RESULTS

I-Water Physico-chemical Characteristics:

1 -Temperature:

In the present work, the waters temperature clearly indicated significantly low (P < 0.01) in sector I and sector II compared to that of control. The temperature values were 16.83 ± 0.08 °C in sector I, and 14.93 ± 0.06 °C in sector II, while that of the control, was 18.03 ± 0.08 °C (Table 1 and Fig.1).

2 - The (pH) value:

The pH values were significantly low (P < 0.01) in sector I and sector II when compared to that of the control. Data showed that the pH values of collected samples for the control, sector I and II were 8.25 \pm 0.10, 7.67 \pm 0.05, and 7.67 \pm 0.006 respectively (Table 1 and Fig.2).

3-Total alkalinity (carbonate and bicarbonate):

Concerning the concentrations of carbonate and bicarbonate in water in different location, there were significantly high (P < 0.01) in sector I and sector II values compared to that of the control value. The results showed higher alkalinity values in sector I, and II (347.33 \pm 0.2, and 229.5 \pm 0.2 mg/l respectively) than that of the control 174.46 \pm 0.3 mg/l (Table 1 and Fig.3).

4 - Electrical conductivity (EC) and Total dissolved solid (TDS):

The EC and TDS values in sector I and sector II were significantly high (P < 0.01) compared to those of control site. The EC values of collected samples from the control, sector I and II were 0.418 \pm 0.001, 1.034 ± 0.001 , and 0.722 ± 0.00 ms.cm⁻¹ respectively (Table 1 and Fig.4).

The TDS were 267.6 \pm 0.3, 735.66 \pm 0.3, and 461.66 \pm 0.3 mg.L⁻¹ respectively (Table 1 and Fig.5).

Table (1): Physiochemical parameters of the control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

Locations Parameter Mean ± SE	Control	Sector I	Sector II
Temperature (°C)	18.03 ±0.08	16.83 ±0.08 ^A	14.93 ±0.06 AB
pH (unit)	8.25 ± 0.1	7.67 ± 0.05^{-A}	7.67 ± 0.006 A
Total Alkalinity (mg/l)	174.4 ± 0.3	347.3 ± 0.2^{-A}	229.5 ± 0.2^{-AB}
Electrical Conductivity (ms/cm)	0.418 ± 0.001	1.034 ± 0.001 A	0.722 ± 0.00 AB
Total Dissolved Solid (mg/l)	267.6 ± 0.3	735.66 ± 0.3 A	462.6 ± 0.3 AB

^A: significant difference between the control and any other group (P < 0.01).

 $^{^{\}text{B}}\text{:}$ significant difference between sector I and sector II (P <0.01).

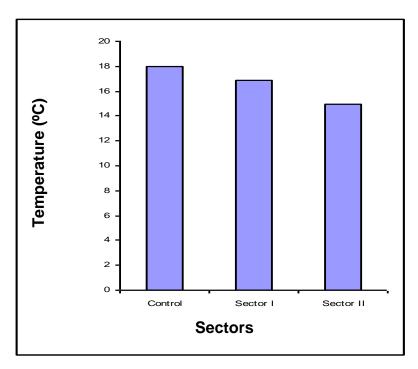


Fig. (1): Temperature (°C) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

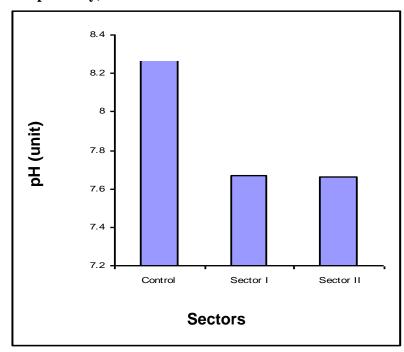


Fig. (2): pH values (unit) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

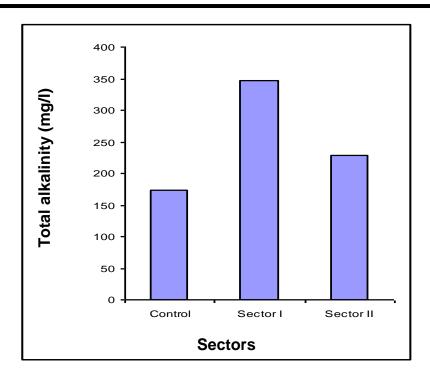


Fig. (3): Total alkalinity (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

