
15 th	877	240	27.4	7.4	20.8	69.3	1214	380	31.3	9.7	20.9	57.0

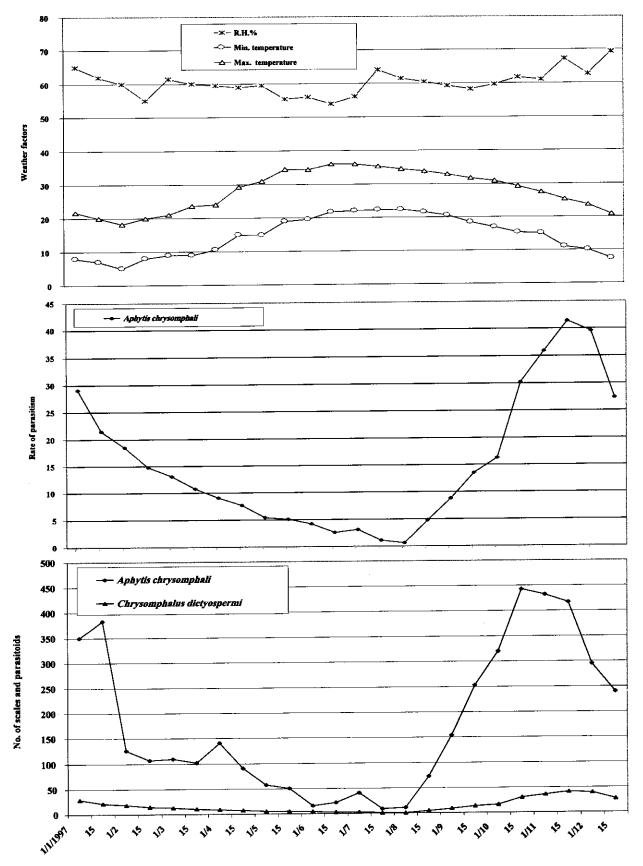


Fig. (26): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis chrysomphali resulted from Chrysomphalus dictyospermi on Ficus nitida in Qalyubiya, in relation to weather factors during 1997.

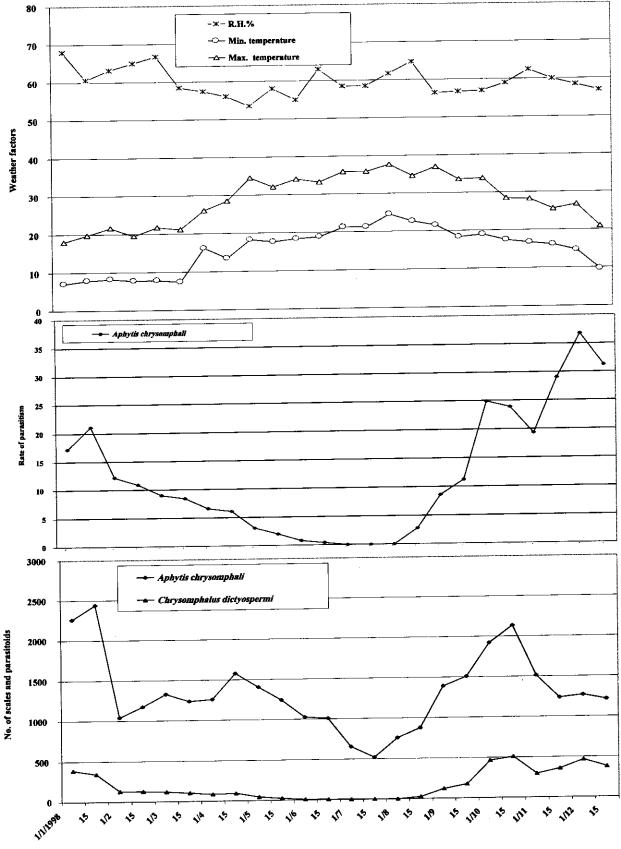


Fig. (27): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis chrysomphali resulted from Chrysomphalus dictyospermi on Ficus nitida in Qalyubiya, in relation to weather factors during 1998.

The effectiveness of *A. chrysomphali* has been observed by many researchers all over the world. Amongest them are: Priesner and Hosny (1940), Swailem (1974), El-Minshaway and Osman (1974), Hafez (1988), Asfoor (1997), Abd-Rabou (1997a, 1997b and 2000) in Egypt; Bartlett and Fisher (1950), Flanders (1951), Dean (1955), DeBach (1956) in the United States of America; Benassy (1987) in Moroccoand Viggiani and Iannaccove (1973) in Italy.

Statistical analysis indicated that during the first year, D.M.R.H was of highly significant effect on the rate of parasitism ($R^2 = 0.8884$, P < 0.01), while D.Mx.T. and D.Mn.T. were of insignificant effect. In the second year, the same was observed once more, with D.M.R.H. being of significant effect on the rate of parasitism ($R^2 = 0.9324$, P < 0.05), while D.Mx.T. and D.Mn.T. were of insignificant effect (Table, 9).

2.5. Aphytis coheni associated with Aonidiella aurantii on Citrus sp. in Alexandria:

During 1997 (Table, 10 and Fig. 28), the presence of this parasitoid was observed from February 1st (at 16.0°C max., 7.2°C min.and 68.4% RH) to September 15th (at 27.6°C max., 17.9°C min.and 88.0% RH). During 1998 (Table, 10 and Fig. 29), it was observed from February 15th (at 18.0°C max., 9.2°C min.and 65.7% RH) to September 15th (at 29.3°C max., 20.7°C min.and 59.0% RH). Maximum parasitism of this species reached 3.9 on December 15th (at 19.6°C max., 17.1°C min.and 74.4% RH) during 1997. In 1998, the maximum parasitism recorded was 5.3 on December 1st (at 22.8°C max., 13.5°C min.and 69.0% RH). The average rate of parasitism of *A. coheni* was 0.6% in 1997and 0.8% in 1998 respectively.

Table (9): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis chrysomphali on Chrysomphlus dictyospermi in Qalyubiya.

							-	1998		
Year		ut.	1997							
			 				•		,	
Daily mean	SS	df.	Ms	Ħ	Ъ	SS	df	Ms	—	4
weather factors		•	-							C C
					01/6/	109 60	-	37.684 1.986 0.1738	1.986	0.1758
J XX T	35.883		35.883	1.965	1.965 0.1656 5.007	1.004	٦.			
Difference				1	7,000	0800	+	0.089	0.005	0.9459
D WN T	13.570	—	13.570	0.743	0.3917	0.00	4			
				1	0	120 526	-	139.526	7.352	0.0143
n M R H	133.118	-	133.118 7.291	7.291	0.0088	0.0088 0.00.0	-4			
Dilitituat										
					,	1				•

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis coheni resulted from Aonidiella aurantii on Citrus sp in Alexandria, in relation to weather factors during 1997 and 1998. **Table** (10):

				1007					ŧ	1998		
4		Dara	Daracitoid	Daily me	mean weather factors	r factors	•	Parasitoid	itoid	Daily mean weather factors	n weather	factors
Date of	No. of scales	T WI W	arone.	Temne	merature		No. of scales	;	36	Temperature	ature	DITO/
Sundures		òZ	R%	Min	Max	RH%		ė Ž	K%	Min	Max	Nn 70
To. 186	3052	37	1.2	00	19.8	71.6	4150	43	1.0	8.9	18.6	73.6
Jan. I	4073	26	9.0	10.0	18.0	0.89	4044	21	0.5	7.8	19.4	71.4
Toh 186	3686	,		7.2	16.0	68.4	5759	14	0.3	9.4	19.8	75.5
15th	2199	-	•	11.1	18.4	63.2	3640	•	'	9.2	18.0	65.7
Mor 1st	1812	•	•	10.8	19.3	63.8	3079	•	-	9.4	20.2	71.0
1 Eth	2083		,	9.6	19.4	61.6	2861	-	_	9.7	19.3	0.09
13	7467			8.6	19.1	62.2	3085		-	8.6	22.9	64.0
April. 1	5172			13.7	243	66.5	6142	,	-	14.3	24.1	64.0
13	2017		\	13.7	26.3	63.5	5938	•		17.2	27.7	63.6
May. 1	5166			17.8	27.6	70.4	6154		•	17.6	26.3	67.0
CI T	7753			18.5	29.1	65.0	4909	1	,	9.61	27.3	72.0
June. 1	4233			22.5	30.9	68.1	4643		•	15.8	29.8	64.0
LT. 1.15	2603	,	•	23.3	30.1	72.2	2077		1	22.4	30.5	68.0
July. 1	2695	, '		24.4	30.6	66.4	1920	•		23.2	31.1	74.0
13	1334			23.5	30.0	68.8	1764		•	26.1	32.1	76.0
Aug. 1	0698	.	_	23.7	29.8	64.6	2658	•		25.5	31.4	70.0
Con 18	4526			22.3	28.9	9.77	3535	-	-	24.6	32.7	64.0
Jep. 1	5430		•	17.9	27.6	88.0	3850	•	'	20.7	29.3	29.0
Oct 1st	\$095	45		18.6	27.9	66.5	3941	24	0.5	19.9	29.7	0.99
154	5017	83	1.4	16.0	26.7	63.8	4206	31	0.8	16.9	26.7	65.0
No. 18	7548	15	60	15.1	24.6	73.5	4289	29	1.6	15.4	25.8	70.0
1407. E	9209	150	25	11.8	23.4	73.3	2800	208	3.4	13.4	23.8	70.0
Dec 14	4731	132	3.2	9.7	22.0	62.1	3049	162	5.3	13.5	22.8	69.0
144	3684	143	3.9	17.1	19.6	74.4	3488	173	4.8	9.6	18.8	72.0
CT												

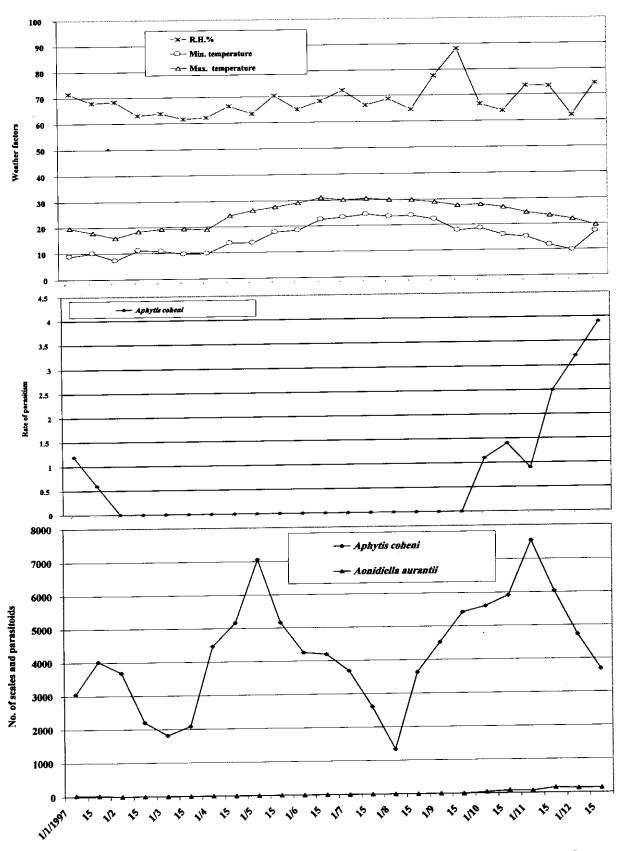


Fig. (28): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis coheni resulted from Aonidiella aurantii on Citrus sp. in Alexandria, in relation to weather factors during 1997.

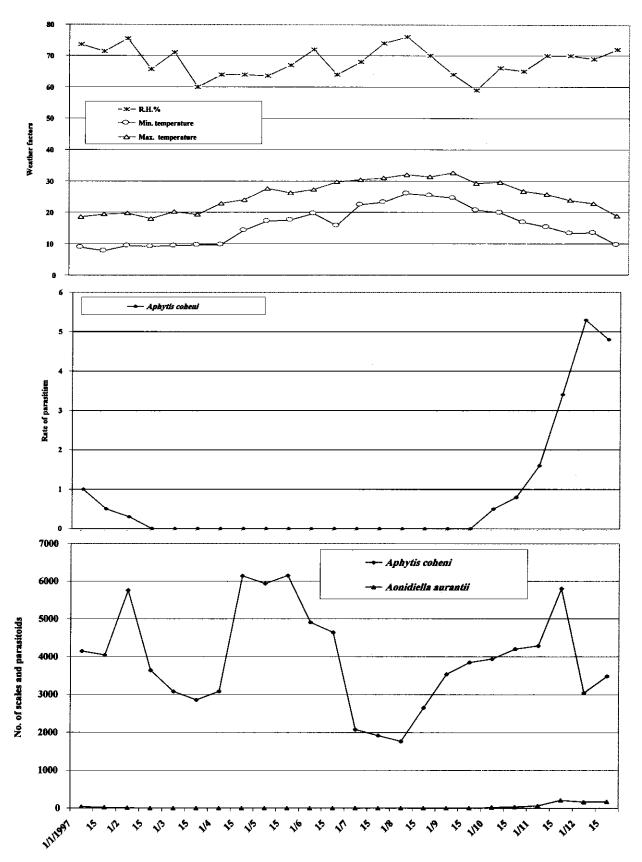


Fig. (29): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of *Aphytis coheni* resulted from *Aonidiella aurantii* on *Citrus* sp. in Alexandria, in relation to weather factors during 1998.

A. coheni is one of the more effective parasitoids in the control of some armored scale insects (DeBach, 1962). In Egypt, Hafez (1986) recorded this species attacking A. aurantii in Alexandria and the rate of parasitism was 4.0%, 4.7% and 0.4% in January, Juneand December of 1987, respectively.

Statistical analysis indicated that during both the first and second years, the effects of D.Mx.T., D.Mn.T. and D.M.R.H. on the rates of parasitism were insignificant (Table, 11).

2.6. Aphytis diaspidis associated with Parlatoria oleae on Olea sp. In the Northern Coast:

The data in Table, 12 and Fig. 30 shows that in the first year (1999), the numbers of *A. diaspidis* on *P. oleae* began to increase on January 1st (at 18.3°C max., 10.5°C min.and 73.0% RH), then reached their highest peak on May 15th (at maximum temp. of 26.2°C, 17.7°C min. and 68.0% RH), after which another peak was recorded on December 15th (at 17.5°C max., 19.0°C min.and 62.0% RH), The numbers of parasitoids were 34, 465and 77, respectively. The rates of parasitism followed the same trend in these months. The rates were 3.2%, 26.1%and 4.1% respectively.

In the second year (2000) (Table, 12 and Fig. 31) the numbers began to increase on February 1th (at 17.1°C max., 10.1°C min.and 70.0% RH). The highest number was recorded on May 15th (at 26.6°C max., 17.3°C min.and 73.6% RH), followed by another peak recorded on November 1st (at 22.0°C max., 14.1°C min.and 64.0% RH). The numbers of parasitoids were 41, 414 and 80, respectively. The rates of parasitism during these months were 6.8%, 26.7% and 4.5%, respectively.

Priesner and Hosny (1940) recorded A. diaspidis on P. oleae in April. This species was found to be a rare parasite of A. aurantii on C. sinensis. It occurs only in February, April, June, Augustand October with

Table (11): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis coheni on Aonidiella aurantii in Alexandria.

Vear			1997					1998		,
Daily mean	SS	qŧ	Ms	<u> </u>	ď	SS	df	Ms	[<u>a</u>
Weather Jactors									1 510	0000
D.MX.T.	0.026	1	0.026	026 0.337	0.5635	0.281	,	0.281	77770 6101	7777.0
E	0.254	· ,	0.254	3.296	0.0741	5.248		5.248	2.839	0.3341
D.IMIN. 1.	7200	-	0.074	0.959	0.331	0.009	-	0.009	0.053	0.8194
D.M.R.H	t /0.0	Ŧ								

Table (12): Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis diaspidis resulted from Parlatoria oleae on Olea sp in Northern Coast, in relation to weather factors during 1999 and 2000.

