List Of Contents

List of contents	
Item	No of page
List Of Contents.	I
Abbreviations	II-III-IV
List of tables	V-VI
List of figures	VII-VIII
Introduction	1
aim of the work	3
Review of literature:	
☐ <i>Chapter</i> 1: Chronic Obstructive	4
Pulmonary Disease	
☐ Chapter 2 :Pulmonary hypertension	12
Chapter 2 Fullionary hypertension	
☐ <i>Chapter 3:</i> Pulmonary Hypertension in	17
chronic obstructive pulmonary disease	
☐ <i>Chapter 4:</i> Right Ventricular Failure in	37
COPD	
☐ Chapter 5: Assessment of pulmonary	39
hypertension in chronic obstructive	
pulmonary disease	
☐ Chapter 6: Utility Of Echocardiography	47
In Assessment Of Pulmonary	
Hypertension Secondary To COPD	
☐ Chapter 7: Tissue Doppler Imaging	50
Patients & Methods	57
Results	63
Discussion	89

conclusion, Recommendation and limitations	97
Summary	98
References	101

List Of Abbreviations

Am : Late diastolic myocardial velocity

ANCA : Antineutrophil cytoplasmic antibody.

ATS : American throracic society.

BTS : British throracic society.

COPD : Chronic obstructive pulmonary disease.

CREST : Calcinosis cuits, Raynaud's phenomenon, esophageal

dysfunction, sclerodactyly and telangiectasia.

CT : Computed tomography.

CWD : Continous – wave Doppler ultra sound.

DLCO : Diffusion Capacity for Carbon monoxide.

DTm : Decederation time of early diastolic myocardial velocity.

ECG : Elctrocardiogram.

EF : Ejection fraction.

Em : Early diastolic myocardial velocity.

ENOS : Endothelial nitric oxide synthase.

ERS : European Respiratory society.

ET : Endothlin.

FEVI : Forced expiratory volume in 1 second.

FHCM : Familial hyperytrophic cardiomyopathy.

FPAH : Familial pulmonary arterial hypertension.

FS : Fractional shortening.

FVC : Forced vital capacity.

GOLD : Globar initiative for chronic obstructive lung disease.

HCM : Hypertrophic cardiomyopathy.

HDL : High Denesity Lipoprotein.

HIV : Human immunodeficiency virus.

ICTm : Isovolumic contraction time.

IPF : Interstitial pulmonary fibrosis.

IVRTm : Isovolumic relaxation Time.

LDL : Low density Lipoprotein.

LTOT : Long-term oxgen threrapy.

LVEDD: Left ventricular End diastolic dimension.

LVESD : Left ventricular End systolic dimension.

LVH : Left ventricular hypertrophy.

LVRS : Lung volume reduction surgery.

NO : Nitric oxide.

PAH : Pulmonary arterial hypertension.

PAO2 : Arterial oxygen tension.

PASP : Pulmonary artery systolic pressure.

PCH : Pulmonary Capillary hemangiomatosis.

PDGF : Platelet derived growth factor.

PHT : Pulmonary hypertension.

Ppcw : Pulmonary Capillary wedge pressure.

PPH : Primary pulmonary hypertension.

PT : Prothrombin Time.

PVR : Pulmonary vascular resistance.

RVDD : Right ventricular Diastolic dimension.

RVEF : Right Ventricular ejection fraction.

Sm : Systolic myocardial velocity.

Sm VTI : Velocity time integral of sm.

TDI : Tissue Doppler Imaging.

TGF : Transforming growth factor.

TR : Tricuspid regurge

WHO : World Health Organization.

List Of Tables

Table No .	Title	Page
1	Classification of COPD serverity.	10
2	Clinical classification of pulmonary hypertension.	14
3	New York Heart Association functional	16
	classification for heart disease.	
4	Comparison between the studied groups as regards	64
	age and sex.	
5	Comparison between the studied groups as regards	66
	to pulmonary function.	
6	Comparison between the studied groups as regards	66
	to echocardiographic parameters.	
7	Comparison between the studied groups as regards	67
	to right ventricular end diastolic diameter.	
8	Comparison between control group and group I as	68
	regards to systolic myocardial velocity.	
9	Comparison between control group and group II as	69
	regards to systolic myocardial velocity.	
10	Comparison between group I and group II as	70
	regards to systolic myocardial velocity.	
11	Comparison between control group and group I as	71
	regards to velocity time integral of sm.	
12	Comparison between control group and group II as	72
	regards to velocity time integral of sm.	
13	Comparison between group I and group II as	73
	regards to velocity time integral of sm.	
14	Comparison between the studied groups as regards	74
	to Isovolumic contraction time.	