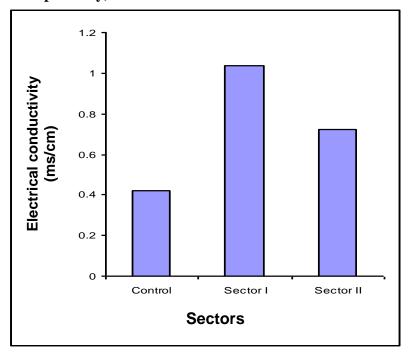


Fig. (4): Electrical conductivity (ds/cm) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

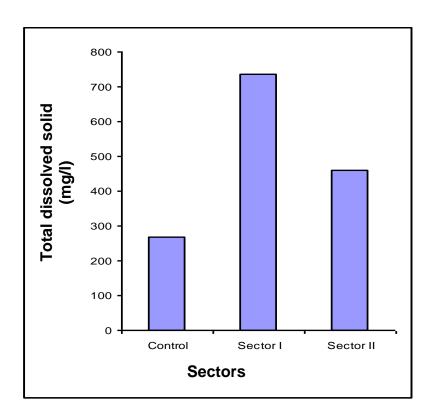


Fig. (5): Total dissolved solid (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

5 – Ammonia:

The concentration of ammonia was significantly high (P < 0.01) in water samples of sector I and sector II (5.83 \pm 0.1, and 5.01 \pm 0.003 mg/l respectively) as compared to the control value 0.29 \pm 0.003 mg/l (Table 2 and Fig.6).

6 – Turbidity:

High turbidity values were 31.66 ± 0.8 , and 21.66 ± 0.8 ntu, for water samples of sector I and sector II respectively and 7.21 ± 0.10 in the control site (Table 2 and Fig.7).

7-Dissolved Oxygen (DO):

The variations in dissolved oxygen values of water samples were apparent. These values were significantly low (P < 0.01) in sector I and sector II (2.1, and 2.8 mg/l respectively) when compared the control value 5.5 mg/l (Table 2 and Fig.8).

8 - Biological oxygen demand (BOD):

The BOD values of collected samples from sectors I and II (30.66 \pm 0.6 l, and 7.0 \pm 0.57 mg/l respectively) were significantly high (P < 0.01), compare to that of control 4.6 \pm 0.02 mg/l (Table 2 and Fig.9).

9 - Chemical oxygen demand (COD):

It is apparent that, the COD of samples collected from sector I and II recorded more than six and five folds respectively in relation to that of control. COD in sector I and II were 35.30 ± 0.1 , and 28.33 ± 0.3 mg/l,

respectively while in the control water it was 6.2 ± 0.2 mg/l (Table 2 and Fig.10).

Table (2):Ammonia, turbidity, dissolved oxygen, biological oxygen deman and chemical oxygen demand of the control water samples (taken from Elkanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

Locations Parameter Mean ± SE	Control	Sector I	Sector II
Ammonia (mg/l)	0.29 ±0.003	$5.83 \pm 0.1^{\text{ A}}$	5.01 ±0.003 ^A
Turbidity (NTU)	7.21 ± 0.10	$31.66 \pm 0.80^{\text{ A}}$	21.66 ± 0.8^{-AB}
Dissolved Oxygen (mg/l)	5.31 ± 0.01	2.12 ± 0.01 ^A	$2.81 \pm 0.02^{\text{ A}}$
Biological Oxygen Demand (mg/l)	4.6 ± 0.02	30.66 ± 0.6 ^A	7.0 ± 0.5 AB
Chemical Oxygen Demand (mg/l)	6.2 ± 0.2	35.30 ± 0.1 ^A	$28.33 \pm 0.3^{~AB}$

 $^{^{\}mathrm{A}}$: significant difference between the control and any other group (P <0.01).