of No. of scales No. of scales Parasitoid Dallyny pean weather factors RH% No. of scales Parasitoid Parasitoid Dallyny pean weather factors No. of scales Parasitoid					1000						2000		:
No. of scales	Doto of		Para	eitoid		an weathe	r factors		Paras	itoid	Daily mean weather factors	n weather	factors
1058 34 3.2 10.5 18.3 73.0 827 47 18.4 10.7 18.9 63.0 791 29 29 29 29 29 29 29	Sampling	No. of scales	1	TO TO		rature		No. of scales	1	,96	Temperature	ature	DITO.
1058 34 3.2 10.5 18.3 73.0 827 47 812 8.5 8.4 10.7 18.9 65.0 791 29 812 8.6 8.8 8.7 18.9 65.0 609 41 813 814 817 18.9 65.0 609 41 815 817 818 62.0 629 641 817 818 817 18.9 65.0 609 41 818 817 818 82.0 629 629 620 818 11.2 11.7 10.2 19.4 65.7 917 139 819 11.2 16.3 11.6 20.6 61.0 987 203 819 12.3 11.6 20.6 61.0 987 203 819 15.8 17.7 13.8 23.0 71.0 1241 295 819 15.8 20.5 19.3 27.7 70.0 1663 391 819 10.0 20.1 20.9 71.0 1172 130 819 10.0 20.1 20.9 71.0 1439 38 819 10.0 0.0 20.1 28.4 73.0 2035 0 819 10.0 0.0 20.1 28.4 73.0 2035 10 819 20.5 14.1 19.4 28.1 74.7 2183 0 819 20.5 14.1 22.0 64.0 1764 80 819 20.8 16.7 23.8 62.3 2042 10 819 20.8 16.7 23.8 65.0 1560 74 819 20.8 16.7 23.8 65.0 1083 20 819 20.8 16.7 23.8 65.0 1083 20 819 819 820 83 33 11.5 20.6 63.3 1083 20 819 810 820 83 83 83 83 83 810 20.8 20.8 20.8 20.8 20.8 20.8 810 20.8 20.8 20.8 20.8 20.8 20.8 811 812 80 80 80 80 80 812 813 814 80 80 813 814 815 82.0 83 814 815 82.0 83 83 815 816 82.3 83 83 816 817 817 82.1 83 817 818 82.0 83 818 819 83 819 810 810 82.0 819 810 82.0 83 810 810 810 82.0 811 812 82.0 83 812 813 82.0 813 814 82.0 814 815 82.0 815 815 82.0 816 817 83.1 817 818 82.0 818 819 83 818 819 83 819 810 82.0 810 810 82.0 811 811 82.0 811 811 82.0 812 813 82.0 813 814 82.0 814 815 82.0 815 815 82.0 816 817 82.1 817 82.1 818 82.0 818 819			Š	* *	Min	Max	КН% 		ÖZ	K%	Min	Max	KH70
971 45 44 10.7 18.9 63.0 791 29 832 56 6.8 8.7 18.9 65.0 609 41 1748 61 8.2 8.7 19.4 55.0 524 59 1234 143 11.7 10.2 19.7 67.7 917 139 1123 165 146 11.7 21.0 57.7 965 196 1135 217 16.3 116 21.0 57.7 965 196 1 1133 22.3 11.6 21.0 57.7 965 196 1 1536 22.3 11.6 21.0 57.7 965 196 1 1783 26.1 17.7 21.0 52.9 71.0 1410 40.2 1 1939 398 20.5 19.3 27.7 70.0 1410 40.2 1 1129 48 4.3 <t< th=""><th></th><th>1058</th><th>34</th><th>3.2</th><th>10.5</th><th>18.3</th><th>73.0</th><th>827</th><th>47</th><th>5.7</th><th>10.4</th><th>15.5</th><th>72.0</th></t<>		1058	34	3.2	10.5	18.3	73.0	827	47	5.7	10.4	15.5	72.0
832 56 6.8 8.7 18.9 65.0 609 41 748 61 8.2 8.7 19.4 59.0 524 59 1123 16.3 11.7 10.2 19.7 67.7 917 139 1123 16.5 14.6 11.7 21.0 57.7 965 196 1335 16.2 14.6 11.7 21.0 57.7 965 196 1335 16.2 16.3 11.6 20.6 61.0 987 20.5 18 16.0 11.7 26.2 68.0 1410 402 18 17.3 25.9 58.0 1410 402 19.3 20.5 19.3 27.7 70.0 16.0 20.3 19.3 39.8 20.5 19.3 27.7 70.0 16.0 20.9 1129 48 4.3 21.1 29.9 71.0 13.9 3.9 <th< th=""><th>15th</th><th>126</th><th>45</th><th>4.4</th><th>10.7</th><th>18.9</th><th>63.0</th><th>791</th><th>59</th><th>3.7</th><th>8.6</th><th>16.2</th><th>72.0</th></th<>	15th	126	45	4.4	10.7	18.9	63.0	791	59	3.7	8.6	16.2	72.0
748 61 8.2 8.7 19.4 59.0 524 59 1234 143 11.7 10.2 19.7 67.7 917 139 1123 165 14.6 11.7 21.0 57.7 965 196 1123 165 14.6 11.7 21.0 57.7 965 196 1133 217 16.3 11.6 20.6 61.0 987 203 1159 358 22.3 11.6 23.0 1410 402 1 1783 465 26.1 17.7 26.2 68.0 1548 414 1 1939 398 20.5 19.3 27.7 70.0 1663 391 1 1939 26.0 16.0 21.3 27.8 75.0 1379 229 1 1940 0 22.3 27.8 70.0 1663 37 1 1941 22.2 29.2	Feb. 1st	832	99	8.9	8.7	18.9	65.0	609	41	6.8	10.1	17.1	70.0
1234 143 11.7 10.2 19.7 67.7 917 139 1123 165 14.6 11.7 21.0 57.7 965 196 1123 165 14.6 11.7 21.0 57.7 965 196 1123 165 14.6 11.7 21.0 57.7 965 196 158 217 16.3 11.6 20.6 61.0 987 20.3 1588 17.7 13.8 25.9 58.0 1410 402 1588 20.5 16.8 25.9 58.0 1548 414 1939 398 20.5 19.3 27.7 70.0 1663 29 1129 48 4.3 21.1 22.2 68.0 1548 414 1939 20 10 21.3 27.8 70.0 1663 39 1129 48 4.3 21.1 22.2 29.2 71.0	15 th	748	61	8.2	8.7	19.4	59.0	524	59	9.3	8.6	15.9	64.0
1123 165 14.6 11.7 21.0 57.7 965 196 1335 217 16.3 11.6 20.6 61.0 987 203 1 621 288 17.7 13.8 23.0 71.0 1241 295 1 598 357 22.3 16.8 25.9 58.0 1410 402 1 598 357 22.3 16.8 25.9 58.0 1410 402 1 598 357 22.3 16.8 25.9 58.0 1410 402 1 783 465 26.1 17.7 26.2 68.0 1410 402 1 1783 36 26.1 17.7 26.2 68.0 1410 402 1 179 48 4.3 21.1 26.2 68.0 1379 38 1 1084 0 0 21.3 27.8 71.0 1413 38 1 1412 0 0 22.8 30.2	Mar.1st	1234	143	11.7	10.2	19.7	2.79	917	139	15.1	9.1	17.4	9.79
1335 217 16.3 11.6 20.6 61.0 987 203 1 1621 288 17.7 13.8 23.0 71.0 1241 295 1 1621 288 17.7 13.8 23.0 71.0 1241 295 1 1598 357 22.3 16.8 25.9 58.0 1410 402 1 1783 465 26.1 17.7 26.2 68.0 1548 414 1939 398 20.5 19.3 27.7 70.0 1663 391 1129 48 4.3 21.1 26.2 77.0 1643 391 1129 48 4.3 21.1 29.9 71.0 1143 38 993 21 2.1 22.2 29.2 71.0 1143 38 1084 0 0 23.0 72.0 1439 38 1141 0 0	15 th	1123	165	14.6	11.7	21.0	57.7	965	196	20.4	10.7	20.3	66.2
1 1621 288 17.7 13.8 23.0 71.0 1241 295 1598 357 22.3 16.8 25.9 58.0 1410 402 1783 465 26.1 17.7 26.2 68.0 1548 414 1939 398 20.5 19.3 27.7 70.0 1663 391 1129 48 4.3 21.1 29.9 71.0 1379 229 1129 48 4.3 21.1 29.9 71.0 1172 130 993 21 2.1 22.2 29.2 71.0 1172 130 1084 0 0 22.0 71.0 1439 38 1330 0 0 22.8 30.2 72.0 1670 27 1412 0 0 22.8 30.2 71.0 2004 8 2426 19 0 20.9 72.0 64.0	April. 1st	1335	217	16.3	11.6	20.6	61.0	286	203	21.9	13.9	25.7	54.9
1598 357 22.3 16.8 25.9 58.0 1410 402 1783 465 26.1 17.7 26.2 68.0 1548 414 1939 398 20.5 19.3 27.7 70.0 1663 391 1129 48 4.3 21.1 26.2 68.0 1379 229 1129 48 4.3 21.1 29.9 71.0 1172 130 993 21 2.1 22.2 29.2 71.0 1172 130 1084 0 0 23.0 30.1 71.0 1135 135 1330 0 0 22.2 29.2 71.0 1439 38 1412 0 0 22.8 30.2 72.0 1670 27 1991 0 0 21.9 29.2 71.0 2044 8 2426 19 0.8 16.7 23.8 62.3	15 th	1621	288	17.7	13.8	23.0	71.0	1241	295	23.8	12.8	21.8	74.5
1783 465 26.1 17.7 26.2 68.0 1548 414 1939 398 20.5 19.3 27.7 70.0 1663 391 1301 209 16.0 21.3 27.8 75.0 1379 229 1129 48 4.3 21.1 29.9 71.0 1172 130 1084 0 0 23.0 30.1 71.0 1439 38 1130 0 0 23.0 30.1 71.0 1439 38 11310 0 0 22.8 30.2 72.0 1439 38 11412 0 0 22.8 30.2 72.0 1439 38 1150 0 0 21.9 29.2 71.0 1439 38 2150 29 1.4 19.4 28.1 73.0 2034 0 2250 29 1.4 19.4 28.1 74.7 <t< th=""><th>Mav. 1st</th><th>1598</th><th>357</th><th>22.3</th><th>16.8</th><th>25.9</th><th>58.0</th><th>1410</th><th>402</th><th>29.3</th><th>14.8</th><th>23.1</th><th>73.8</th></t<>	Mav. 1st	1598	357	22.3	16.8	25.9	58.0	1410	402	29.3	14.8	23.1	73.8
1939 398 20.5 19.3 27.7 70.0 1663 391 1129 48 4.3 21.1 27.8 75.0 1379 229 1129 48 4.3 21.1 29.9 71.0 1172 130 1129 48 4.3 21.1 29.9 71.0 1315 130 1084 0 0 23.0 30.1 71.0 1439 38 1330 0 0 23.0 30.1 71.0 1439 38 13412 0 0 22.8 30.2 72.0 1670 27 1991 0 0 21.9 71.0 2004 8 2150 29 1.4 19.4 28.1 74.7 2183 0 2426 19 0.8 16.7 23.8 62.3 2042 10 2360 87 3.7 13.1 22.1 65.0 1506 7	150	1783	465	26.1	17.7	26.2	0.89	1548	414	26.7	17.3	56.6	73.6
1301 209 16.0 21.3 27.8 75.0 1379 229 1129 48 4.3 21.1 29.9 71.0 1172 130 1084 0 0 22.2 29.2 71.0 1315 135 1084 0 0 23.0 30.1 71.0 1439 38 1084 0 0 22.8 30.2 72.0 1670 27 1330 0 0 22.8 30.2 71.0 1670 27 1991 0 0 21.9 29.2 71.0 2004 8 2150 29 1.4 19.4 28.1 74.7 2183 0 2426 19 0.8 16.7 23.8 62.3 2042 10 2360 87 3.7 13.1 22.0 64.0 1764 80 2083 69 3.3 11.5 20.6 63.3 1083 </th <th>June. 1st</th> <th>1939</th> <th>398</th> <th>20.5</th> <th>19.3</th> <th>27.7</th> <th>70.0</th> <th>1663</th> <th>391</th> <th>23.3</th> <th>17.0</th> <th>26.3</th> <th>70.0</th>	June. 1st	1939	398	20.5	19.3	27.7	70.0	1663	391	23.3	17.0	26.3	70.0
1129 48 4.3 21.1 29.9 71.0 1172 130 993 21 2.1 22.2 29.2 71.0 1315 135 1084 0 0 23.0 30.1 71.0 1439 38 1084 0 0 22.8 30.2 72.0 1439 38 1330 0 0 22.8 30.2 71.0 1670 27 1991 0 0 21.9 29.2 71.0 2004 8 2150 29 1.4 19.4 28.1 74.7 2183 0 2426 19 0.8 16.7 23.8 62.3 2042 10 2360 87 3.7 13.1 22.0 64.0 1764 80 2083 69 3.3 11.5 20.6 63.3 1083 26	15 th	1301	209	16.0	21.3	27.8	75.0	1379	229	17.0	20.4	27.3	75.0
993 21 2.1 22.2 29.2 71.0 1315 135 1084 0 0 23.0 30.1 71.0 1439 38 1330 0 0 22.8 30.2 72.0 1670 27 1412 0 0 21.9 29.2 71.0 2004 8 2150 29 1.4 19.4 28.4 73.0 2035 0 2426 19 0.8 16.7 28.4 74.7 2183 0 3027 76 2.5 14.1 22.8 62.3 2042 10 2360 87 3.7 13.1 22.0 64.0 1764 80 2083 69 3.3 11.5 20.6 63.3 1083 26	July. 1st	1129	48	4.3	21.1	29.9	71.0	1172	130	11.2	18.7	29.9	71.0
1084 0 0 23.0 30.1 71.0 1439 38 1330 0 0 22.8 30.2 72.0 1670 27 1412 0 0 21.9 29.2 71.0 2004 8 1991 0 0 20.1 28.4 73.0 2035 0 2426 19 0.8 16.7 23.8 62.3 2042 10 3027 76 2.5 14.1 22.0 64.0 1764 80 2360 87 3.7 13.1 22.1 65.0 1506 74 2083 69 3.3 11.5 20.6 63.3 1083 26	15 th	993	21	2.1	22.2	29.2	71.0	1315	135	10.3	22.2	29.2	70.3
1330 0 0 22.8 30.2 72.0 1670 27 1412 0 0 21.9 29.2 71.0 2004 8 1991 0 0 20.1 28.4 73.0 2035 0 2150 29 1.4 19.4 28.1 74.7 2183 0 2426 19 0.8 16.7 23.8 62.3 2042 10 2360 87 3.7 14.1 22.0 64.0 1764 80 2360 87 3.7 13.1 22.1 65.0 1506 74 2083 69 3.3 11.5 20.6 63.3 1083 26	Aug. 1st	1084	0	0	23.0	30.1	71.0	1439	38	2.9	23.0	29.2	70.3
1412 0 0 21.9 29.2 71.0 2004 8 1991 0 0 20.1 28.4 73.0 2035 0 2150 29 1.4 19.4 28.1 74.7 2183 0 2426 19 0.8 16.7 23.8 62.3 2042 10 3027 76 2.5 14.1 22.0 64.0 1764 80 2360 87 3.7 13.1 22.1 65.0 1506 74 2083 69 3.3 11.5 20.6 63.3 1083 26	15 th	1330	0	0	22.8	30.2	72.0	1670	27	1.6	23.0	29.3	72.0
1991 0 0 20.1 28.4 73.0 2035 0 2150 29 1.4 19.4 28.1 74.7 2183 0 2426 19 0.8 16.7 23.8 62.3 2042 10 3027 76 2.5 14.1 22.0 64.0 1764 80 2360 87 3.7 13.1 22.1 65.0 1506 74 2083 69 3.3 11.5 20.6 63.3 1083 26	Sep. 1st	1412	0	0	21.9	29.2	71.0	2004	8	9.4	21.9	29.2	71.0
2150 29 1.4 19.4 28.1 74.7 2183 0 2426 19 0.8 16.7 23.8 62.3 2042 10 3027 76 2.5 14.1 22.0 64.0 1764 80 2360 87 3.7 13.1 22.1 65.0 1506 74 2083 69 3.3 11.5 20.6 63.3 1083 26	15 th	1661	0	0	20.1	28.4	73.0	2035	0	0	21.2	28.2	72.1
2426 19 0.8 16.7 23.8 62.3 2042 10 3027 76 2.5 14.1 22.0 64.0 1764 80 2360 87 3.7 13.1 22.1 65.0 1506 74 2083 69 3.3 11.5 20.6 63.3 1083 26	Oct. 1*	2150	29	1.4	19.4	28.1	747	2183	0	0	19.4	28.1	73.9
3027 76 2.5 14.1 22.0 64.0 1764 80 2360 87 3.7 13.1 22.1 65.0 1506 74 2083 69 3.3 11.5 20.6 63.3 1083 26	15 th	2426	19	8.0	16.7	23.8	62.3	2042	10	0.5	16.7	23.8	62.3
2360 87 3.7 13.1 22.1 65.0 1506 74 2083 69 3.3 11.5 20.6 63.3 1083 26	Nov. 1st	3027	9/	2.5	14.1	22.0	64.0	1764	80	4.5	14.1	22.0	64.0
2083 69 3.3 11.5 20.6 63.3 1083 26	15th	2360	87	3.7	13.1	22.1	65.0	9051	74	4.2	13.4	20.8	63.5
	Dec. 1st	2083	69	3.3	11.5	20.6	63.3	1083	26	2.4	11.5	19.6	63.3
1859 77 4.1 9.0 17.3 62.0 906 3.5 1	15 th	1859	77	4.1	9.0	17.5	62.0	906	39	4.4	9.0	17.5	62.0

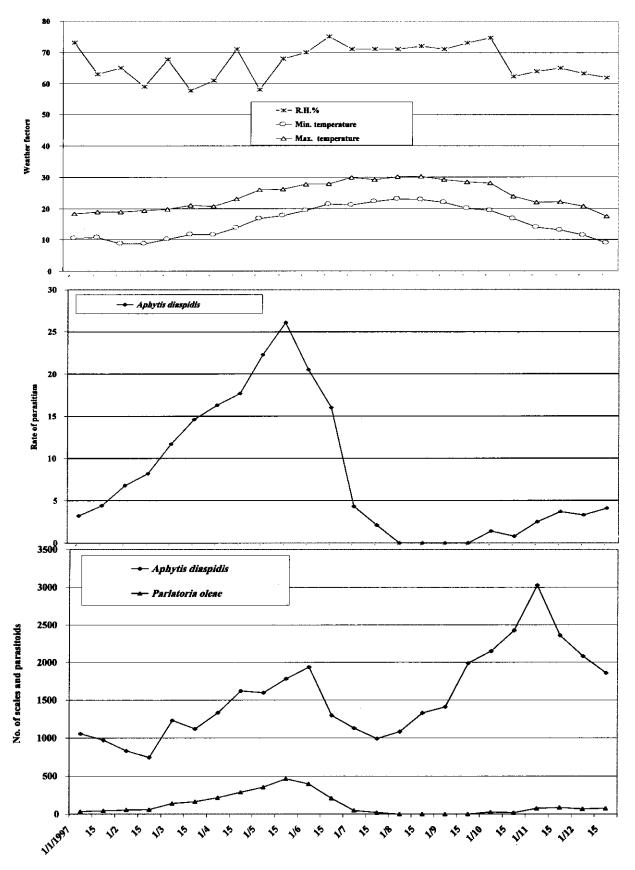


Fig. (30): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of *Aphytis diaspidis* resulted from *Parlatoria oleae* on *Olea* sp. in Northern Coast, in relation to weather factors during 1999.

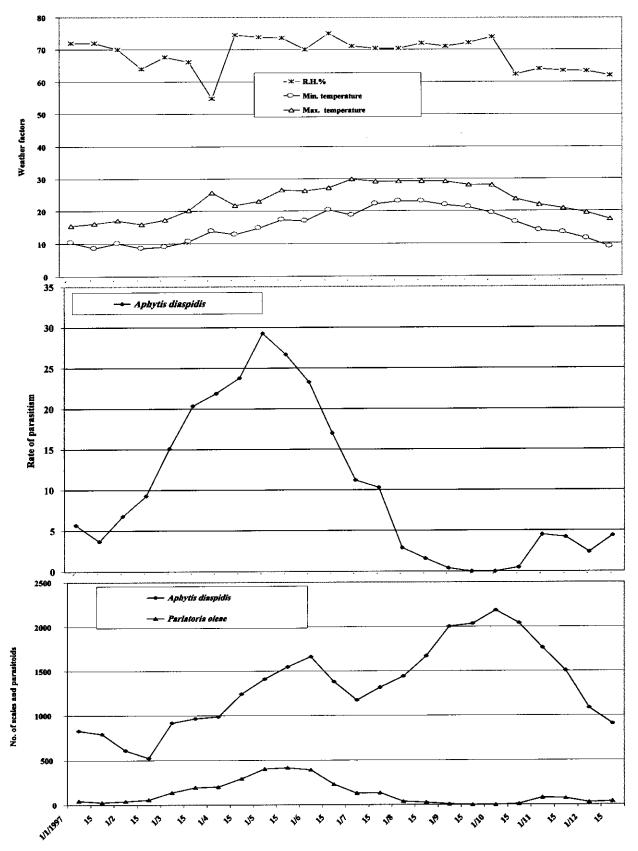


Fig. (31): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of *Aphytis diaspidis* resulted from *Parlatoria oleae* on *Olea* sp. in Northern Coast, in relation to weather factors during 2000.

low percentages of parasitism of 0.8%, 1.0%, 1.3%, 0.6% and 0.3%, respectively (Hafez, 1988).

Statistical analysis indicated that during the first year, the effect of D.Mn.T. on the rate of parasitism was highly significant ($R^2 = 0.9721$, P < 0.01), while those of D.Mx.T. and D.M.R.H. were insignificant. In the second year, D.Mn.T. again had a highly significant effect on the rate of parasitism ($R^2 = 0.9623$,P < 0.01), while D.Mx.T. and D.M.R.H. were once more of insignificant effect (Table, 13).

2.7. Aphytis hispanicus associated with Insulaspis pallidula on Mangifera indica in Ismailia:

In the first year (1999) (Table, 14 and Fig. 32), the numbers of *A. hispanicus* that attacked *I. pallidula* on *M. indica* (mango) began to increase on January 1st (at 20.4°C max., 8.4°C min.and 74.0% RH), recording the first peak, after which it increased once more to reach the highest peak. This was recorded on May 1st (at 32.2°C max., 16.6°C min.and 54% RH). Another peak was recorded on October 1st (at 31.3°C max., 18.4°C min.and 64.5% RH). The numbers of parasitoids were 8, 75and 569, respectively. The rate of parasitism recorded the first peak of 4.2% on April 15th (at 28.9°C max., 13.6°C min.and 58.0% RH), after which it decreased and then increased once more to record the second peak of 9.4% on October 1st.

During the second year (2000) (Table, 14 and Fig. 33), the numbers of parasitoids began an increase on January 1st (at 18.4°C max., 10.3°C min.and 69% RH), continued to rise until they reached the highest peak on August 1st (34.4°C max., 22.5°C min.and 61.6% RH)and then recorded a third peak on November 1st (at 26.1°C max., 13.5°C min.and 60.0% RH). The numbers of parasitoids were 5, 55 and 305, respectively.