15	Comparison between control group and group I as	75
	regards to myocardial Isovolumic relaxation time.	
16	Comparison between control group and group II as	76
	regards to myocardial Isovolumic relaxation time.	
17	Comparison between group I and group II as	77
	regards to Isovolumic relaxation time.	
18	Comparison between control group and group I as	78
	regards to early diastolic myocardial velocity.	
19	Comparison between control group and group II as	79
	regards to early diastolic myocardial velocity.	
20	Comparison between group I and group II as	80
	regards to early diastolic myocardial velocity.	
21	Comparison between control group and group I as	81
	regards to early diastolic myocardial velocity to	
	diastolic myocardial velocity.	
22	Comparison between control group and group II as	82
	regards to early diastolic myocardial velocity late	
	diastolic myocardial velocity.	
23	Comparison between group I and group II as	83
	regards to early diastolic myocardial velocity to	
	late diastolic myocardial velocity.	
24	Comparison between the studied groups as regards	85
	to late diastolic myocardial velocity (Am),	
	Descerelation time of Em (DTm) and isovolumic	
	contraction time.	

List Of Figures

Fig No.	Title	Page
1	Histological section through emphysematon lung.	7
2 a,b	Immunostaning of pulmonary muscular artery from COPD.	23
3	Photo micro graph of pulmonary muscular artery from COPD.	27
4	Immunohistochemical expression of endothelial nitric oxide synthase in smoker lung.	29
5	Pathophysiology of pulmonary hypertension in COPD.	30
6	Pathogenesis of cor-pulmonale in COPD.	38
7	Estimation of pulmonary artery pressure in COPD patient with tricuspid regurge by Doppler echo	49
	cardiography using Bernoli equation.	
8	Measurment of different Tissue Doppler parameters.	61
9	Comparison between control group and group I as regards to systolic myocardial velocity.	68
10	Comparison between control group and group II as regards to systolic myocardial elocity	69
11	Comparison between group I and group II as regard to systolic myocardial velocity.	70
12	Comparison between control group and group I as regards to velocity time integral of sm.	71
13	Comparison between control group and group II as regards to velocity time integral of sm.	72
14	Comparison between the studied groups as regards to Isovolumic contraction time.	73
15	Comparison between the studied groups as regards	74
13	to Isovolumic contraction time.	, ¬
16	Comparison between control group and group I as regards to myocardial isovolumic relaxation time.	75

17	Comparison between control group and group II as	76
	regards to myocardial isovolumic relaxation time.	
18	Comparison between group I and group II as	77
	regards to myocardial isovolumive relaxation time.	
19	Comparison between control group and group I as	78
	regards to early diastolic myocardial velocity.	
20	Comparison between control group and group II as	79
	regards to early diastolic myocardial velocity.	
21	Comparison between group I and group II as	80
	regards to early diastolic myocardial velocity.	
22	Comparison between control group I and group I as regards to early diastolic myocardial velocity to	81
	late diastolic myocardial velocity.	
23	Comparison between control group and group II as regards to early diastolic myocardial velocity to	82
	late diastolic myocardial velocity.	
24	Comparison between group I and group II as regards to early diastolic myocardial velocity to	83
	late diastolic myocardial velocity.	
25	Comparison between the studied groups as regards	85
	to late diastolic myocardial velocity.	
26	Comparison between the studied groups as regards	86
	to descerelation time of Em.	
27	Correlation between systolic myocardial velocity (Sm) and level of pulmonary artery systolic pressure (PASP)	87
28	pressure (PASP). Correlation between velocity time integral of sm	87
20	(SmVTI) and level of pulmonary artery systolic pressure (PASP).	07
29	correlation between myocardial isovolumic relaxation time (IVRT m) and level of pulmonary artery systolic pressure (PASP)	88

Acknowledgments

Thanks first and last to *Allah*, for his great care, support and guidance in every step in our life.

I would like to express my deep appreciation and profound gratitude to *Prof. Hesham Abou El-Enien* professor of cardiology, Benha Faculty of Medicine, Benha University for his guidance, great help and constructive criticism.

Indeed, words do fail me when I come to express my deep respect to **Dr.** *Reda Biomy* Assistant professor of Cardiology, Benha Faculity of medicine, Benha University for his extra ordinary honest effort and help. I was much impressed by his noble character, patience and sympathy.

Special acknowledgement is given to *Dr. Tarek Abou- El-Azm*. Assistant professor of cardiology- Benha Faculty of Medicine, Benha University, for his advice and generous help.

I am indeed grateful to *Dr. Neama El-Melegy* Assistant consultant of cardiology Benha hospital. Faculty of Medicine Benha University, for her generous guidance, faithful encouragement and sincere help.