 $^{^{\}mathrm{B}}$: significant difference between sector I and sector II (P <0.01).

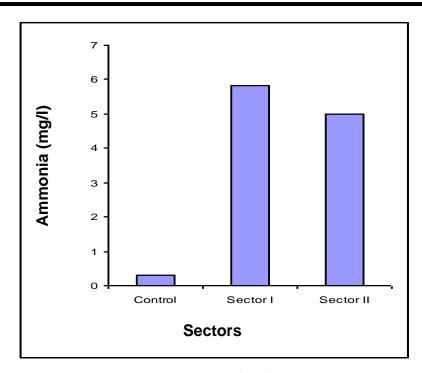


Fig. (6): Ammonia concentration (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

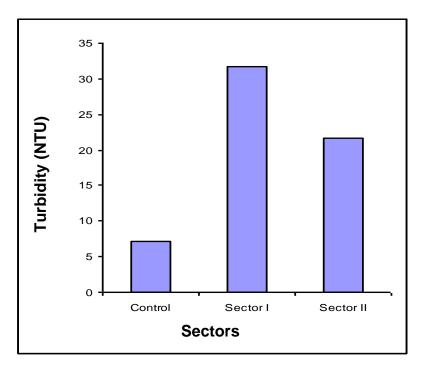


Fig. (7): Turbidity values (NTU) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

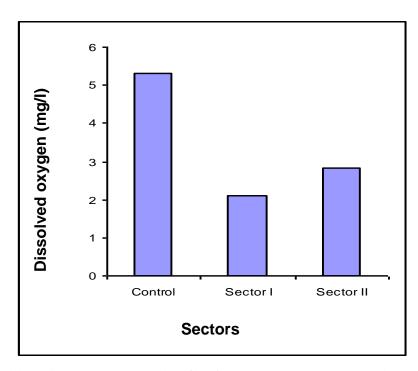


Fig. (8): Dissolved oxygen (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

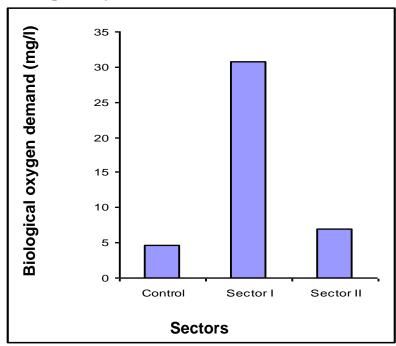


Fig. (9): Biological oxygen demand (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

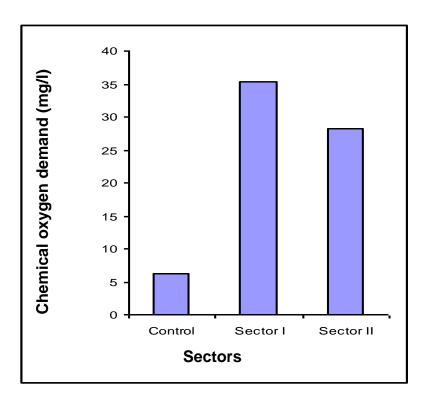


Fig. (10): Chemical oxygen demand (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

10 - Major cations:

a) Sodium (Na⁺):

Sodium concentrations in water of the studied locations were significantly high (P < 0.01) in sector I and sector II compared to that of the control. The value of sodium concentration in sectors I was 81.6 ± 0.8 mg/l (about 2.5- fold of the control value), and in sector II was 60.33 ± 0.3 mg/l (about 2- fold of the control value) (Table 3 and Fig.11).

b) Potassium (K⁺):

In the present work, the potassium concentration clearly indicated a significantly high values (P < 0.01) in sector I and sector II compared to that of control. The potassium value was 15.26 ± 0.7 mg/l in sector I, 11.16 ± 0.1 mg/l in sector II and 8.73 ± 0.2 mg/l in control site (Table 3 and Fig.12).