Table (13): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis diaspidis on Parlatoria oleae in Northrn Coast.

			1007		ī		1	1998		
Year										
								1	Ţ	۵
Daily mean	SS	df	Ms	Ţ.	A	SS	df	Ms	4	-
weather factors						_ 			000	0.0501
					0000	12 084		12.984	3.689	0.0391
TAME	2.100		2.100	1.139	0.2998 14.201	14.701	(
D.IVIA.1.				(1000	889 06	,	39.688	11.277	0.0013
	47.131	1	47.131	25.578	25.578 0.0001 39.000	39.000	4			
D.IVIIV. 2.		· .		(0.0540 3.780	3 780		3.780	1.074	0.3038
Hawu	2.549	 1	2.549	1.383		201.0				
Dilitaria										• •

Table (14): Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis hispanicus resulted from Insulaspis pallidula on Mangifera indica in Ismailia, in relation to weather factors during 1999 and 2000.

			į.	1997						1998		
70.40		Para	Paracitoid	Daily me	nean weather factors	r factors		Parasitoid	itoid	Daily mean weather factors	n weather	factors
Date of	No. of scales			Tempe	nerature		No. of scales	-	794	Temperature	ature	%на
Samping		No.	R%	Min	Max	KH%	4040 V	o Z	K%	Min	Max	
1. 1.50	1,224	×	0.7	8.4	20.4	74.0	786	5	0.5	10.3	18.4	0.69
Jan. 1	1431	10	13	8.7	21.4	62.0	816	9	8.0	7.2	17.5	65.0
181	1100	14	12	7.7	20.5	0.79	729	8	1.0	8.0	18.6	0.69
15th	5011	15	2.4	9.2	19.9	0.79	535	6	1.7	7.3	19.3	65.0
1.5 Mor 1 ⁵¹	159	1-1	2.7	10.5	23.9	66.5	520	11	2.2	9.9	19.1	62.6
Mai. 1	750	S S	3.4	12.5	35.3	51.2	487	12	2.4	10.5	22.5	64.1
A maril 18t	1203	53	4.1	12.6	25.7	50.0	675	15	2.1	13.3	28.7	53.0
April. 1	1362	22	4.2	13.6	28.9	58.0	702	18	2.6	14.6	28.3	60.7
E1	2048	7	3,6	16.6	32.2	54.0	723	24	3.3	15.7	29.3	55.9
IVIAY. I	1844	40	2.2	18.2	32.4	56.0	817	30	3.6	17.6	32.3	46.8
T. 18t	1160	2	10	19.7	34.2	53.0	935	34	3.7	19.7	32.4	57.0
June. 1	1013	٤	90	21.1	34.2	62.0	1016	42	4.1	20.4	34.3	56.0
L.1. 18t	1631	1,	1 0	21.7	35.3	61.0	942	44	4.6	21.8	36.9	53.4
July. I	1031	3,	-	218	34.6	0.09	875	50	5.7	22.8	36.6	52.2
1.0 A.1.2 18t	2773	124	4.5	22.8	35.6	61.4	1029	55	5.3	22.5	34.4	91.9
15 II	2854	19	29	22.4	35,3	59.0	1142	49	4.7	23.0	34.3	64.5
CI III	3150	210	69	19.7	33.5	62.1	2431	107	5.0	21.6	34.4	0.09
15th	4530	372	8.2	21.3	33.8	65.0	2724	156	5.7	19.6	32.0	63.0
2 1 1 1 2	5003	2,60	9.4	18.4	31.3	64.5	3049	184	6.0	13.7	31.8	66.3
1 T	6238	453	72	17.8	29.5	70.4	4130	249	6.2	14.2	24.8	6.99
1	\$627	301	69	14.2	27.2	64.0	4793	305	6.4	13.5	26.1	0.09
NOV. I	7022	107	45	11.9	24.6	59.0	3138	182	5.8	12.0	23.4	58.0
De. 14	1532	48	31	7.0	21.4	62.8	3244	136	4.2	8.0	20.5	61.0
Dec. 1	1620	2 2	1.2	93	21.1	67.8	3759	133	3.5	9.0	20.3	65.3
13	1020		71,				E					

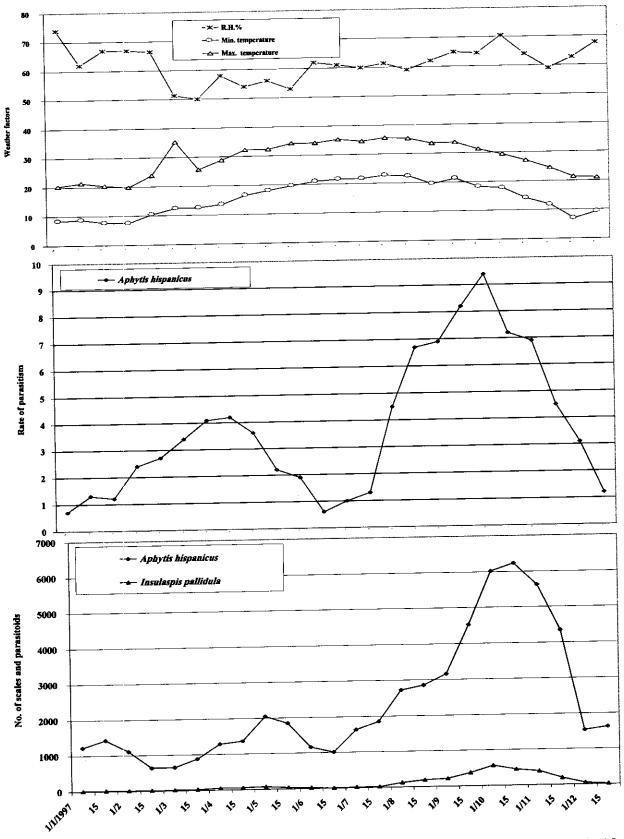


Fig. (32): Number of scale susceptible stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis hispanicus resulted from Insulaspis pallidula on Mangifera indica in Ismailia, in relation to weather factors during 1997.

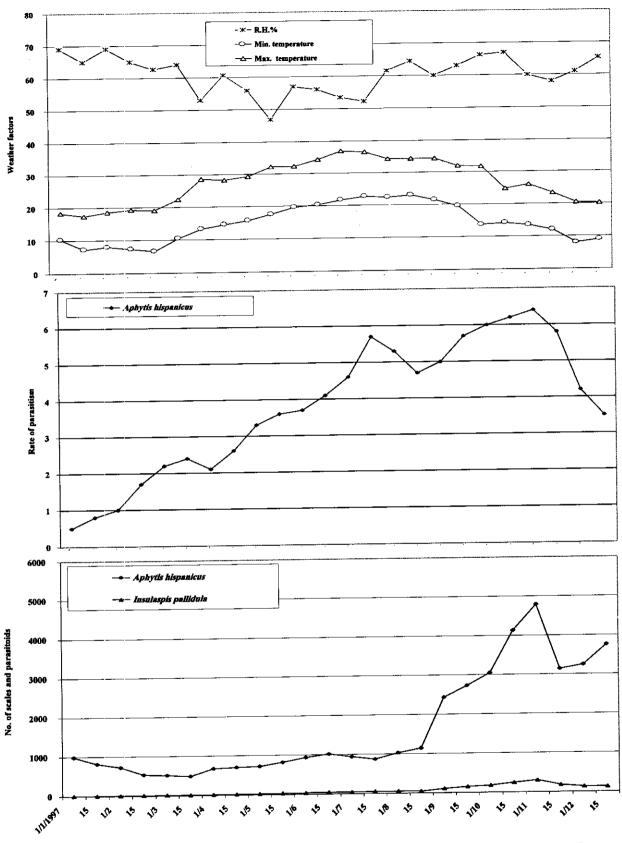


Fig. (33): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis hispanicus resulted from Insulaspis pallidula on Mangifera indica in Ismailia,, in relation to weather factors during 1998.

The rate of parasitism recorded a first peak of 5.7% on July 15th (at 36.6°C max., 22.8°C min.and 52.2% RH), then decreased and then increased again to record a second peak of 6.4% on November 1st.

The present work agrees with the findings of Hafez, et al. (1987a). This species was one of the most prolific parasitoids to attack some armored scale insects. (Gerson, 1967; Avidov, 1970).

Statistical analysis indicated that D.Mx.T., D.Mn.T. and D.M.R.H. were of insignificant effect on the rate of parasitism during the first year. However, in the second year, the effect of D.Mx.T. on the rate of parasitism was highly significant ($R^2 = 0.9360$, P < 0.01), while those of D.Mn.T. and D.M.R.H. were insignificant (Table 15).

2.8. Aphytis holoxanthus associated with Chrysomphalus aonidum on Citrus sp. in Giza:

The data in Table (16) and Fig. (34) shows that in the first year (1997), the numbers of *A. holoxanthus* associated with *C. aonidum* on citrus trees began to increase on January 1st (at 21.8°C max., 9.0°C min.and 58.8% RH) and recorded the first peak on February 15th (at20.0°C max., 9.0°C min.and 62.0% RH) and recorded another peak on November 1st (at 27.8°C max., 15.9°C min.and 63.9% RH). The numbers of parasitoids were 196, 578 and 1051, respectively. The rate of parasitism recorded its first peak of 52.0% on March 1st (at 22.0°C max., 9.0°C min.and 58.5% RH). It then proceeded to decreaseand then increase to record the second peak of 70.9% on November 1st.

During the second year (1998) (Table, 16 and Fig. 35), the numbers began to increase on January 1st (at 20.0°C max., 8.2°C min.and 70.3% RH). The first peak was recorded on March 1st (at 22.3°C max., 9.7°C min. and 61.7% RH) and the second peak was recorded on October 1st

Table (15): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis hispanicus on Insulaspis pallidula in Ismailia.

								1008	i	
Year			1997		<u> </u>		 	1330		
Daily mean	SS	df .	Ms	Œ	· d	SS	df	Ms	ÍĽ,	<u>م</u>
weather factors										
						700	-	16 074	16 924 64 736 0.0001	0.0001
D.MX.T.	2.578	-	2.578	1.979	1.979 0.1830 16.924	16.924	-	10.74		
	(•	0.381	0.216	10590	0.347	 -	0.347	1.326	0.2645
D.MN. T.	0.281	⊣	0.201	0.710						0
мвн	4.969		4.969	3.814	0.0727	80.451	 1	8.451	3.233	0.9859
D.IVI.NAL.										

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis holoxanthus resulted from Chrysomphalus aonidum on Citrus sp. in Giza, in relation to weather factors during 1997 and 1998. **Table** (16):

				1997						1998		
Date of		Para	Parasitoid	Daily me	nean weather factors	r factors	M. of and a	Parasitoid	itoid	Daily mean weather factors	n weather	· factors
sampling	No. of scales		96	Temp	perature	100	No. of scales	,	7967	Temperature	rature	/011G
)		Š	K%	Min	Max	%HX		o Z	% %	Min	Max	
Jan. 1st	827	198	23.8	9.6	21.8	58.8	836	159	19.0	8.2	20.0	70.3
15 th	886	284	28.7	8.0	20.0	65.0	1022	227	22.1	9.8	22.5	62.2
Feb. 1"	964	417	43.5	5.7	19.0	67.5	1348	392	29.3	9.3	23.9	60.3
15 th	1208	578	47.7	9.0	20.0	62.0	1434	443	30.8	10.1	6'61	66.4
Mar.1st	1121	563	52.0	9.0	22.0	58.5	1542	290	38.3	6.7	22.3	61.7
15 th	747	327	43.8	10.0	24.0	57.5	948	282	30.0	11.4	24.1	58.0
April, 1st	1348	239	40.0	11.2	23.8	57.8	874	181	20.6	13.5	27.2	59.5
15 th	549	150	27.2	14.8	29.3	59.2	731	136	18.5	17.1	59.9	57.0
May. 1"	619	133	21.4	15.7	30.3	54.7	699	66	14.9	13.5	27.2	84.6
15 th	865	118	17.3	19.1	34.1	56.5	878	99	11.4	19.4	33.0	62.2
June, 1st	068	69	7.6	8.61	34.1	47.7	641	88	9.1	20.4	34.2	61.7
15 th	1184	134	11.3	22.0	39.6	58.1	762	48	6.2	20.8	34.8	58.9
July. 1st	1589	237	14.9	22.7	36.9	52.0	848	42	4.9	22.3	38.1	8.95
15th	1370	359	26.2	22.9	35.8	62.1	1031	130	12.6	23.7	38.0	57.6
Aug. 1"	1533	491	32.0	22.5	35.1	62.5	1150	206	6.71	24.7	39.1	58.2
15th	1716	615	35.7	22.0	35.1	62.0	1939	498	<i>1</i> :57	22.3	35.5	61.3
Sep. 1st	1893	846	44.8	20.7	33.1	61.8	2337	857	2.98	23.7	38.8	55.9
15 th	1969	974	49.7	19.2	32.5	55.7	3118	1270	40.7	21.3	33.9	60.3
Oct. 1"	1263	069	54.6	17.6	32.0	63.7	2854	1413	5.64	21.0	34.7	57.4
15 th	1370	932	87.9	16.0	29.8	61.1	2621	1364	52.0	18.2	30.3	59.5
Nov. 1st	1482	1051	70.9	15.9	27.8	63.3	1962	1247	9.69	17.4	28.3	64.9
15 th	1176	782	66.5	11.8	26.1	63.3	1834	1236	67.4	16.0	26.9	58.8
Dec. 1st	856	999	69.4	6.6	23.1	58.6	1655	955	57.7	14.6	25.4	61.2
15th	1012	647	62.4	8.0	21.0	9.79	1482	608	54.6	10.0	19.9	61.5

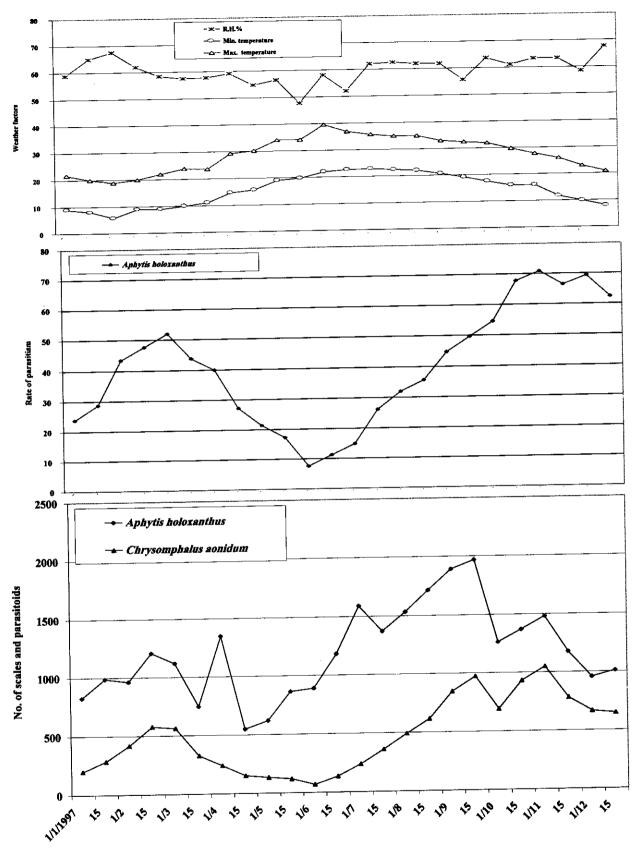


Fig. (34): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis holoxanthus resulted from Chrysomphalus aonidum on Citrus sp. in Giza, in relation to weather factors during 1997.

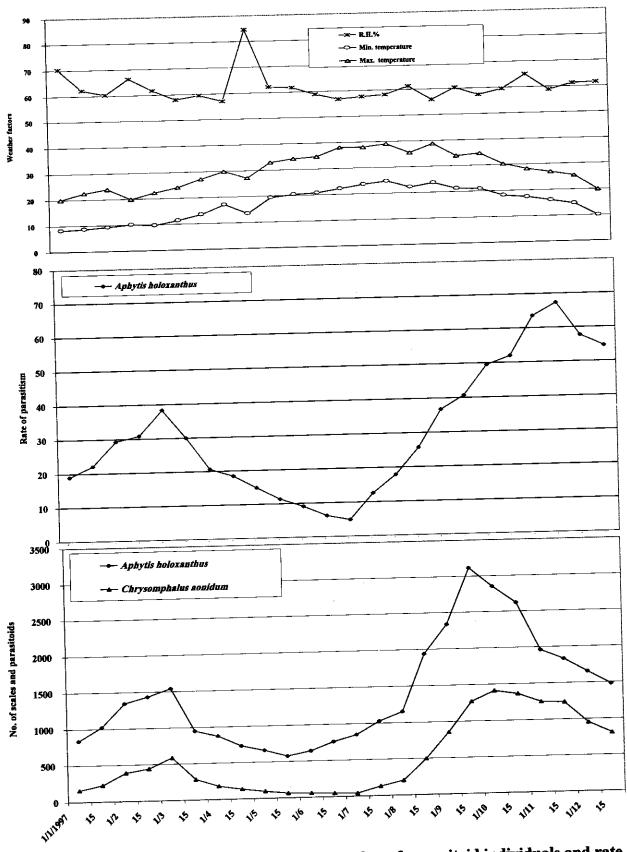


Fig. (35): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis holoxanthus resulted from Chrysomphalus aonidum on Citrus sp. in Giza, in relation to weather factors during 1998.

(at 34.7°C max., min. 21.0°C and 57.4% RH). The numbers of parasitoids were 590 and 1413, respectively. The rates of parasitism during these months were 38.3% and 49.5%, respectively. In this sample, this species recorded maximum parasitism rates of 70.9% and 67.4% during 1997 and 1998 respectively.

Clancy, et al. (1963), Selhime, et al. (1969), DeBach and Rosen (1976), Dean (1982) and Steinberg, et al. (1986) all recorded A. holoxanthus as an effective parasitoid on C. aonidum.

Statistical analysis indicated that during the first year, the effects on the rate of parasitism of D.Mn.T. and D.M.R.H. were significant with P < 0.01) and P < 0.05, respectively ($R^2 = 0.9744$), while D.Mx.T. was insignificant. In the second year, the inverse is true, with the D.Mx.T. being of significant effect on the rate of parasitism ($R^2 = 0.9522$, P < 0.01), while D.Mn.T. and D.M.R.H were insignificant (Table, 17).

2.9. Aphytis lepidosaphes associated with Lepidosaphes beckii on Mangifera indica in Ismailia:

An abundance of *A. lepidosaphes* was recorded during the two successive years of this work. The data in Table, 18 and Fig. 36 shows that in the first year (1999), the numbers of this parasitoid recorded their first peak on January 1st (at 20.4°C max., 8.4°C min.and 74.0% RH)and reached their highest peak on December 15th (at 21.1°C max., 9.3°C min.and 67.8% RH). The numbers of parasitoids were 377 and 605, respectively. The rates of parasitism followed the same trend in these months, reaching 45.0% and 59.2%, respectively. In the second year (2000) (Table, 18 and Fig. 37), the numbers of parasitoids recorded their first peak of 226 on January 1st (at 18.4°C max., 10.3°C min.and 69.0% RH)and reached their highest peak of 449 on November 15th (at 23.4°C max., 12.0°C min.and 58% RH). The rate of parasitism recorded the first

Table (17): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis holoxanthus on Chrysomphalus aonidum in Giza.