c) Calcium (**Ca**⁺⁺):

Calcium concentration values were significantly high (P < 0.01) in sector I and sector II when compared to that of control. Data showed that the calcium values of collected water samples of the control, sector I and II were 34.44 ± 0.2 , 87.76 ± 0.3 , and 57.66 ± 0.3 mg/l respectively (Table 3 and Fig.13).

d) Magnesium (Mg⁺⁺):

The concentrations of magnesium in water in the studied locations were significantly high (P < 0.01) in sector I and sector II compared to that of the control value (36.00 ± 0.3 , 18.33 ± 0.3 , and 17.33 ± 0.3 mg/l respectively) (Table 3 and Fig.14).

Table (3): Major cations concentrations of the control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

Locations Parameter Mean ± SE	Control	Sector I	Sector II
Sodium (mg/l)	30.4 ± 0.2	81.6 ± 0.8 A	60.33± 0.3 AB
Potassium (mg/l)	8.73 ± 0.2	15.26 ± 0.7 ^A	11.16 ± 0.1^{-AB}
Calcium (mg/l)	34.43 ± 0.2	87.66 ± 0.3 ^A	$57.66 \pm 0.3^{~AB}$
Magnesium (mg/l)	17.33 ± 0.3	36.00 ± 1.00 ^A	18.33 ± 0.3 ^B

 $^{^{}A}\!\!:$ significant difference between the control and any other group (P <0.01).

 $^{^{\}text{B}}\text{:}$ significant difference between sector I and sector II (P <0.01).

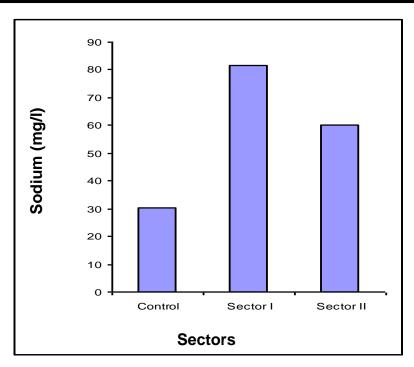


Fig. (11): Sodium concentration (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

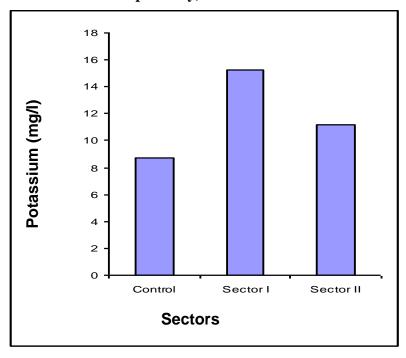


Fig. (12): Potassium concentration (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

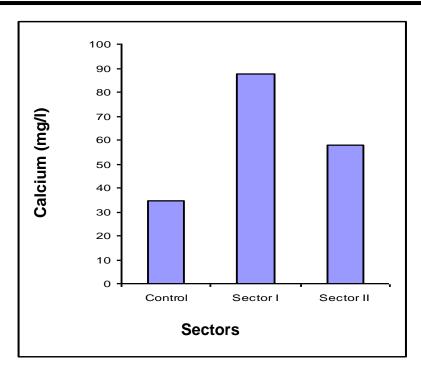


Fig. (13): Calcium concentration (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

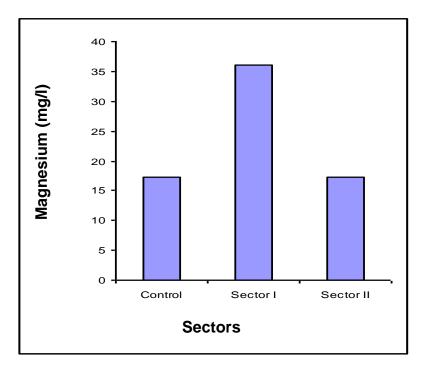


Fig. (14): Magnesium concentration (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