Year			1997					1998	·	
Daily mean weather factors	SS	df	Ms	14	ď	SS	Jp	Ms	<u> </u>	a
D.MX.T.	21.428	-	21.428 1.763	1.763	0.2008 233.903	233.903		233.903	233.903 10.806 0.0041	0.0041
D.MN. T.	174.576	. 	174.576	174.576 14.363	0.0013	11.964		11.964	0.553	0.4668
D.M.R.H	95.749	_	95.749	95.749 7.878 0.0117 32.663	0.0117	32.663	1	32.663	1.509	0.2351

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis lepidosaphes resulted from Lepidosaphes beckii on Mangifera indica in Ismailia, in relation to weather factors during 1999 and 2000. Table (18):

						-				2000		•
				1999					-			Canton
4 · · · ·		Para	Parasitoid	Daily me	mean weather factors	r factors	No of goode	Parasitoid	7	Daily mean Weather factors	n weatner	INCLOIS
Date of	No. of scales			Tempe	nperature	DIT6/	INO. OI SCALUS	Z	₹% 	Temperature	ature	RH%
Smirdmas		ż	%	Min	Max	% HY				Min	Max	9
		į	45.0	70	20.4	74.0	716	226	31.5	10.3	18.4	0.60
Jan. 1 st	838	3//	0.54	1.0	21.7	0 09	746	184	24.7	7.2	17.5	65.0
15 th	879	320	36.4	8.7	4.12	0770	401	9	15.1	8.0	18.6	69.0
Feb. 1 st	423	123	29.0	7.7	20.5	0.70	387	4	10.7	7.3	19.3	65.0
15 th	447	86	21.9	9:/	9.60	0./0	374	15	4.8	9.9	19.1	62.6
Mar.1"	327	09	18.5	5.01	25.9	Cipa	220	15	6.2	10.5	22.5	64.1
15 th	306	37	11.0	12.5	55.3	21.2	186	-	9.	13.3	28.7	53.0
April. 1st	227	15	9.9	12.6	7.57	2000	148	. ~	5.4	14.6	28.3	60.7
15 th	209	5	2.6	13.6	28.9	20.0	134	=	8.3	15.7	29.3	55.9
May. 1st	198	11	5.4	16.6	32.2	34.0	101	22	12.9	17.6	32.3	46.8
15 th	152	14	9.1	18.2	32.4	20.0	101	2 2	17.6	19.7	32.4	57.0
.Tune. 1st	160	26	16.1	19.7	34.2	53.0	80	2 2	21,3	20.4	34.3	56.0
150	177	33	18.9	21.1	34.2	0.79	10	,,,	2000	21.8	36.9	53.4
July, 1tt	248	57	22.9	21.7	35.3	61.0	90	23 25	19.2	22.8	36.6	52.2
15 th	267	84	31.5	21.8	34.6	00.0	216	5 5	901	22.5	34.4	61.6
Aug. 1st	319	8	29.1	22.8	35.6	4.10	210	48	20.3	23.0	34.3	64.5
15 th	354	53	15.0	22.4	33.3	39.0	977	119	27.9	21.6	34.4	60.0
Sep. 1"	501	65	12.9	19.7	33.5	02.1	510	191	31.6	19.6	32.0	63.0
15 th	534	113	21.2	21.3	33.8	03.0	660	233	35.7	13.7	31.8	66.3
Oct. 1"	654	218	33.3	18.4	31.3	206	707	268	37.0	14.2	24.8	6.99
15 th	902	259	36.8	17.8	29.5	4.07	676	360	43.6	13.5	26.1	0.09
Nov. 1"	933	384	41.1	14.2	27.2	0.45	040	440	0 07	12.0	23.4	58.0
15 th	957	452	47.3	11.9	24.6	29.0	901	330	38.7	8.0	20.5	61.0
Dec. 1*	666	512	51.2	7.0	21.4	0.70	901	15.0	33.9	9.0	20.3	65.0
15 th	1022	605	59.2	9.3	71.1	0/.0	100					

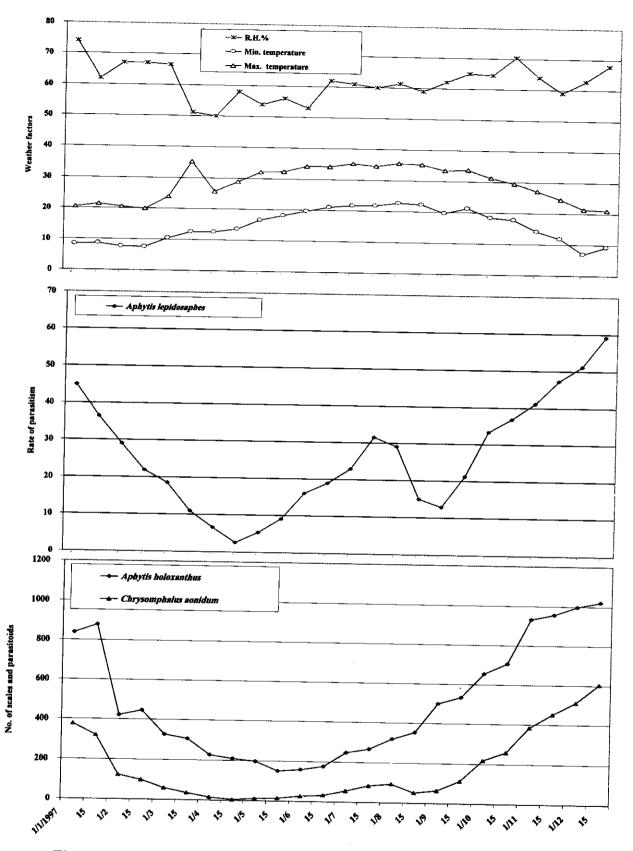


Fig. (36): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis lepidosaphes resulted from Lepidosaphes beckii on Mangifera indica in Ismailia, in relation to weather factors during 1999.

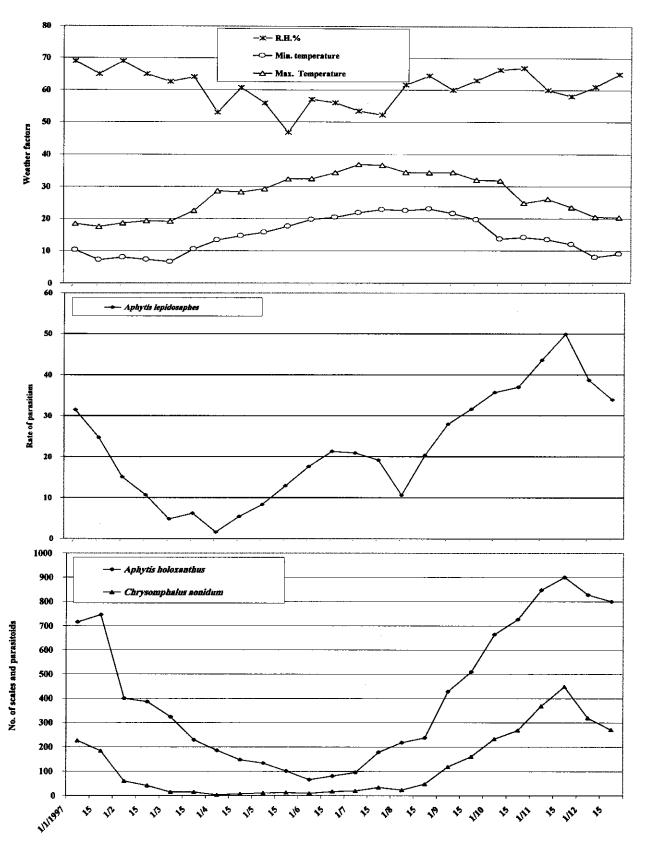


Fig. (37): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of *Aphytis lepidosaphes* resulted from *Lepidosaphes beckii* on *Mangifera* indica in Ismailia, during 2000.

peak of 31.5% on January 1st. After peaking, the rate of parasitism decreased to 1.6% on April 1st (at 28.7°C max., 13.3°C min.and 53.0% RH), but began to increase gradually to reach another peak of 49.9% on November 15th (at 23.4°C max., 12.0°C min.and 58.0% RH). In the present work, the max.imum parasitism rates were 59.2% and 49.9% during the first and second years, respectively. Abdel-Fattah and El-Saadany (1979), Hafez (1987b) and Abd-Rabou (1997a) recorded the max.imum parasitism of this species on *L. beckii* as 84%, 38.9% and 43%, respectively. *A. lepidosaphes* is an effective parasitoid on the purple scale, *L. beckii* according to DeBach and Rosen (1976) and Rosen and DeBach (1979).

Statistical analysis indicated that during both years, the effects of D.Mx.T., D.Mn.T. and D.M.R.H. on the rates of parasitism were insignificant (Table, 19).

2.10. Aphytis libinacus associated with Lucaspis riccae on Olea sp. in Fayoum:

The data in Table, 20 and Fig. 38 shows that in the first year (1999) the numbers of *A. libinacus* on *L. riccae* began to increase on January 1st (at 22.0°C max., 9.0°C min.and 67.0% RH), recorded the first peak on April 15th (at 32.0°C max., 15.5°C min.and 57.5% RH)and then recorded another peak on November 1st (at 29.4°C max., 15.7°C min.and 62.5% RH). The numbers of parasitoids were 12, 131and 361 respectively. The rates of parasitism in these months were 1.7%, 12.8% and 18.7%, respectively.

In the second year (2000) (Table, 20 and Fig. 39), the numbers began an increase on January 15th (at 21.2°C max., 7.0°C min.and 64.0%

Table (19): Multiple regression values indicating the effect of weather factors on the percent parasitism of

5	4.					
10 literace			A	0.1177	0.2714	0.3997
		× -	E	2.513	1.230	0.718
		1998	Ms	425.417	208.229	121.621
·		70			7 -	-
		SS	1.062 0.3066 425 417	208.229	121.621	
		d	0.3066	0.2260 208.229	0.8013 121.621	
		E 4	1.062	1.493	0.064	
	1997	Ms	32.786	56.577	92.240	
		df		-		•
		SS	32.786	02 240	047:7	r
Year	mean	factors		0		* ·
K	Daily mean	weather factors D.Mx T	D.M.N. T.	D.M.R.H		
;		<u> </u>	D.	D.I.		;

Table (20): Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis libinacus resulted from Lucaspis riccae on Olea sp in Fayoum, in relation to weather factors during 1999 and 2000.

1				1999						0000		
Date of		Para	Parasitoid	Daily m	mean weather factors	footom.		,		0007		
sampling	No. of scales				Man weathe	Lactors	No. of scales	Para	Parasitoid	Daily mea	Daily mean weather factors	factors.
0		No.	R%	I emp	mperature	RH%		Ž	D0%	Temperature	rature	, orter
.Ian. 1 st	732	5	-	IVIIII	Max			5	0/ VI	Min	Max	KH%
15th	673	2 2		9.0	22.0	67.5	525	20	3.9	10.1	20.9	67.0
Feb 1st	640	2 }	2.5	7.3	22.7	62.0	440	17	4.2	7.0	21.2	64.0
1,5th	505	٥	2.9	9.6	22.6	65.5	407	23	5.1	× ×	21.5	2 77
Mor 1st	202	<u>*</u>	3.5	7.5	22.0	68.0	319	18	5.6	2000	22.0	2.00
1.tai.i	4/8	6)	4.0	10.1	25.5	63.5	301	24	82	7.0	22.0	61.5
Anril 1st	670	32	5.2	12.8	28.2	59.5	324	32	10.0	11.2	26.3	610
150	/00	Į.	6.7	11.6	28.8	56.5	376	40	10.9	14.2	32.3	0.10
May 18t	1020	132	12.8	15.5	32.0	57.5	460	3	14.0	14.0	33.1	26.0
1710y. 1	0011	٩	9.9	19.3	35.9	55.0	627	66	15.7	16.1	23.7	0.00
11.00	1337	32	2.4	19.6	35.1	55.0	740	63	8.5	20.1	26.7	0./0
Jeth	7001	67	4.3	20.9	37.6	56.0	911	89	2,2	22.7	36.7	0.40
C ;	1328	18	1.4	21.3	37.4	59.0	943	22	0,1	0.27	70.7	58.5
July. I**	1364	10	0.7	21.9	39.0	\$ 95	790	5 5		20.8	38.3	58.5
15 ^{cn}	1220	14	9.0	22.8	30.6	2 8 5	700,			21.1	40.9	52.5
Aug. 1"	1731	26	5	27.3	20.5	190	1000	7	0.7	22.6	39.3	58.0
15 th	1917	19	× ×	23.1	39.0	29.5	1185	34	2.9	22.0	36.8	59.5
Sep. 1**	2026	229	11 6	21.0	39.3	0.60	1206	33	7.8	23.4	38.5	61.0
15 th	2174	202	14.2	27.7	36.3	200.5	1329	216	16.2	22.0	37.4	60.5
Oct. 1"	2430	202	200	21.7	20.7	03.5	1443	239	17.5	20.7	34.6	0.09
15#	2532	173	6.6	20.13	33.2	63.0	1576	261	18.6	19.2	33.6	29.0
Nov. 1st	1035	2/1	0.0	20.4	32.4	63.5	1547	320	20.3	15.1	28.2	63.0
4.4	1963	100	18./	15.7	29.4	62.5	1629	224	13.8	13.80	27.8	300
1	6621	277	9.87	14.0	27.1	62.5	1876	160	8.4	13.0	200	04:0
Dec. I	920	<u>16</u>	2.1	10.0	23.7	64.5	1724	48	2 0.1	10.0	72.4	80.8
cı	864	99	7.5	9.2	23.4	65.5	1588	7.	2 7	O.O.	4.77	63.6
										6.9	21.8	62.0

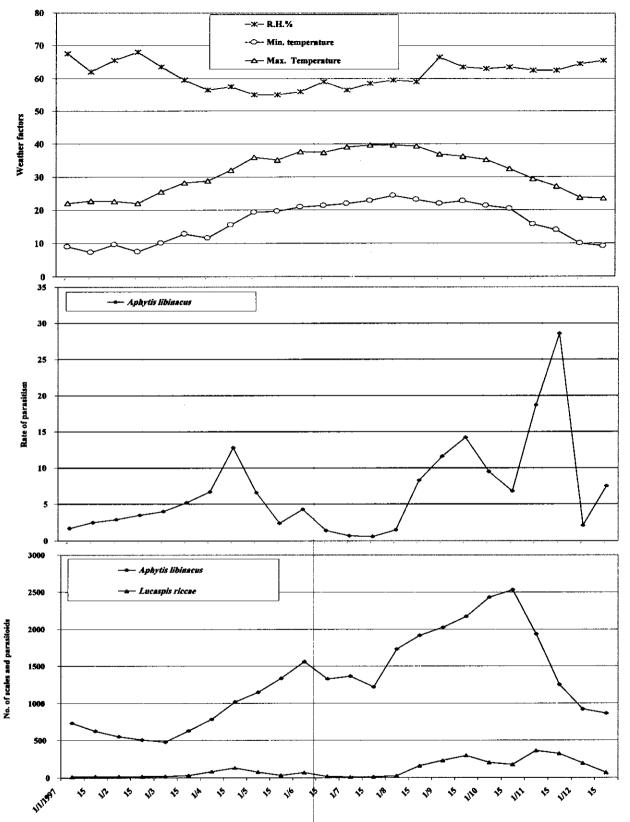


Fig. (38): Number\ of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis libinacus resulted from Lucaspis riccae on Olea sp in Fayoum, in relation to weather factors during 1997.

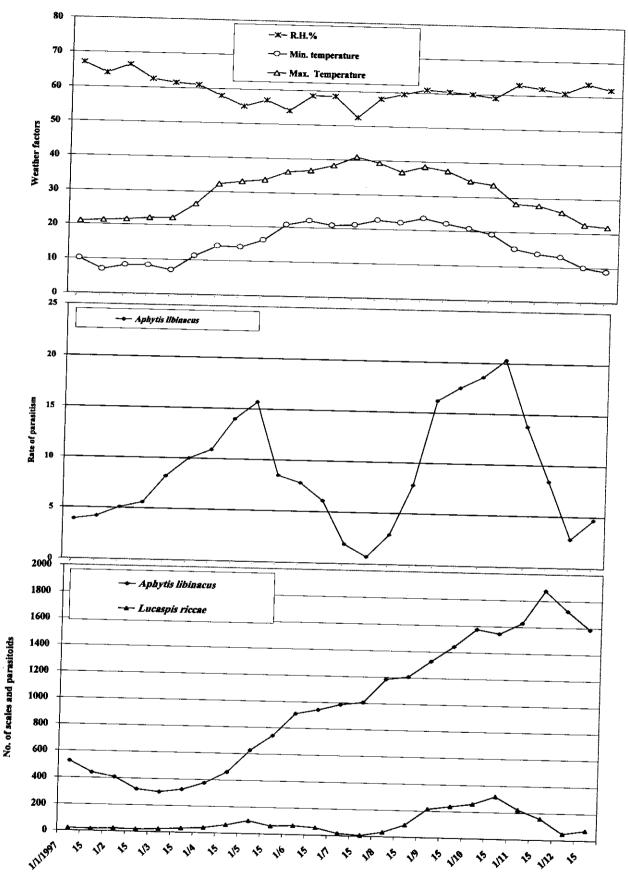


Fig. (39): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis libinacus resulted from Lucaspis riccae on Olea sp in Fayoum, in relation to weather factors during 1998.

R H). The first peak was recorded on May 1st (at 33.7°C max., 16.1°C min.and 57.0% RH) and the second peak occurred on October 15th (at 28.2°C max., 15.1°C min.and 63.0% RH). The numbers of parasitoids were 17, 99 and 320 respectively. The rates of parasitism in these months were 3.9%, 15.7%and 20.3%, respectively.

The observed data agree with those obtained by Moursi and Mesbah (1985) and Moursi and Hegazi (1983).

Statistical analysis indicated that in 1999, D.Mx.T., D.Mn.T. and D.M.R.H. had insignificant effect on the rate of parasitism of this species. In 2000, however, D.Mn.T. was of highly significant effect on the rate of parasitism ($R^2 = 0.9276$, P < 0.01), while D.Mx.T. and D.M.R.H. remained of insignificant effect (Table, 21).

2.11. Aphytis linguanensis associated with Parlatoria ziziphi on Citrus sp. in Giza:

Table (22) and Figs (40 and 41) clearly reveal the average parasitism rates of this parasitoid to have been 25% and 16% during 1997 and 1998, respectively. Three peaks were recorded annually for *A. lingnanensis*. During the first year (1997) they occurred on March 15th (at 24.0°C max., 10.0°C min.and 57.5% RH) with 180 parasitoids, July 15th (at 35.8°C max., 22.9°C min.and 62.1% RH) with 345 parasitoids and November 15th (at 26.1°C max., 11.8°C min.and 63.9% RH) with 130 parasitoids. The parasitism rates were 33.0%, 43.2% and 34.8% respectively. In the second year (1998), the peaks were recorded on March 1st (at 22.3°C max., 9.7°C min.and 66.7% RH) with 125 parasitoids, August 1st (at 39.1°C max., 24.7°C min.and 58.2% RH) with 280 parasitoids and November 15th (at 26.9°C max., 16.0°C min.and 58.8% RH) with 38 parasitoids. The parasitism rates were 20.8%, 30.7% and 20.6%, respectively.

Table (21): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis libinacus on Lucaspis riccae in Fayoum.