11 - Major anions:

a) Chloride (Cl):

There were significantly high (P < 0.01) chloride concentrations in sector I and sector II compared to that of the control. The chloride values of collected water samples from the control, sector I and II were 34.6 \pm 0.3, 91.2 \pm 0.6, and 72.0 \pm 0.5 mg/l respectively (Table 4 and Fig.15).

b) Sulphate (So₄"):

The concentrations of sulphate were significantly high (P < 0.01) in sector I and sector II (60.66 \pm 0.6, and 71.66 \pm 0.8 mg/l respectively) compared to the control value (26.83 \pm 0.4 mg/l) (Table 4 and Fig.16).

c) Phosphate (Po₄⁻⁻):

There were significantly high (P < 0.01) water phosphate concentrations in sector I and sector II (0.41 \pm 0.006, and 0.31 \pm 0.007 mg/l respectively) when compared to the control value (0.17 \pm 0.003 mg/l) (Table 4 and Fig.17).

d) Nitrate (No₃):

The nitrate concentration values of collected water samples from sectors I and II (21.3 \pm 0.3, and 0.90 \pm 0.05 mg/l respectively) were significantly high (P < 0.01), as compared to that of the control (0.48 \pm 0.01 mg/l) (Table 4 and Fig.18).

Table (4): Major anions of the control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

Locations Parameter Mean ± SE	Control	Sector I	Sector II
Chloride (mg/l)	34.6 ± 0.3	91.2 ± 0.6 ^A	$72.0 \pm 0.5 ~^{AB}$
Sulphate (mg/l)	26.0 ± 0.4	60.66 ± 0.6 ^A	71.66 ± 0.8^{-AB}
Phosphate (mg/l)	0.17 ± 0.003	0.41 ± 0.006 A	0.31 ± 0.007^{-A}
Nitrate (mg/l)	0.48 ± 0.01	$21.3 \pm 0.3^{\mathrm{A}}$	$0.9 \pm 0.05^{~AB}$

 $^{^{}A}$: significant difference between the control and any other group (P <0.01).

 $^{^{\}text{B}}\text{:}$ significant difference between sector I and sector II (P <0.01).

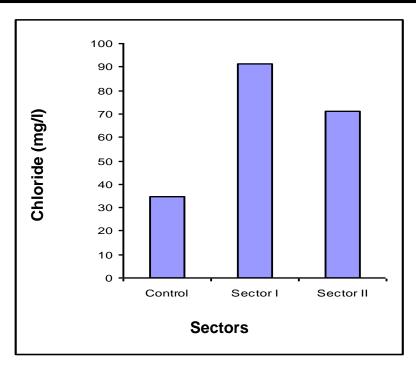


Fig. (15): Chloride concentration (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

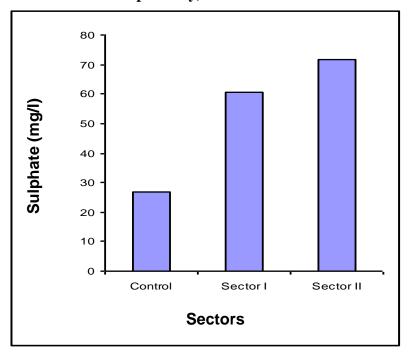


Fig. (16): Sulphate concentration (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

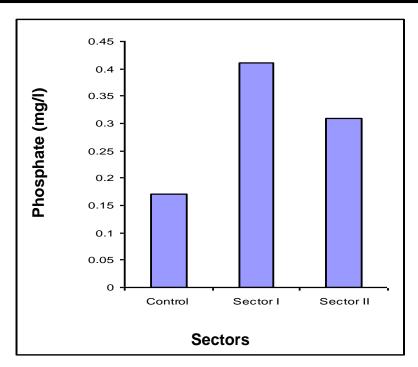


Fig. (17): Phosphate concentration (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