								1008		
Voor	-		1997					1330		
real										
Daily mean	SS	df	Ms	Ĭ¥.	d	SS	df	Ms	<u>F</u> .	d
weather factors				-						0770
				,	7/10	8669	,	6.238	2.268 0.1509	0.1309
DMXT	110.078		110.078	3.265	3.265 0.0/64	0.270	4			,
Division		,		1 060	1 060 0 3078 49.275	49.275		49.275 17.910 0.0001	17.910	0.0001
D.MN. T.	35.746		35.740	1.000				1	C t	0.1046
, ,	95 546		85.546	546 2.538	0.1171 4.946	4.946		4.946	1.798	1./98 0.1040
D.M.R.H	0+C.C0									
					,					

Number of scales, number of parasitoid individuals ant rate of parasitism (R%) of Aphytis linguanensis resulted from Parlatoria ziziphi on Citrus sp. in Giza, in relation to weather factors during 1997 and 1998. **Table** (22):

Of No. of scales Parasitoid Daily mean weather factors No. of scales R% Temperature Aim No. of scales No.		•			1997						1998		
No. of scales No. of scales R% Temperature RH% RH% 325 71 22.0 9.0 21.8 58.8 313 101 26.7 8.0 20.0 65.0 350 108 29.0 5.7 19.0 67.6 471 119 25.5 9.0 20.0 62.0 471 119 25.5 9.0 20.0 62.0 471 119 25.5 9.0 20.0 62.0 471 119 25.5 9.0 20.0 62.0 600 168 28.0 11.2 23.8 57.8 662 144 24.2 14.8 29.3 57.8 660 168 28.0 11.2 23.8 57.8 662 144 24.2 14.8 29.3 57.0 860 157 22.6 15.7 30.3 54.7 870 18.9 17.8 34.1 </th <th>Date of</th> <th>•</th> <th>Para</th> <th>sitoid</th> <th></th> <th>an weather</th> <th>r factors</th> <th>M</th> <th>Parasitoid</th> <th>itoid</th> <th>Daily mean weather factors</th> <th>n weather</th> <th>factors</th>	Date of	•	Para	sitoid		an weather	r factors	M	Parasitoid	itoid	Daily mean weather factors	n weather	factors
NO. K% Min Max KH170 3125 71 22.0 9.0 21.8 58.8 313 101 26.7 8.0 20.0 65.0 350 108 29.0 5.7 19.0 67.6 471 119 25.5 9.0 20.0 62.0 471 119 25.5 9.0 20.0 62.0 471 119 25.5 9.0 20.0 62.0 600 168 28.0 11.2 23.8 57.8 600 168 28.0 11.2 23.8 57.8 600 168 28.0 11.2 23.8 57.8 600 168 28.0 11.2 23.8 57.8 600 168 15.9 19.1 34.1 47.7 870 13.0 22.0 35.8 62.1 810 20.0 20.0 52.0 52.0 810	sampling	No. of scales	;	3		rature	DIT.0/	No. of scales	N	D 9/2	Temperature	rature	%Ha
325 71 22.0 9.0 21.8 58.8 313 101 26.7 8.0 20.0 65.0 350 108 29.0 5.7 19.0 67.6 471 119 25.5 9.0 20.0 62.0 726 128 25.6 9.0 20.0 62.0 600 168 28.6 10.0 24.0 57.5 600 168 28.0 11.2 23.8 57.8 600 168 28.0 11.2 23.8 57.8 600 168 28.0 11.2 23.8 57.8 600 168 28.0 11.2 23.8 57.8 600 167 14.8 24.1 36.7 56.5 948 165 17.5 19.1 34.1 47.7 870 134 43.2 22.0 35.0 52.0 870 20.7 31.0 35.1 62.5<	0		2	X %		Max	% EE		IVO.	IN /0	Min	Max	0/111
313 101 26.7 8.0 20.0 65.0 350 108 29.0 5.7 19.0 67.6 471 119 25.5 9.0 20.0 62.0 726 128 25.6 9.0 22.0 58.5 545 180 33.0 10.0 24.0 57.8 600 168 28.0 11.2 23.8 57.8 600 168 28.0 11.2 23.8 57.8 600 168 28.0 11.2 23.8 57.8 696 157 22.6 14.8 29.3 59.2 696 157 22.6 15.7 30.3 54.7 870 138 15.9 19.8 34.1 47.7 810 20.5 25.3 22.7 36.9 52.0 850 241 28.4 22.0 35.1 62.5 667 124 18.7 19.2 32.	Jan. 1st	325	71	22.0	9.0	21.8	58.8	210	21	10.2	8.2	20.0	70.3
350 108 29.0 5.7 19.0 67.6 471 119 25.5 9.0 20.0 62.0 726 128 25.6 9.0 22.0 58.5 545 180 33.0 10.0 24.0 57.3 600 168 28.0 11.2 23.8 57.8 662 144 24.2 14.8 29.3 59.2 696 157 22.6 15.7 30.3 54.7 696 157 22.6 15.7 30.3 54.7 948 165 17.5 19.1 34.1 47.7 870 138 15.9 19.8 34.1 47.7 810 20.5 25.3 22.7 36.9 52.0 850 241 28.4 22.0 35.1 62.5 850 241 28.4 22.0 35.1 62.5 667 124 18.7 19.2 32	15 th	313	101	26.7	8.0	20.0	65.0	214	28	13.3	9.8	22.5	62.2
471 119 25.5 9.0 20.0 62.0 726 128 25.6 9.0 22.0 58.5 545 180 33.0 10.0 24.0 57.5 600 168 28.0 11.2 23.8 57.8 602 144 24.2 14.8 29.3 59.2 696 157 22.6 15.7 30.3 54.7 696 157 22.6 15.7 30.3 54.7 870 165 17.5 19.1 34.1 47.7 870 138 15.9 19.8 34.1 47.7 810 20.5 25.3 22.7 36.9 52.0 810 20.5 25.3 22.7 36.9 52.0 850 241 28.4 22.0 35.1 61.8 645 124 18.7 19.2 35.1 62.0 645 124 18.7 10.2	Feb. 1 st	350	108	29.0	5.7	19.0	9.29	230	39	19.8	9.3	23.9	60.5
726 128 25.6 9.0 22.0 58.5 545 180 33.0 10.0 24.0 57.5 600 168 28.0 11.2 23.8 57.8 600 168 28.0 11.2 23.8 57.8 602 144 24.2 14.8 29.3 59.2 696 157 22.6 15.7 30.3 54.7 870 138 15.9 19.1 34.1 47.7 870 138 15.9 19.8 34.1 47.7 810 205 25.3 22.7 36.9 52.0 810 205 25.3 22.7 36.9 52.0 850 241 28.4 22.0 35.1 62.5 850 241 28.4 22.0 35.1 62.5 645 139 11.6 32.6 55.7 66.7 417 79 18.9 16.0 29	15th	471	119	25.5	0.6	20.0	62.0	387	73	19.1	10.1	19.9	66.4
545 180 33.0 10.0 24.0 57.5 600 168 28.0 11.2 23.8 57.8 662 144 24.2 14.8 29.3 59.2 662 144 24.2 14.8 29.3 59.2 696 157 22.6 15.7 30.3 54.7 948 165 17.5 19.1 34.1 47.7 870 138 15.9 19.8 34.1 47.7 871 205 25.3 22.0 39.6 58.1 799 345 43.2 22.7 36.9 52.0 850 241 28.4 22.9 35.8 62.1 850 241 28.4 22.0 35.1 62.5 645 139 21.5 20.7 33.1 61.8 435 80 17.8 17.6 32.6 63.7 417 79 18.9 16.0 29	Mar.1st	726	128	25.6	9.6	22.0	58.5	603	125	20.8	9.7	22.3	61.7
600 168 28.0 11.2 23.8 57.8 662 144 24.2 14.8 29.3 59.2 696 157 22.6 15.7 30.3 54.7 948 165 17.5 19.1 34.1 56.5 870 138 15.9 19.8 34.1 47.7 870 138 15.9 19.8 34.1 47.7 810 205 25.3 22.7 36.9 52.0 810 205 25.3 22.7 36.9 52.0 810 205 25.3 22.7 36.9 52.0 850 345 43.2 22.9 35.8 62.1 850 241 28.4 22.0 35.1 62.5 645 139 21.5 20.7 33.1 61.8 435 80 17.8 17.6 29.8 61.1 417 79 18.9 16.0 29	15th	545	180	33.0	10.0	24.0	57.5	427	114	27.4	11.4	24.1	58.0
662 144 24.2 14.8 29.3 59.2 696 157 22.6 15.7 30.3 54.7 948 165 17.5 19.1 34.1 56.5 870 138 15.9 19.8 34.1 47.7 810 205 25.3 22.0 39.6 58.1 810 205 25.3 22.7 36.9 52.0 1030 345 43.2 22.9 35.8 62.1 850 241 28.4 22.0 35.1 62.5 850 241 28.4 22.0 35.1 62.5 645 139 21.5 20.7 33.1 61.8 445 18.7 19.2 32.5 55.7 417 79 18.9 16.0 29.8 61.1 417 79 18.9 16.0 29.8 61.1 354 86 31.3 16.0 29.8 6	Anril 1st	009	168	28.0	11.2	23.8	57.8	481	96	20.0	13.5	27.2	59.5
696 157 22.6 15.7 30.3 54.7 948 165 17.5 19.1 34.1 56.5 870 138 15.9 19.8 34.1 47.7 870 138 15.9 19.8 34.1 47.7 810 205 25.3 22.0 39.6 58.1 799 345 43.2 22.9 35.8 62.1 799 345 43.2 22.9 35.8 62.1 850 241 28.4 22.5 35.1 62.5 850 241 28.4 22.0 35.1 62.5 645 139 21.5 20.7 33.1 61.8 667 124 18.7 19.2 32.5 55.7 417 79 18.9 16.0 29.8 61.1 417 79 18.9 16.0 29.8 61.1 356 93 34.8 11.8 60.	15 th	662	144	24.2	14.8	29.3	59.2	538	1.1	12.9	17.1	29.9	57.0
948 165 17.5 19.1 34.1 56.5 870 138 15.9 19.8 34.1 47.7 752 142 18.7 22.0 39.6 58.1 810 205 25.3 22.7 36.9 52.0 799 345 43.2 22.9 35.8 62.1 1030 306 29.8 22.5 35.1 62.5 850 241 28.4 22.5 35.1 62.0 645 139 21.5 20.7 33.1 61.8 667 124 18.7 19.2 32.5 55.7 417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.9 360 93 25.9 99 23.1 58.6	May 1st	969	157	22.6	15.7	30.3	54.7	585	48	8.0	13.5	27.2	84.6
870 138 15.9 19.8 34.1 47.7 752 142 18.7 22.0 39.6 58.1 810 205 25.3 22.7 36.9 52.0 799 345 43.2 22.9 35.8 62.1 1030 306 29.8 22.5 35.1 62.5 850 241 28.4 22.0 35.1 62.5 645 139 21.5 20.7 33.1 61.8 667 124 18.7 19.2 32.5 55.7 435 80 17.8 17.6 32.6 63.7 394 86 31.3 15.9 27.8 63.3 375 130 34.8 11.8 26.1 63.9 360 99 23.1 58.6	15th	948	165	17.5	19.1	34.1	56.5	857	42	4.6	19.4	33.0	62.2
752 142 18.7 22.0 39.6 58.1 810 205 25.3 22.7 36.9 52.0 799 345 43.2 22.9 35.8 62.1 1030 306 29.8 22.5 35.1 62.5 850 241 28.4 22.0 35.1 62.0 645 139 21.5 20.7 33.1 61.8 667 124 18.7 19.2 32.5 55.7 435 80 17.8 17.6 32.0 63.7 417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.9 360 93 25.9 99 23.1 58.6	Inne 1st	870	138	15.9	19.8	34.1	47.7	812	108	13.4	20.4	34.2	61.7
810 205 25.3 22.7 36.9 52.0 799 345 43.2 22.9 35.8 62.1 1030 306 29.8 22.5 35.1 62.5 850 241 28.4 22.0 35.1 62.0 645 139 21.5 20.7 33.1 61.8 667 124 18.7 19.2 32.5 55.7 435 80 17.8 17.6 32.5 55.7 417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.9 350 93 25.9 99 23.1 58.6	15 th	752	142	18.7	22.0	39.6	58.1	786	119	13.9	20.8	34.8	58.9
799 345 43.2 22.9 35.8 62.1 1030 306 29.8 22.5 35.1 62.5 850 241 28.4 22.0 35.1 62.0 645 139 21.5 20.7 33.1 61.8 667 124 18.7 19.2 32.5 55.7 435 80 17.8 17.6 32.5 55.7 417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.9 350 93 25.9 99 23.1 58.6	Inly, 1st	810	205	25.3	22.7	36.9	52.0	623	127	20.7	22.3	38.1	56.9
1030 306 29.8 22.5 35.1 62.5 850 241 28.4 22.0 35.1 62.0 645 139 21.5 20.7 33.1 61.8 667 124 18.7 19.2 32.5 55.7 435 80 17.8 17.6 32.0 63.7 417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.3 350 93 25.9 99 23.1 58.6	15th	799	345	43.2	22.9	35.8	62.1	647	156	24.2	23.7	38.0	57.6
850 241 28.4 22.0 35.1 62.0 645 139 21.5 20.7 33.1 61.8 667 124 18.7 19.2 32.5 55.7 435 80 17.8 17.6 32.0 63.7 417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.3 375 130 34.8 11.8 26.1 63.9 360 93 25.9 99 23.1 58.6	Aug. 1st	1030	306	29.8	22.5	35.1	62.5	914	28	30.7	24.7	39.1	58.2
645 139 21.5 20.7 33.1 61.8 667 124 18.7 19.2 32.5 55.7 435 80 17.8 17.6 32.0 63.7 417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.3 375 130 34.8 11.8 26.1 63.9 360 93 25.9 99 23.1 58.6	150	850	241	28.4	22.0	35.1	62.0	584	104	17.9	22.3	35.5	61.3
667 124 18.7 19.2 32.5 55.7 435 80 17.8 17.6 32.0 63.7 417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.3 375 130 34.8 11.8 26.1 63.9 360 93 25.9 99 23.1 58.6	Sen. 1"	645	139	21.5	20.7	33.1	61.8	324	48	15.0	23.7	38.8	55.9
435 80 17.8 17.6 32.0 63.7 417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.3 375 130 34.8 11.8 26.1 63.9 360 93 25.9 99 23.1 58.6	15th	199	124	18.7	19.2	32.5	55.7	340	33	6.6	21.3	33.9	60.3
417 79 18.9 16.0 29.8 61.1 394 86 31.3 15.9 27.8 63.3 375 130 34.8 11.8 26.1 63.9 360 93 25.9 99 23.1 58.6	Oct. 1"	435	8	17.8	17.6	32.0	63.7	168	13	8.1	21.0	34.7	57.4
394 86 31.3 15.9 27.8 63.3 375 130 34.8 11.8 26.1 63.9 360 93 25.0 99 23.1 58.6	15th	417	79	18.9	16.0	29.8	61.1	157	18	13.0	18.2	30.3	59.5
375 130 34.8 11.8 26.1 63.9 360 93 25.9 99 23.1 58.6	Nov. 1"	394	98	31.3	15.9	27.8	63.3	147	20	15.3	17.4	28.3	64.9
360 03 250 09 231 58.6	15 th	375	130	34.8	11.8	26.1	63.9	186	38	20.6	16.0	26.9	58.8
300	Dec. 1**	360	93	25.9	6.6	23.1	58.6	212	35	16.7	14.6	25.4	61.2
n 332 47	15 th	332	47	14.3	8.0	21.0	9.79	225	14	6.3	10.0	19.9	61.5

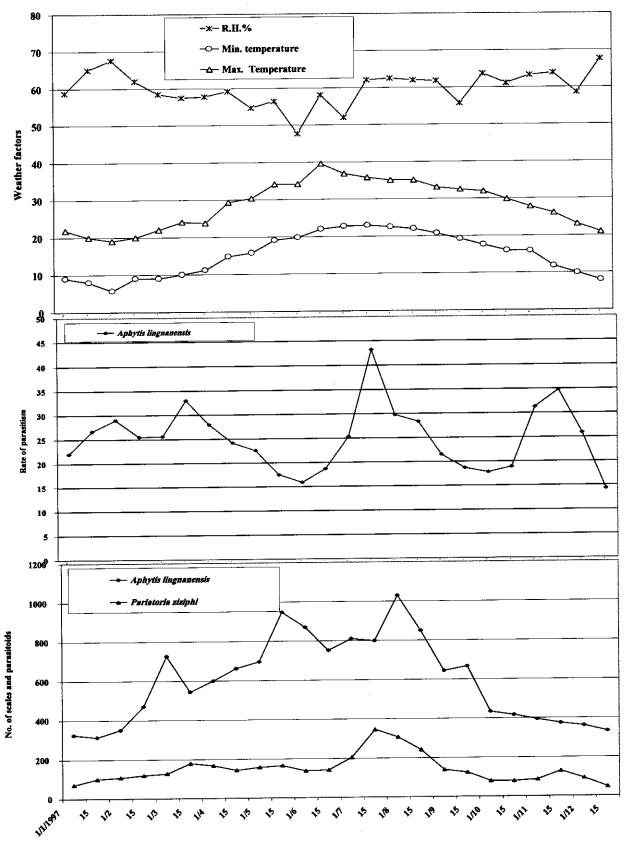


Fig. (40): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis linguanensis resulted from Parlatoria ziziphi on Citrus sp. in Giza, in relation to weather factors during 1997.

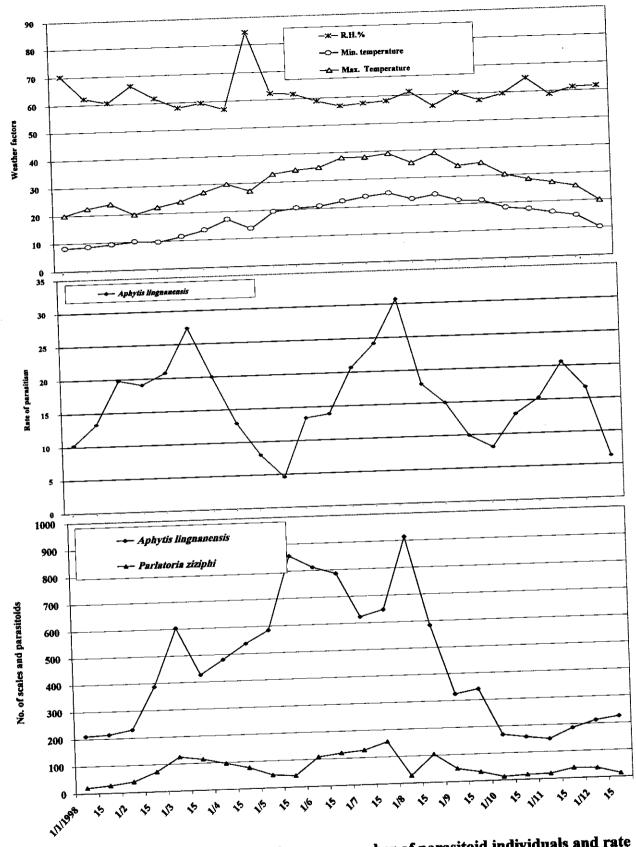


Fig. (41): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis linguanensis resulted from Parlatoria ziziphi on Citrus sp. in Giza, in relation to weather factors during 1998.

During the present work A. lingnanensis had three peaks, contradicting the results obtained by Hafez (1988) who claimed that this species showed two peaks of parasitism, one occurring in January and the other in October.

Statistical analysis indicated that during both years, the effects of D.Mx.T., D.Mn.T. and D.M.R.H. on the rates of parasitism were insignificant (Table, 23).

2.12. Aphytis melinus associated with Aonidiella aurantii on Citrus sp. in Min.ya:

The data in (Table, 24 and Fig. 42) shows that in the first year (1997) the numbers of A. melinus on A. aurantii began to increase on January 1st (at 20.3°C max., 5.9°C min. and 65% RH). The numbers then reached their first peak on February 1st (at 18.2°C max., 3.9°C min.and 59.0% RH), after which they recorded another peak on October 1st (at 31.8°C max., 19.3°C min. and 66.2% RH). The numbers of parasitoids were 192, 282and 984, respectively, with the rates of parasitism following a similar trend during these months, reaching 20.4%, 34.9% and 66.4%, respectively. In the second year (1998) (Table, 24 and Fig. 43), the numbers first began to increase on January 1st (at 18.6°C max., 6.7°C min.and 70.2% RH), reached their first peak on March 1st (at 21.1°C 59.8% RH)and recorded another peak on max., 7.6°C min. and November 1st (at 26.7°C max., 14.6°C min.and 61.0% RH). The numbers of parasitoids were 271, 450 and 1685 respectively. The rates of parasitism during these months were 15.4%, 41.3% and 56.5%, respectively. A. melinus is one of the more effective parasitoids in the

Table (23): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis Lingnanensis on Parlatoria ziziphi in Giza.

Year		e e	1997					1998		*
Daily mean weather factors	SS	ďf.	Ms	<u> </u>	ď	SS	df	Ms	<u> - </u>	P
D.MX.T.	96.354		96.354	0.938	0.3383	4.338		4.338	0.552	0.4673
D.MN. T.	56.879	·	56.879	0.572	0.4536	3.398		3.398	4.321	0.9948
D.M.R.H	32.427		32.427	0.016	8668.0	2.647	1	2.647	0.337	0.5690

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis melinus resulted from Aonidiella aurantii on Citrus sp. in Minya, in relation to weather factors during 1997 and 1998. **Table** (24):

				1007						1998		· 1
, i		Dare	Dorocitoid	Daily me	mean weather factors	r factors	•	Parasitoid	itoid	Daily mean weather factors	n weather	factors
Date of	No. of scales	1 41 4	nione		nerature		No. of scales	;	ì	Temperature	ature) DIG
samping		No.	R%	Min	Max	RH%		ó Z	K%	Min	Max	NII /0
100 P	040	103	20.4	5.0	20.3	65.0	1757	271	15.4	6.7	18.6	70.2
Jan. I	746	200	25.8	8	17.8	68.0	1663	367	22.1	5.7	21.0	61.9
15	810	280	34.9	3.9	18.2	59.0	1389	425	30.6	7.6	23.7	63.0
rep. 1	010	207	30.6	5.9	19.8	0.09	1195	436	36.4	8.1	20.3	62.5
IST TAKE	701	214	26.9	7.6	21.2	62.5	1090	450	41.3	7.6	21.1	59.8
War. I	727	167	22.3	12.2	22.0	50.3	954	377	39.5	5.9	21.9	54.0
151	643	18	15.8	11.2	22.6	44.9	573	150	27.9	6.6	26.3	53.5
April. I	OCV	3 3	14.5	16.7	29.2	49.7	736	141	19.7	13.2	28.9	51.5
13	284	3,5	6.1	17.4	31.5	47.8	879	163	16.2	18.6	39.0	47.5
INIMA, I	406	54	14.4	21.3	32.2	44.4	1291	200	15.5	18.5	34.6	49.5
III.	100	5 5	16.9	23.4	34.4	41.4	1500	166	11.1	19.2	32.2	53.0
June. 1	404	108	× 1.0	21.0	36.0	44.7	1607	132	7.4	19.9	34.5	51.0
C.	773	140	2.1.2	24.4	34.4	45.6	1683	118	7.0	21.2	37.2	50.0
July. I	369	210	33.2	24.3	35.1	50.2	1238	43	3.5	21.0	37.8	53.5
CI A	256	27.	36.0	23.8	33.0	57.0	1735	199	11.5	23.6	38.7	57.5
Aug. I	617	430	53.8	18.4	31.9	0.99	1846	468	25.4	22.0	35.2	55.2
CI St.	1138	863	553	19.5	33.8	50.0	2172	728	33.5	22.0	37.4	52.5
Sep. 1	1460	011	62.6	18.7	29.4	62.0	2358	988	37.6	18.5	32.5	58.0
- T	1683	786	66.4	19.3	31.8	66.2	2744	1215	44.3	18.4	33.5	54.5
164	1861	932	50.2	11.9	28.4	66.2	2118	1540	49.4	15.5	28.2	28.0
Mr. TH	1810	, % %	49.0	13.4	25.4	0.79	2981	1685	51.5	14.6	26.7	61.0
NOV. I	7631	729	38.0	9.6	24.4	67.5	2257	1009	44.7	12.1	28.1	58.0
11	1300	505	45.2	6.4	19.7	68.5	2123	393	18.5	10.2	23.9	57.0
Dec. 1	1285	384	2002	9.9	19.4	299	1988	504	25.4	6.5	18.2	61.5
CI	1200	5,	22.7								İ	

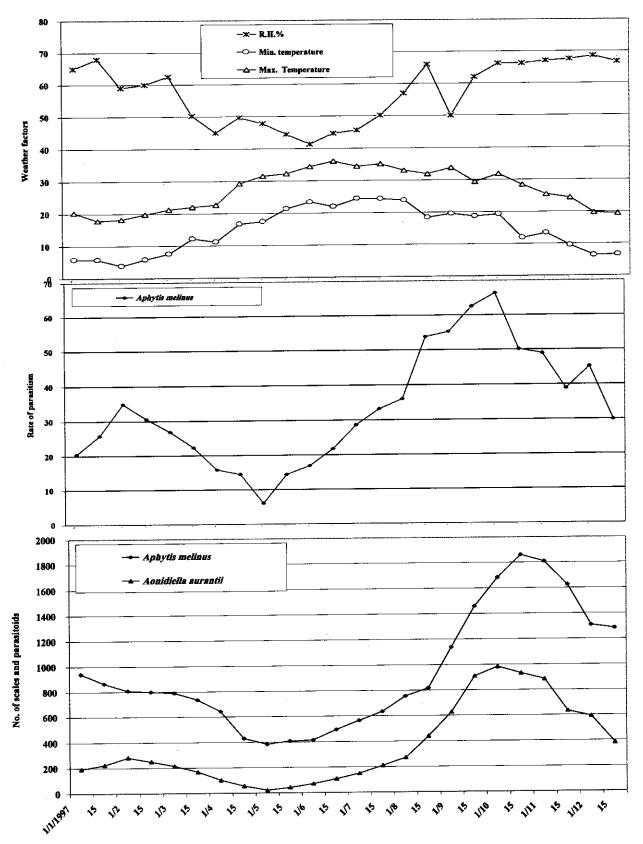


Fig. (42): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis melinus resulted from Aonidiella aurantii on Citrus sp. in Minya, in relation to weather factors during 1997.

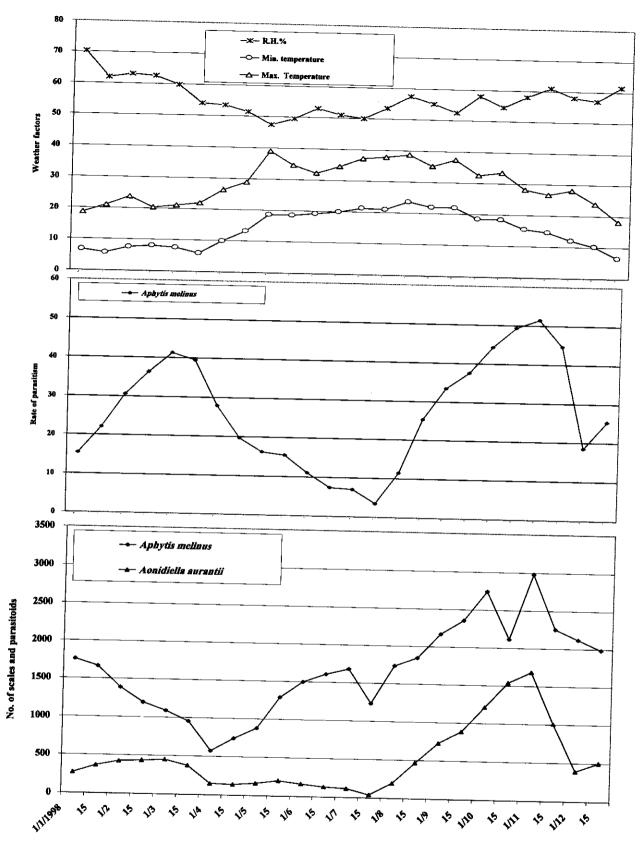


Fig. (43): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of *Aphytis melinus* resulted from *Aonidiella aurantii* on *Citrus* sp. in Minya, in relation to weather factors during 1998.

control of *A. aurantii* in different localities of the world. (DeBach and Argyiou, 1967; Murdoch *et al.*, 1995; Siscaro *et al.*, 1999; Casas-Jerome *et al.*, 2000).

Statistical analysis indicated that D.Mx.T., D.Mn.T. and D.M.R.H. were of insignificant effect on the rate of parasitism during the first year. However, in the second year, the effects of D.Mx.T. and D.M.R.H on the rate of parasitism were significant with P < 0.01 and P < 0.05, respectively ($R^2 = 0.5845$), while D.Mn.T. was insignificant (Table, 25).

2.13. Aphytis mytilaspidis associated with Parlatoria oleae on Prunus armeniaca in Qalyubiya:

Table, 26 and Figs 44, 45 shows the average parasitism rates of this species to be 30% and 18.9% during 1997 and 1998 respectively. Three peaks were recorded annually for *A. mytilaspidis*. During the first year (1997) they occurred on January 1st (at 21.7°C max., 7.9°C min. and 65.0% RH), June 15th (at 36.1°C max., 21.7°C min.and 53.8% RH)and November 1st (at 27.6°C max., 15.1°C min.and 61.0% RH), with parasitism rates being 40.3%, 37.4% and 66.0% respectively. In the second year (1998), the peaks were recorded on January 1st (at 18.0°C max., 7.1°C min.and 68.0% RH), June 15th (at 33.3°C max., 18.8°C min.and 48.0% RH)and November 1st (at 28.2°C max., 16.8°C min.and 62.5% RH) with parasitism rates of 33.8%, 25.9% and 48.7% respectively.

Rosen and DeBach (1976) stated that the parasitism rates of this species are between 67-100%. The same authors (1979) mentioned that A. mytilaspidis is recorded to be an important natural enemy of the oystershell scale, L. ulmi on apples in Nova Scotia, Canada and is quite capable of controlling heavy outbreaks of this damaging pest.

Table (25): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis melinus on Aonidiella aurantii in Minya.

Year		The state of the s	1997					1998	÷	
Daily mean weather factors	SS	df	Ms	Ħ	ď	SS	df	Ms	Ā	А
D.MX.T.	59.873		59.873	1.342	0.2509 11.327	11.327		11.327	16.913 0.0001	0.0001
D.MN. T.	59.944		59.944	3.585	0.0627	97.824	-	97.824	1.033	0.3131
D.M.R.H	6.619	₩	6.619	6.619 0.148	0.7013	93.978	-	93.978	6.273	0.0147

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis mytilaspidis resulted from Parlatoria oleae on Prunus armeniaca in Qalyubiya, in relation to weather factors during 1997 and 1998. Table (26):

		!		1997						1998		
Date of		Para	Parasitoid	Daily me	mean weather factors	r factors	A	Parasitoid	itoid	Daily mean weather factors	n weather	factors
sampling	No. of scales	;	3	Tempe	mperature	TITE!	No. of scales	1	7.00	Temperature	rature	DI10/
•		ė Ž	××	Min	Max	KH%		No.	IX 70	Min	Max	MI /0
Jan. 1st	374	151	40.3	7.9	21.7	65.0	240	81	33.8	7.1	18.0	68.0
15 th	435	123	27.8	7.0	20.0	62.0	298	- 29	19.7	7.9	19.8	60.7
Feb. 1st	517	94	18.3	5.0	18.3	0.09	254	42	16.5	8.2	21.6	63.3
15 th	476	70	14.6	8.0	20.0	55.0	223	25	11.3	7.8	19.5	65.0
Mar.1st	312	21	6.7	9.0	21.0	61.5	205	14	6.4	7.9	21.8	2.99
15 th	268	16	5.9	6.8	23.7	60.4	194	4	2.0	7.4	21.2	58.5
April. 1st	459	18	3.7	10.6	24.1	59.9	9/1	3	1.6	16.2	26.1	57.5
15 th	473	09	11.8	15.0	29.3	59.3	185	2	1.1	13.5	28.5	56.0
May. 1 st	545	127	23.2	14.9	31.1	60.1	210	01	4.7	18.2	34.5	53.5
15 th	406	208	29.4	19.0	34.5	55.5	239	23	9.6	17.7	32.1	58.0
June. 1st	731	257	35.2	19.5	34.4	56.0	248	42	16.7	18.4	34.1	55.0
15th	833	311	37.4	21.7	36.1	53.9	370	96	25.9	18.8	33.3	63.0
July, 1st	467	136	28.7	22.1	36.0	56.2	390	85	23.5	21.3	35.9	58.5
15 th	409	88	19.5	22.3	35.3	64.1	349	73	20.8	21.3	35.9	58.5
Aug. 1st	378	206	14.5	22.4	34.5	61.5	323	54	16.9	24.5	37.7	61.8
15 th	909	61	12.0	21.6	33.8	605	285	31	8.01	22.7	34.6	64.8
Sep. 1st	693	182	23.5	20.6	32.9	59.3	294	35	6'11	21.5	37.0	56.5
15 th	558	197	36.4	18.5	31.7	58.3	316	81	25.6	18.4	33.6	56.8
Oct. 1"	491	230	47.0	0.71	30.9	9.65	340	114	33.5	19.0	33.8	57.0
15 th	470	251	53.4	15.3	29.3	61.8	361	152	40.8	17.5	28.5	59.0
Nov. 1 st	644	209	0.99	15.1	27.6	61.0	419	191	48.7	16.8	28.2	62.5
15 th	1046	425	58.0	11.0	25.4	67.2	436	133	30.4	16.2	25.6	0.09
Dec. 1st	857	436	51.0	10.1	23.7	62.7	319	98	27.0	14.7	26.7	58.5
15 th	268	314	55.4	7.4	20.8	69.3	303	45	14.8	9.7	20.9	57.5

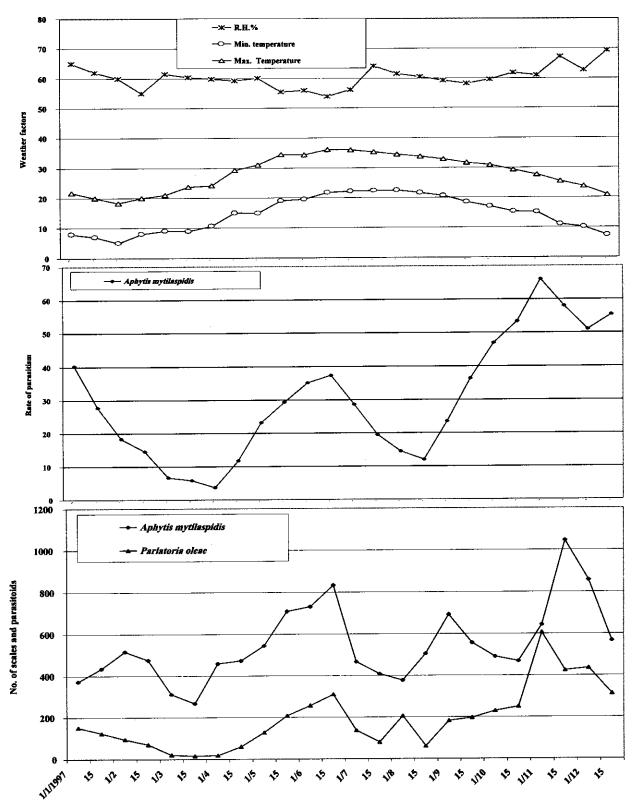


Fig. (44): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis mytilaspidis resulted from Parlatoria oleae on Prunus armeniaca in Qalyubiya, in relation to weather factors during 1997.

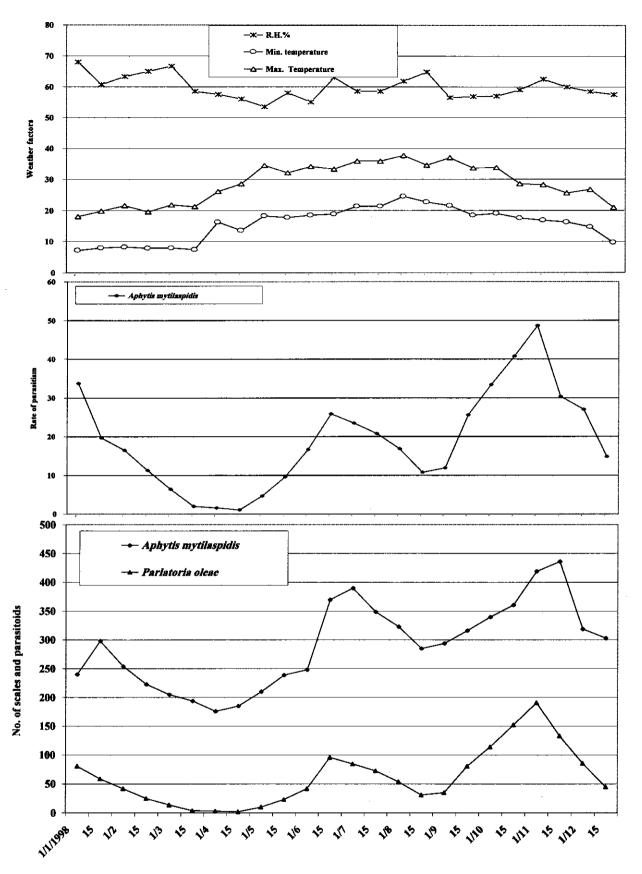


Fig. (45): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis mytilaspidis resulted from Parlatoria oleae on Prunus armeniaca in Qalyubiya, in relation to weather factors during 1998.

Statistical analysis indicated that during both years, the effects of D.Mx.T., D.Mn.T. and D.M.R.H. on the rates of parasitism were insignificant (Table, 27).

2.14. Aphytis opuntiae associated with Aonidiella aurantii on Psidium guajava in Alexandria:

During both the first and second years of the present work, A. opuntiae was absent from April 1st (at 19.1°C max., 9.8°C min.and 62.2% RH) to July 15th (at 30.6°C max., 24.4°C min.and 66.4% RH).

In 1997 (Table, 28 and Fig. 46), two peaks were recorded, the first peak of parasitism being 3.4% recorded on January 1st (at 19.8°C max., 8.8°C min.and 71.6% RH). After this peak, the percentage of parasitism declined gradually to reach 0.2% on August 1st (at 30.0°C max., 23.5°C min.and 68.4% RH). The second peak was 7.1%, recorded on December 1st (at 22.0°C max., 9.7°C min.and 62.1% RH).

During 1998 (Table, 28 and Fig. 47), the peak of parasitism was estimated at 7.1% and occurred on January1st (at 18.6°C max., 8.9°C min.and 73.6% RH). The rate of parasitism then declined sharply after this peak to reach 0.9% on August 1st (at 32.1°C max., 26.1°C min.and 76.0% RH). Parasitoid activity was observed gradually increased to reach its highest peak of 9.8% on December 15th (at 18.8°C max., 9.6°C min.and 72.0% RH).

These results indicated that this species of genus *Aphytis* is rarely present in Egypt, its average parasitism rates being 1.9% and 2.6% during 1997 and 1998, respectively.

Statistical analysis indicated that D.Mx.T., D.Mn.T. and D.M.R.H. were of insignificant effect on the rate of parasitism during the first year.

Table (27): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis mytilaspidis on Prunnus armeniaca in Qalyubiya.

Year			1997					1998		7
Daily mean	SS	df	Ms	Ţ	A .	SS	df	Ms	<u> </u>	P
weather factors		•								
D.MX.T.	43.604	-	43.604	2.098	2.098 0.1522	40.548		40.548 1.261 0.2656	1.261	0.2656
D.MN. T.	39.839		39.839	1.917	0.1708	68.627		68.627 2.134	2.134	0.1488
D.M.R.H	15.012		15.012	0.722	0.3895 9.665	9.665	· .	9.665	0.301	0.5854

Table (28): Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis opuntiae resulted from Aonidiella aurantii on Psidium guajava in Alexandria, in relation to weather factors during 1997 and 1998.