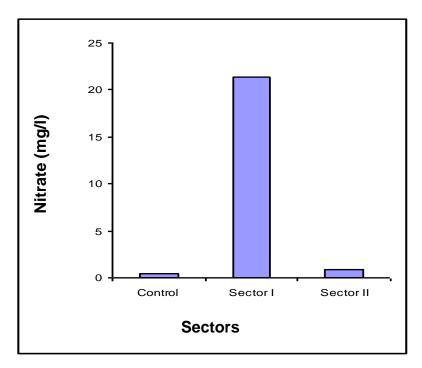


Fig. (18): Nitrate concentration (mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

12 – Heavy metals:

a) **Iron** (**Fe**³⁺):

The iron concentration values in water samples collected from the studied locations were significantly high (P < 0.01) in sector I and low (P < 0.01) in sector II when compared to that of control site. The iron concentration values of collected samples from the control, sector I and II were 0.20 ± 0.00 , 0.51 ± 0.009 , and 0.041 ± 0.0 mg/l respectively (Table 5 and Fig.19).

b) Manganese (Mn²⁺):

Manganese concentration values were significantly high (P < 0.01) in sector I when compared to those of sector II and the control site. The manganese concentration of sector I was 0.40 ± 0.003 , and of sector II was 0.21 ± 0.006 mg/l, while in the control water was 0.21 ± 0.009 mg/l (Table 5 and Fig.20).

c) **Zinc** (**Zn**²⁺):

The concentration of zinc was significantly high (P < 0.01) in sector I and low (P < 0.01) in sector II when compared to the value of control site. The zinc concentration was 0.47 ± 0.003 mg/l in sector I, 0.023 ± 0.0 mg/l in sector II and 0.1 ± 0.006 mg/l in the control site (Table 5 and Fig.21).

d) Copper (Cu²⁺):

The variations in copper concentration values of water samples were apparent. It was significantly high (P < 0.01) in sector I and low (P < 0.01) in sector II when compared to the value of control site. The copper concentration of control, sector I and II were 0.083 \pm 0.003, 0.20 \pm 0.003, and 0.002 \pm 0 mg/l respectively (Table 5 and Fig.22).

e) Lead (Pb²⁺):

Lead concentration value was significantly high (P < 0.01) in sector I when compared to those of sector II and the control. The lead concentrations values were 0.020 ± 0.00 mg/l in sector I, 0.005 ± 0.0 mg/l in sector II, and 0.005 ± 0.0 mg/l in the control site (Table 5, Fig.23).

f) Cadmium (Cd²⁺):

The concentration of cadmium was significantly high (P < 0.01) in sector I when compared to those of sector II and the control site. Data showed that the cadmium concentration values of the control, sector I and II were 0.005 ± 0.0 , 0.008 ± 0.0 , and 0.005 ± 0 mg/l respectively (Table 5 and Fig.24).

Table (5): Major heavy metals of the control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

Locations Parameter Mean ± SE	Control	Sector I	Sector II
Iron (mg/l)	0.20 ± 0.00	0.50 ± 0.009 A	0.041 ± 0.00^{-AB}
Manganese (mg/l)	0.21 ± 0.009	0.40 ± 0.003 A	0.21 ± 0.006 B
Zinc (mg/l)	0.11 ± 0.006	0.47 ± 0.003 A	0.023 ± 0.00 AB
Copper (mg/l)	0.083 ± 0.003	0.20 ± 0.003 A	0.002 ± 0.00 AB
Lead (mg/l)	0.005 ± 0.0	0.02 ± 0.00^{-A}	0.005 ± 0.0^{-B}
Cadmium (mg/l)	0.005 ± 0.0	0.008 ± 0.0^{-A}	0.005 ± 0.0^{-B}

^A: significant difference between the control and any other group (P < 0.01).

 $^{^{\}text{B}}\text{:}$ significant difference between sector I and sector II (P <0.01).