				1997	į					1998		
Date of	M	Para	Parasitoid	Daily me	nean weather factors	r factors	Me of socion	Parasitoid	itoid	Daily mea	Daily mean weather factors	factors
sampling	No. of scales	1	, o C	Tempe	perature	nii.	IVO. OI SCAICS	M	79%	Temperature	rature	DII.
1		OZ	K %	Min	Max	КП.%		70.	K70	Min	Max	WII /0
Jan. 1"	1233	42	3.4	8.8	19.8	71.6	1139	08	7.1	6.8	18.6	73.6
15 th	1415	10	2.0	10.0	18.0	0.89	1685	107	6.4	7.8	19.4	71.4
Feb. 1 st	1560	15	6.0	7.2	16.0	68.4	1833	52	2.9	9.4	8.61	75.5
15 th	2025	11	0.5	11.1	18.4	63.2	1952	34	2.3	9.2	18.0	65.7
Mar.1 st	1926	∞	9.4	8.01	19.3	63.8	2134	61	1.6	9.4	20.2	71.0
15 th	2159	3	0.2	9.6	19.4	61.6	2365	26	1.3	6.7	19.3	0.09
April. 18t	2927	•	•	8.6	19.1	62.2	2741	-	-	8.6	22.9	64.0
15 th	3161	•	•	13.7	24.3	66.5	2897	ŀ	-	14.3	24.1	64.0
May. 1st	3430	•	١.	13.7	26.3	63.5	2538	•	-	17.2	27.7	63.6
15 th	3217			17.8	27.6	70.4	2153		-	17.6	26.3	67.0
June. 1"	2968	•	1	18.5	29.1	65.0	1826	•	-	19.6	27.3	72.0
15 th	2742	-	1	22.5	30.9	68.1	1652	1	-	15.8	29.8	64.0
July. 1st	2527	_		23.3	30.1	72.2	1571	,	•	22.4	30.5	68.0
15th	1140	-		24.4	30.6	66.4	1285	•	•	23.2	31.1	74.0
Aug. 1"	920	2	0.2	23.5	30.0	68.8	1071	10	6.0	26.1	32.1	76.0
15 th	931	9	9.0	23.7	29.8	64.6	626	12	1.2	25.5	31.4	70.0
Sep. 1st	1154	8	0.5	22.3	28.9	9.77	892	13	2.0	24.6	32.7	64.0
15 th	1323	19	1.5	17.9	27.6	88.0	1023	15	1.4	20.7	29.3	59.0
Oct. 1"	1496	65	4.2	18.6	27.9	66.5	1188	24	2.0	6.61	29.7	66.0
15 th	1663	88	5.3	16.0	26.7	63.8	1940	89	3.5	16.9	26.7	65.0
Nov. 1"	1738	109	6.1	15.1	24.6	73.5	2148	901	5.0	15.4	25.8	70.0
15th	1817	126	7.0	11.8	23.4	73.3	2335	173	7.5	13.4	23.8	70.0
Dec. 1"	1488	105	7.1	6.7	22.0	62.1	2103	187	8.9	13.5	22.8	69.0
15 th	1501	68	0.9	17.1	9.61	74.4	1954	190	8.6	9.6	18.8	72.0

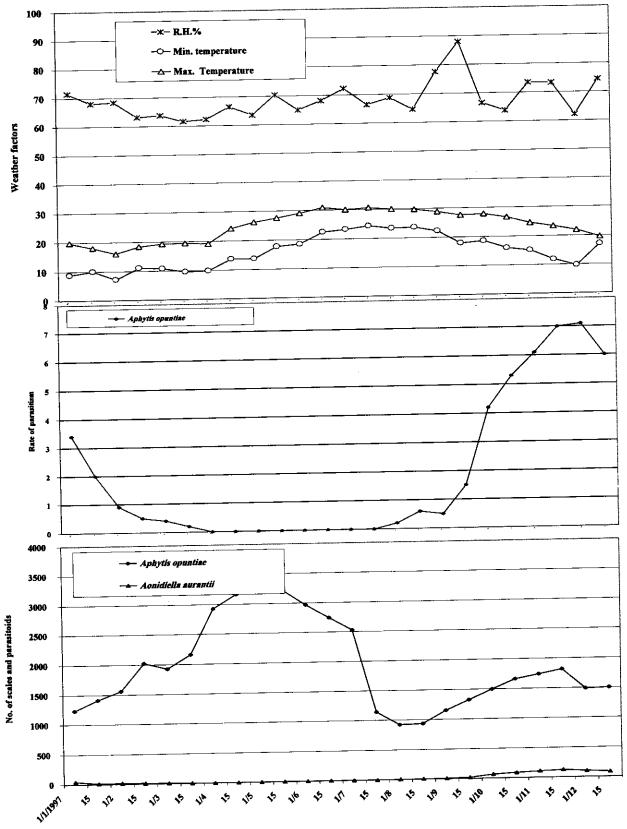


Fig. (46): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis opuntiae resulted from Aonidiella aurantii on Psidium guajava in Alexandria, in relation to weather factors during 1997.

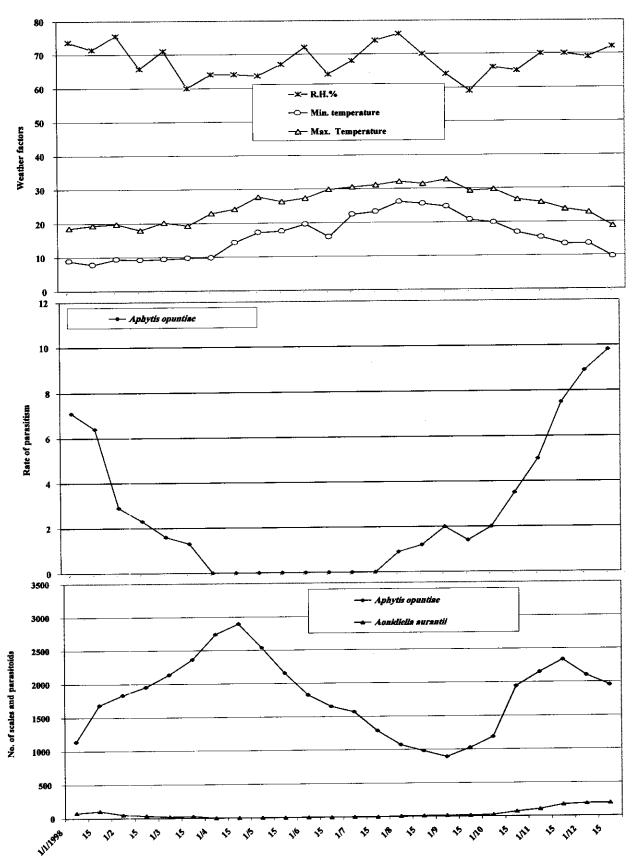


Fig. (47): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis opuntiae resulted from Aonidiella aurantii on Psidium guajava in Alexandria, in relation to weather factors during 1998.

However, in the second year, the effect of D.Mx.T. on the rate of parasitism was highly significant ($R^2 = 0.9586$, P < 0.01), while those of D.Mn.T. and D.M.R.H. were insignificant (Table, 29).

2.15. Aphytis paramaculicornis associated with Parlatoria oleae on Olea sp. in the Northern Coast:

An abundance of *A. paramaculicornis* was recorded during the two successive years of this work. In 1999 (Table, 30 and Fig. 48), two peaks were recorded. The first peak of parasitism was 57.0% on May 15th (at 26.2°C max., 17.7°C min.and 68.0% RH), after which the parasitism rate declined gradually to reach 7.7% on September 15th (at 28.4°C max., 20.1°C min.and 73.0% RH). The second peak was 21.7%, recorded on November 15th (at 22.1°C max., 13.1°C min.and 65.0% RH).

During 2000 (Table, 30 and Fig. 49), the peak rate of parasitism was estimated at 38.7% and occurred on May 15th (at 26.6°C max., 17.3°C min.and 73.6% RH). After this peak, the parasitism rate declined sharply to reach 1.1% on September 15t^h (at 28.2°C max., 21.2°C min.and 72.1% RH). The second peak was 15.2% recorded on November 15th (at 20.8°C max., 13.4°C min.and 63.5% RH).

This species is an important parasitoid in the control of the olive scale, *P. oleae* on olive trees. (Doutt, 1954; Huffaker *et al.*, 1962; Rosen and DeBach, 1979)

Statistical analysis indicated that during both years, the effects of D.Mx.T., D.Mn.T. and D.M.R.H. on the rates of parasitism were insignificant (Table, 31).

Table (29): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis opuntiae on Aonidiella aurantii in Alexandria.

Year			1997				,	1998		,
Daily mean weather factors	SS	df	Ms	Ħ	D '	SS	df	Ms	[Д
D.MX.T.	0.140		0.140	1.454	0.2326 10.439	10.439		10.439	10.439 23.997 0.0001	0.0001
D.MN. T.	0.069	—	690.0	0.725	0.3980	0.844		0.844	1.941	0.1682
D.M.R.H	0.001	-	0.001	0.012	0.9115	0.049	* i	0.049	0.049 0.113 0.7374	0.7374

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis paramaculicornis resulted from Parlatoria oleae on olea sp. in Northern Coast, in relation to weather factors during 1999 and 2000. Table (30):

				1999						2000		
Dote of		Para	Parasitoid	Daily me	mean weather factors	r factors	•	Parasitoid	itoid	Daily mean weather factors	n weather	factors
campling	No. of scales			Tempe	perature		No. of scales	7	700.	Temperature	ature	DITO/
		ģ	% %	Min	Max	KH%		S	K%	Min	Max	MI /0
Ian 16t	968	283	31.6	10.5	18.3	73.0	800	150	18.8	10.4	15.5	72.0
15th	835	248	29.7	10.7	18.9	63.0	795	133	16.7	8.6	16.2	72.0
Feb. 1st	689	237	34.4	8.7	18.9	65.0	545	131	24.5	10.1	17.1	70.0
15th	773	291	37.6	8.7	19.4	59.0	579	164	28.3	8.6	15.9	64.0
Mar.1st	985	432	43.4	10.2	19.7	7.79	832	211	25.4	9.1	17.4	9.29
15th	1053	384	36.5	11.7	21.0	57.7	847	196	23.2	10.7	20.3	66.2
Anril 1st	1138	505	45.1	11.6	20.6	61.0	853	254	29.8	13.9	25.7	54.9
154	1384	658	47.6	13.8	23.0	71.0	1011	410	40.1	12.8	21.8	74.5
May 1st	1533	831	54.2	16.8	25.9	58.0	1302	479	36.8	14.8	23.1	73.8
15th	1621	924	57.0	17.7	26.2	68.0	1385	535	38.7	17.3	26.6	73.6
June 1st	1596	792	49.6	19.3	27.7	70.0	1312	384	31.7	17.0	26.3	70.0
150	866	463	46.5	21.3	27.8	75.0	921	256	27.8	20.4	27.3	75.0
Inly, 1st	799	234	29.2	21.1	29.9	71.0	730	691	23.2	18.7	29.9	71.0
15 th	738	160	21.7	22.8	29.2	71.0	904	191	17.8	22.2	29.2	70.3
Aug. 1st	815	159	19.0	23.0	30.1	71.0	1103	76	7.0	23.0	29.2	70.3
15 th	1018	144	14.2	22.8	30.2	72.0	1428	49	3.4	23.0	29.3	72.0
Sep. 1st	1227	156	12.6	21.9	29.2	71.0	1715	38	2.3	21.9	29.2	71.0
15th	1909	147	7.7	20.1	28.4	73.0	1817	19	1.1	21.2	28.2	72.1
Oct 1#	2061	203	8.6	19.4	28.1	74.7	1922	90	4.6	19.4	28.1	73.9
150	2252	254	11.3	16.7	23.8	62.3	2019	157	7.8	16.7	23.8	62.3
Nov. 1 st	3130	452	14.9	14.1	22.0	64.0	1812	175	9.7	14.1	22.0	64.0
-15th	2876	623	21.7	13.1	22.1	65.0	1338	213	15.2	13.4	20.8	63.5
Dec. 1*	2915	582	20.0	11.5	20.6	63.3	935	129	13.8	11.5	19.6	63.3
150	2347	347	14.8	9.6	17.5	62.0	816	173	11.3	9.0	17.5	62.0

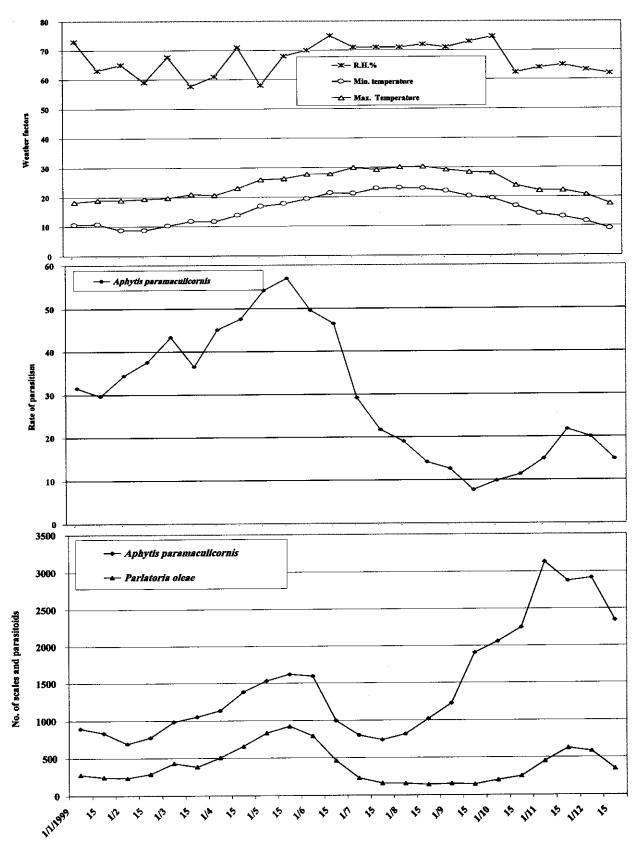


Fig. (48): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis paramaculicornis resulted from Parlatoria oleae on olea sp. in Northern Coast, in relation to weather factors during 1999.

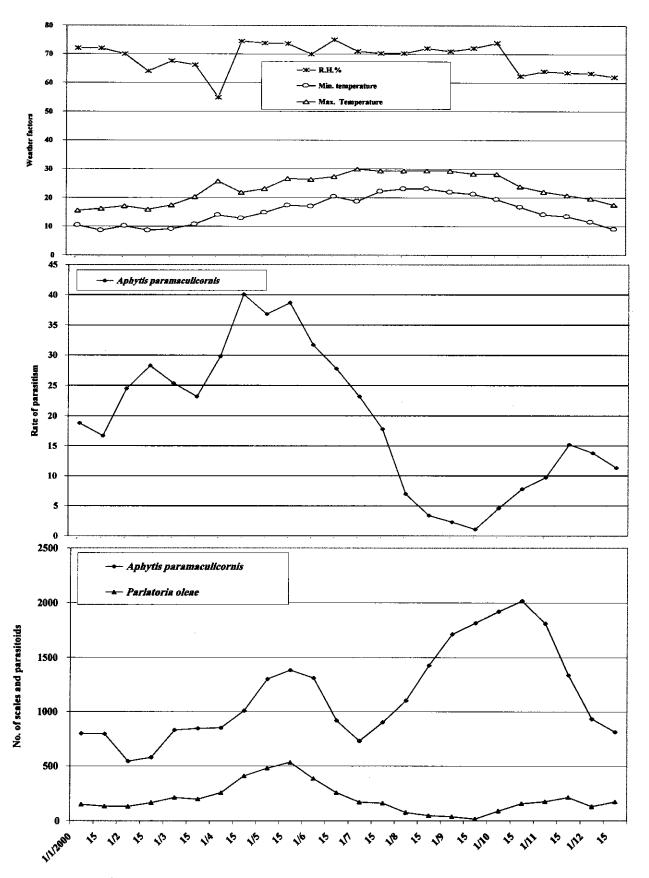


Fig. (49): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis paramaculicornis resulted from Parlatoria oleae on olea sp. in Northern Coast, in relation to weather factors during 2000.

Table (31): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis paramaculicornis on Parlatoria oleae in Northern Coast.

	-							1998		
Vear			1997				ì			
									,	
Daily mean	SS	df	Ms	Ĭ¥	ď	SS	df	Ms	-	<u> </u>
weather factors										0000
					7000	20 244	-	38.344	0.927	0.3392
D MV T	335.45		335.45	3.652	0.0604 38.344	50.544	4			
D.M.A.					0	2000	_	3 096	0.075	0.7853
TWAG	894.22		894.22	926.0	0.3268	3.090	-			
DIVIN I.					(1000	,	2,397	0.058	0.8105
DWRH	122.35		122.35		1.334 0.2522	7.597	→			
Different										

2.16. Aphytis philippinensis associated with Chrysomphalus aonidum on Jasminum sp. in Alexandria:

Rates of parasitism by this species during the two seasons were very low (Table, 32 and Figs 50, 51). Only one female was collected on January 1st (at 21.8°C max., 9.0°C min.and 58.8% RH), ten females were collected on December 1st (at 23.1°C max., 9.9°C min.and 58.6% RH)and seven on December 15th (at 21.0°C max., 8.0°C, min.and 67.6% RH) respectively. In 1998, seven females were collected on December 1st (at 25.4°C max., 14.6°C min.and 61.2% RH) and three on December 15th (at 19.9°C max., 10.0°C min.and 61.5% RH).

These results indicated that this species of genus *Aphytis* is rarely present in Egypt, its average parasitism rates being 0.1% and 0.2% during 1997 and 1998, respectively.

2.17. Aphytis phoenicis associated with Parlatoria blanchardi on Phoenix dactylifera in Ismailia:

In the first year (1999) (Table, 33 and Fig. 52), the numbers of *A. phoenicis* that attacked *P. blanchardi* on *P. dactylifera* began to increase on January 1st (at 20.4°C max., 8.4°C min.and 74.0% RH) and recorded the first peak on February 1st (at 20.5°C max., 7.7°C min.and 67.0% RH). Another peak occurred on October 1st (at 31.3°C max., 18.4°C min.and 64.5% RH). The numbers of parasitoids were 35, 42 and 38, respectively. The rate of parasitism recorded the first peak of 17.5% on February 15th (at 19.9°C max., 7.6°C min.and 67.0% RH), after which it decreased, then increased once more to record a second peak of 20.4% on August 1st (at 35.6°C max., 22.8°C min.and 61.4% RH).

Number scale, number of parasitoid individuals and rate of parasitism (R%) of Aphytis philippinensis resulted from Chrysomphalus aonidium on Jasminum sp. in Giza, in relation to weather factors during 1997 and 1998. Table (32):

						- - 				1000	ļ	
				1997						1770		
	•	6		Doile, m.	moon weather factors	rfactors	•	Parasitoid	itoid	Daily mean weather factors	n weather	factors
Date of	No of scales	rara	Farasitoid		all weather		No. of scales			Temperature	ature	DII0
sampling	20.01	Z	%	1 emp	1 emperature	RH%		ŝ	K%	Min	Max	
		3		Min	Max					8.7	20.0	70.3
136	301	_	0.5	9.6	21.8	58.8	391	'	•	7:0	22.5	62.2
Jan. I	301			8.0	20.0	65.0	441	1	•	0.0	22.0	7 69
	076		,	5.7	19.0	67.5	482	'	•	5.6	6.5.2	2.33
Feb. 1".	418	ı	•	. 0	20.0	62.0	558	1	•	10.1	9.61	4.00
15°	585	•	•	0.0	20.02	58.5	069	ı	,	6.7	22.3	61.7
Mar.1st	778	'	•	0.6	0.42	57.5	707	,		11.4	24.1	58.0
15th	836	'	•	0.01	0.4.0	0.10	\$78	'	•	13.5	27.2	59.0
April, 1st	688	1	•	11.2	23.8	0.70	588		•	17.1	29.9	57.0
15th	920	ı	•	14.8	29.3	2.60	000			13.5	27.2	84.6
36 486	180	,	1	15.7	30.3	54.7	776	•	,	701	33.0	62.2
May. I	1410	,		19.1	34.1	56.5	1004		•	4.60	2.5.6	61.7
SI .	1417	,	•	19.8	34.1	47.7	1095	'		4.02	7.4.0	2007
June. I.	1602	I		22.0	39.6	58.1	1317		•	20.8	0.4.0	20.5
15m	1614	ı	•	2,45	36.0	52.0	1380	'	•	22.3	38.1	26.9
July. 1st	1283		1	77.7	35.0	65.1	1504	ı	1	23.7	38.0	57.6
15th	1104	1	1	22.9	0.7.0	7 2	1308	,	•	24.7	39.8	58.2
Aug. 1st	893	1	,	22.5	1.00	05.0	1176	'	•	22.3	35.5	61.3
15th	838	1	•	22.0	35.1	0.70	070	•	•	23.7	38.8	55.9
i Les	675	ı	•	20.7	33.1	8.10	6/0	; 1		21.3	33.9	60.3
14th	649		'	19.2	32.5	25.7	/00	ı		210	34.7	57.4
3 1 1	700	•	ı	17.6	32.0	63.7	86/	•		10.7	303	59.5
130 130	027	,	•	16.0	29.8	61.1	713			10.5	26.5	0 79
	1000	,	•	15.9	27.8	63.3	787	1	•	17.4	26.0	8 8 8
Nov. 1	1107		1		26.1	63.9	1099	•	. ,	19.0	26.9	61.5
	1161	. =	4	6.6	23.1	58.6	1126	7	3.3	14.6	10.0	210
Dec. 1	606	-	00	0.8	21.0	9'.29	984	3	63	10.0	19.3	01:3
15	600		<u>,</u>	;								

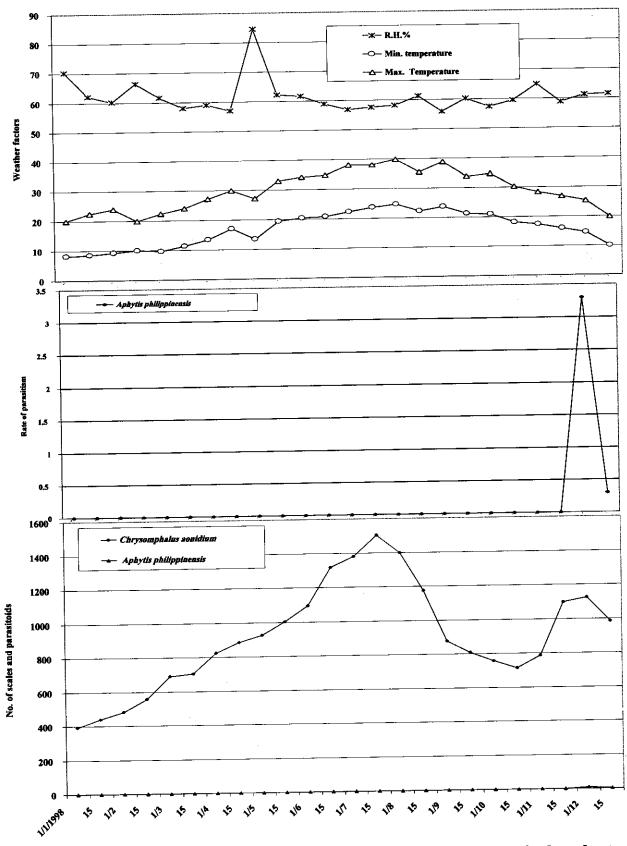


Fig. (51): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis philippinensis resulted from Chrysomphalus aonidium on Jasminum sp. in Giza in relation to weather factors during 1998.

Number of scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis phoenicis resulted from Parlatoria blanchardi on Phoenix dactylifera in Ismailia, in relation to weather factors during 1999 and 2000. Table (33):

	-							2000		
Parasitoid	Ď	Daily mean	mean weather factors	factors	No of solar	Parasitoid	itoid	Daily mea	Daily mean weather factors	factors.
No Dec	1	Temperature	ture	рпо/	Ivo. of scales	Ž	796	Temperature	rature	D110/
		Min I	Max	%EY		0 V	% %	Min	Max	% E
	"	8.4	20.4	74.0	961	7	4.5	10.3	18.4	0'69
			21.4	62.0	225	17	9.7	7.2	17.5	65.0
	• -	7.7	20.5	0.79	287	30	11.2	8.0	18.6	0.69
36 17.5	• -	7.6	19.9	0.79	309	47	13.9	7.3	19.3	65.0
	_	10.5	23.9	66.5	322	23	7.3	9.9	19.1	9.79
	_	12.5	35.3	51.2	354	21	0.9	10.5	22.5	64.1
30 15.3	_		25.7	50.0	299	7	2.3	13.3	28.7	53.0
	_		28.9	58.0	278	9	1.9	14.6	28.3	60.7
15 7.0	_		32.2	54.0	235	m	1.3	15.7	29.3	55.9
8 4.6	_		32.4	56.0	209	٧	1.5	17.6	32.3	46.8
	$\overline{}$		34.2	53.0	185	9	3.2	19.7	32.4	57.0
11 6.8	N		34.2	62.0	167	6	5.3	20.4	34.3	56.0
13.6	\sim		35.3	61.0	140	13	9.2	21.8	36.9	53.4
25 19.0	2		34.6	0.09	128	17	13.1	22.8	36.6	52.2
	4		35.6	61.4	136	24	17.9	22.5	34.4	61.6
	(1		35.3	59.0	162	79	18.5	23.0	34.3	64.5
25 18.5	-		33.5	62.1	198	25	15.3	21.6	34.4	0.09
	7		33.8	65.0	251	24	10.0	19.6	32.0	63.0
38 13.8	_		31.3	64.5	280	6	3.3	13.7	31.8	66.3
25 8.7	_		29.5	70.4	283	12	2.7	14.2	24.8	6.99
34 9.6	-		27.2	64.0	359	6	1.6	13.5	26.1	0.09
23 6.2	_	6.11	24.6	59.0	347	∞	2.4	12.0	23.4	58.0
31 8.9			21.4	62.8	312	=	3.6	8.0	20.5	61.0
36 10.7	٠,	9.3	21.1	67.8	285	24	8.5	9.0	20.3	65.3

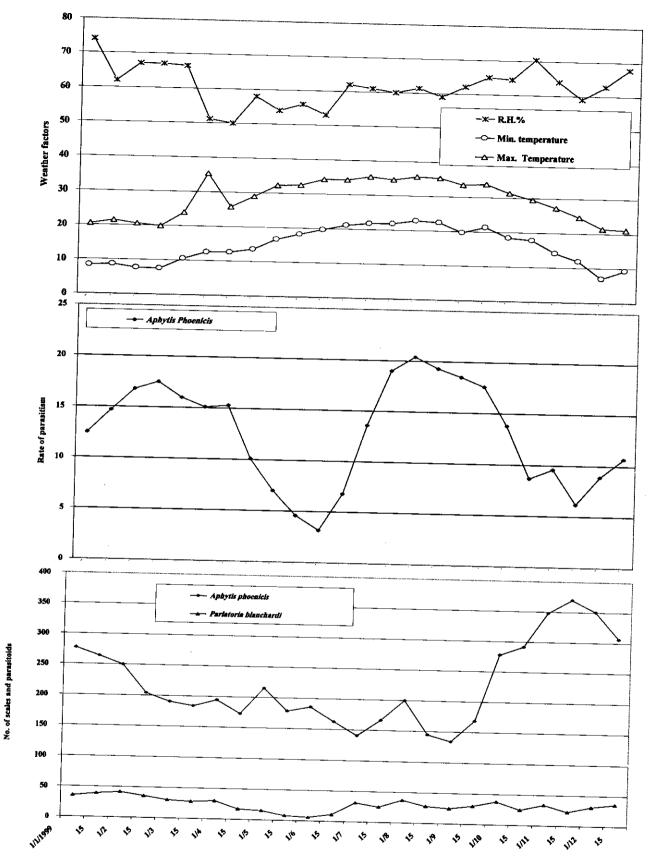


Fig. (52): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis phoenicis resulted from Parlatoria blanchardi on Phoenix dactylifera in Ismailia, in relation to weather factors during 1999.

During the second year (2000) (Table, 33 and Fig. 53), the numbers of parasitoids began to increase on January 1st (at 18.4°C max., 10.3°C min. and 69.0% RH), then recorded their highest peak on February 15th (at 19.3°C max., 7.3°C min. and 65.0% RH) and reached another peak on August 15th (at 34.3°C max., 23.0°C min. and 64.5% RH). The numbers of parasitoids were 7, 47 and 26 respectively. The rate of parasitism recorded the first peak of 13.9% on February 15th, after which it decreased, then increased again to record a second peak of 18.5% on August 15th. The parasitism rates reached max.ima of 20.4% and 18.5% during 1999 and 2000, respectively. This species is quite an important parasitoid species of genus *Aphytis* that attacks *P. blanchardi*.

Statistical analysis indicated that D.Mx.T., D.Mn.T. and D.M.R.H. were of insignificant effect on the rate of parasitism during the first year. In the second year, the effects of D.Mx.T. and D.Mn.T. were highly significant ($R^2 = 0.9218$, P < 0.01), while D.M.R.H. did not show any significant effect on the rate of parasitism (Table, 34).

2.18. Aphytis vandenboshi associated with Aspidiotus nerii on Oleander sp. in Qalyubiya:

Rates of parasitism by this species during the two seasons were very low. Only five females were recorded during the first yearand only seven in the second year (Table, 35 and Figs 54, 55).

These results indicate that this species is not an effective parasitoid of the genus *Aphytis* in Egypt.

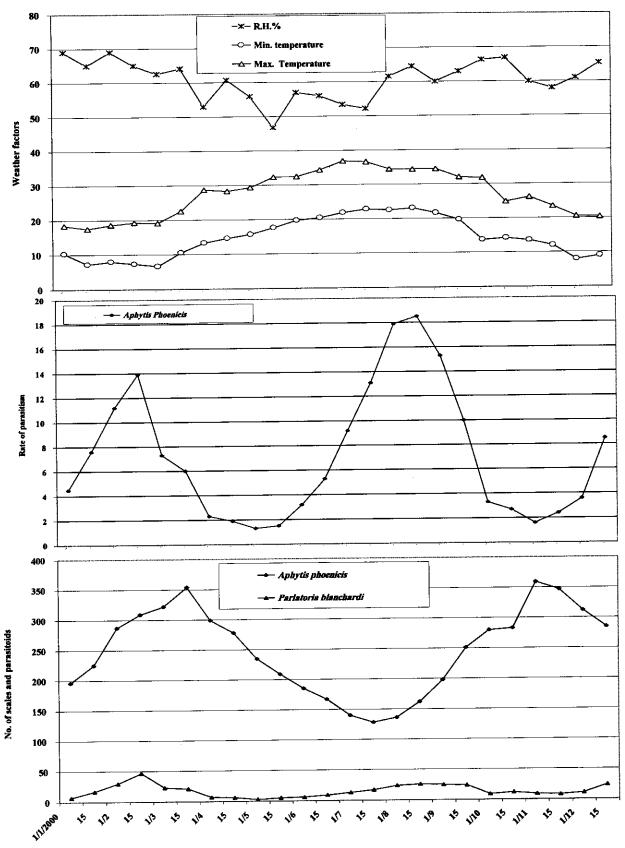


Fig. (53): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis phoenicis resulted from Parlatoria blanchardi on Phoenix dactylifera in Ismailia, in relation to weather factors during 2000.

Table (34): Multiple regression values indicating the effect of weather factors on the percent parasitism of Aphytis paramaculicornis on Parlatoria oleae in Northern Coast.

Year	,		1997					1998	:	
Daily mean weather factors	SS	df	Ms	H	Ь	SS	đ	Ms	[<u>a</u>
D.MX.T.	0.689	1	0.689	0.170	0.170 0.6811 16.729	16.729		16.729	16.729 8.125	0.0058
D.MN. T.	1.109	,	1.109	0.274	0.274 0.6022 29.221	29.221		29.221	14.191 0.0004	0.0004
D.M.R.H	1.079		1.079	0.267	0.267 0.6072 3.183	3.183		3.183	1.546	1.546 0.2182

Number scales, number of parasitoid individuals and rate of parasitism (R%) of Aphytis vandenboshi resulted from Aspidiotus nerii on Oleander sp in Qalyubiya, in relation to weather factors during 1997 and 1998. **Table (35):**

										1998		
				199/					1,17	Doile mon	n woother	factors
Date of	,	Para	Parasitoid	Daily me	mean weather factors	r factors	No of scales	Parasitoid	11010	Dally mean weather factors	II WEALIICI	Idelors
somuling	No. of scales			Temp	nperature	DITTO/	110. 01 304103	Z	% 8	Temperature	ature	RH%
Samdinise		Š	R%	Min	Max	KH%		5		Min	Max	
1	717	-	7.0	7.0	21.7	65.0	110	-	6.0	7.1	18.0	68.0
Jan. 1"	140	- () (0 09	181	ı	•	7.9	19.8	60.7
15#	154	0		0.7	20.0	07.0	208	•	•	8.2	21.6	63.3
Feb. 1**	170	0	ı	5.0	18.3	00.0	208	,	•	7.8	19.5	65.0
15th	177	0	•	0.8	20.0	55.0	127	,		7.0	21.8	2.99
Mar.1st	196	0	•	0.6	21.0	61.5	767		•		21.5	58.5
15th	208	0	•	6.8	23.7	60.4	$\frac{310}{1}$	'		t / .	21.2	57.5
18t 1im 4	27.1	· c	1	10.6	24.1	59.9	298	ı	•	7.01	20.1	C.1C
April. I	233		1	15.0	29.3	59.3	285	,	•	13.5	28.5	20.0
CI	257	_	ı	14.0	31.1	60.1	260	•	,	18.2	34.5	55.5
May. 1.	213	- c	1 1	19.0	34.5	55.5	254		•	17.7	32.1	58.0
15.	C07	_	1	10.5	344	56.0	244	ı	•	18.4	34.1	55.0
June. 1"	188	_	·	 	36.1	53.9	239	•	•	18.8	33.3	63.0
15"	661	- c	1	22.7	36.0	562	224	,	,	21.3	35.9	58.5
July. 1"	163	-	<u>'</u>	1.22.	26.0	54 1	210	•		21.3	35.9	58.5
154	142	-		22.3	33.3	7 7	235	•	•	24.5	37.7	61.8
Aug. 1st	194	o ·		4.77	.4.0	5.10	960		•	22.7	34.6	64.8
154	198	• —	•	21.0	55.0	500	330	•	1	21.5	37.0	56.5
Sep. 1st	235	0	,	20.6	32.9	2,4,5	200	ı !		18.4	33.6	56.8
15th	314	<u> </u>		18.5	31.7	20.5	100			19.0	33.8	57.0
Oct. 1"	328	<u> </u>	•	17.0	30.9	0.60	107	· -	2	17.5	28.5	59.0
45×1	304	0	•	15.3	29.3	61.8	9/7	- ¢	7.0	0.71	28.5	5 09
No. 18	215	0	•	15.1	27.6	61.0	233	7	, c	10.0	7.07	6.20
1.001.	180	5	1:1	11.0	25.4	67.2	201	_	0.5	10.7	22.0	200
, T	168		9'0	10.1	23.7	62.7	182		0.6	14.7	7.07	20.5
	201	-	0.7	7.4	20.8	69.3	193	1	0.5	9.7	20.3	57.5
E.C.I	101	4	,						ı			

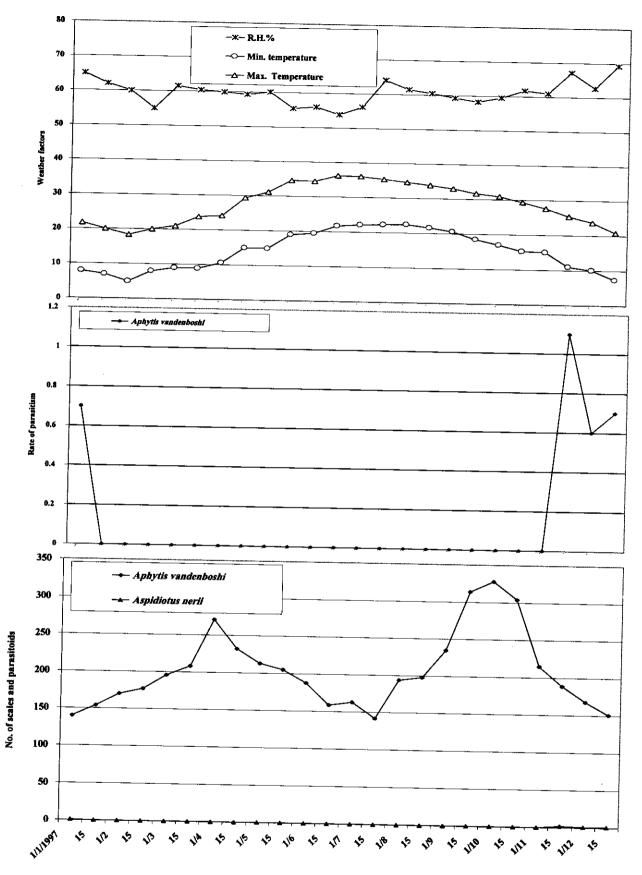


Fig. (54): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis vandenboshi resulted from Aspidiotus nerii on Oleander sp in Qalyubiya, in relation to weather factors during 1997.

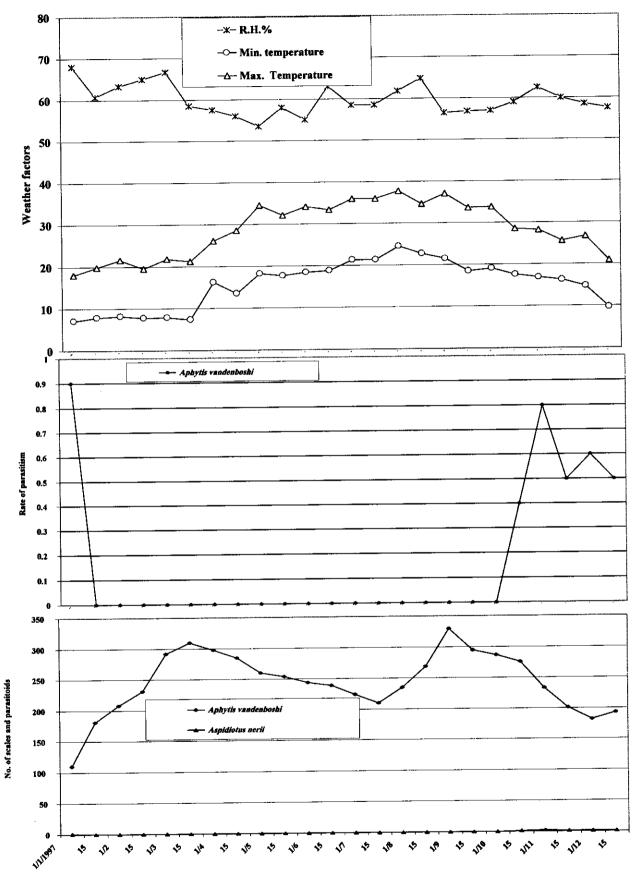


Fig. (55): Number of scale stages, number of parasitoid individuals and rate of parasitism (R%) of Aphytis vandenboshi resulted from Aspidiotus nerii on Oleander sp in Qalyubiya, in relation to weather factors during 1998.