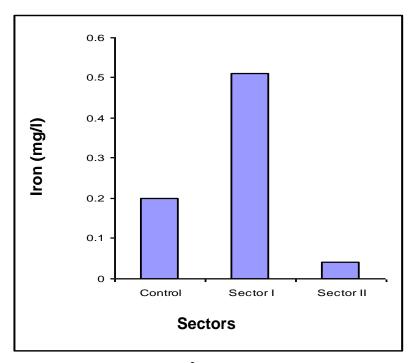


Fig. (19): Iron concentration (Fe³⁺ mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

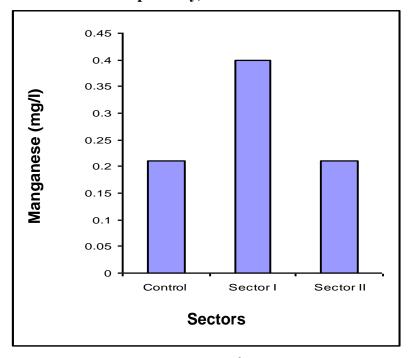


Fig. (20): Manganese concentration (Mn²⁺ mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

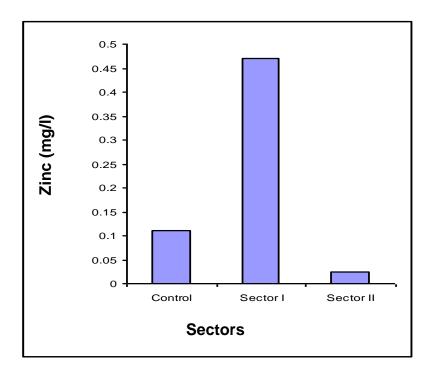


Fig. (21): Zinc concentration (Zn²⁺ mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

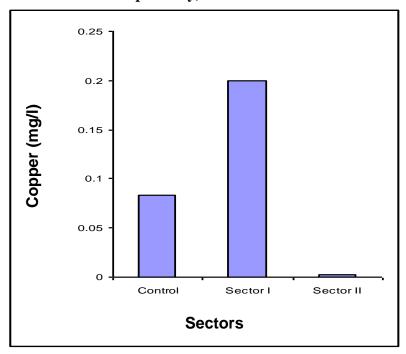


Fig. (22): Copper concentration (Cu²⁺ mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

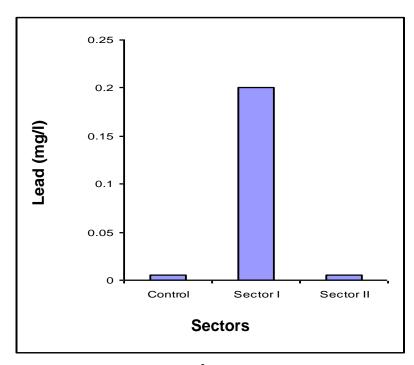


Fig. (23): Lead concentration (Pb²⁺ mg/l) of control water samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

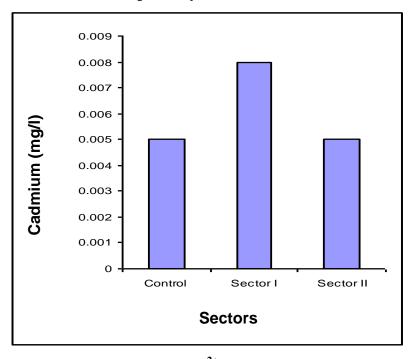


Fig. (24): Cadmium concentration (Cd²⁺ mg/l) of control water samples (taken from El-kanate El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

II- Blood Analysis:

Hemoglobin content (Hb):

In the present work the values of hemoglobin content of blood of the control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial rejoin in Kafer El-zyat at Benofer area respectively) were 0.25 \pm 0.001, 0.32 \pm 0.001, and 0.31 \pm 0.001 g/dl respectively. The Hb contents of blood of fish samples taken from sector I and sector II were significantly high (P < 0.01) in comparison with that the control fish (Table 6 and Fig. 25).

Respiratory functions of blood:

1-Blood gases:

a- Blood oxygen partial pressure (PO₂):

In the present work, the arterial and venous blood oxygen partial pressures (P_aO_2 and P_vO_2 respectively) of control, sector I, and sector II fish samples were 130.0 ± 1.0 & 47.7 ± 2.0 mmHg, 41.1 ± 1.0 & 26.2 ± 0.4 mmHg and 47.6 ± 1.0 & 19.2 ± 0.7 mmHg respectively. Blood PO_2 values in fish of sector I and sector II were significantly low (P < 0.01) when compared with those in the control site. (Table 7 and Figs. 26 & 27).

b- Blood oxygen saturation (%O₂ Sat.):

The values of percent blood oxygen saturation (% O_2 sat.) for arterial and venous blood of control, sector I, and sector II fish samples were 97.4 \pm 0.2 & 59.4 \pm 0.3 %, 77.2 \pm 2.0 & 55.9 \pm 2.0 % and 73.9 \pm 2.0 & 26.4 \pm 1.0 % respectively. The % O_2 sat. values of fish in sector I and

sector II were significantly low (P < 0.01) in comparison with those in the control site. (Table 7 and Figs. 28 & 29).

c- Blood carbon dioxide partial pressure (PCO₂):

The arterial and venous blood carbon dioxide partial pressure $(P_aCO_2 \text{ and } P_vCO_2 \text{ respectively})$ of control, sector I, and sector II fish samples were $16.0 \pm 0.3 \& 20.0 \pm 1.0 \text{ mmHg}$, $11.7 \pm 0.4 \& 12.2 \pm 0.3 \text{ mmHg}$ and $21.1 \pm 0.2 \& 24.4 \pm 1.0 \text{ mmHg}$ respectively. The values of blood carbon dioxide partial pressure were significantly low (P < 0.01) in fish of sector I and high (P < 0.01) in fish of sector II when compared with those of the control site (Table 7 and Figs.30 & 31).

2-Blood acid-base status:

a- Blood pH:

The values of arterial and venous blood pH of fish samples in control site (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial rejoin in Kafer El-zyat at Benofer area respectively) were 7.10 ± 0.01 & 7.02 ± 0.03 , 7.43 ± 0.01 & 7.40 ± 0.01 , and 7.19 ± 0.01 & 7.28 ± 0.009 respectively. The pH values were significantly high (P < 0.01) in fish of sector I and sector II, compared with those of the control site. (Table 8 and Figs. 32& 33).

b- Blood bicarbonate concentration (HCO₃⁻):

The arterial and venous blood HCO_3^- of fish samples in control, sector I, and sector II were presented in table 8 and Figs. 34& 35. Blood HCO_3^- concentrations were significantly high (P < 0.01) in fish of sector I and sector II, compared with those of the control.

c- Blood total carbon dioxide concentration (TCO₂):

The arterial and venous blood total carbon dioxide (TCO₂) of control, sector I, and sector II fish samples were presented in table 8 and Figs. 36 & 37. Blood total CO_2 values were significantly high (P < 0.01) in fish in sector I and sector II, compared with those of the control.

d- Blood base excess concentration (BE):

The arterial and venous blood base excess (BE) of control, sector I, and sector II fish samples were presented in table 8 and Figs. 38 & 39. The blood BE concentrations were significantly high (P < 0.01) in fish of sector I and sector II, compared with those of the control.

3-Oxygen equilibrium curve (OEC):

The blood oxygen equilibrium curves of fish of sector I and sector II were located on the left in relation to that of the control. The results showed significantly low values (P < 0.01) of the blood oxygen half saturation pressure (P_{50}) of fish in sector I and sector II, compared with that of the control (Table 9 and Fig. 40).

Table (6): Blood hemoglobin content of the control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial rejoin in Kafer El-zyat at Benofer area respectively).

Fish samples Parameter Mean ± SE	Control	Sector I	Sector II
Blood Hb content (g/dl)	0.25 ± 0.001	0.32 ± 0.001 A	0.31 ± 0.001 ^A

 $^{^{\}rm A}$: significant difference between the control and any other group (P <0.01).

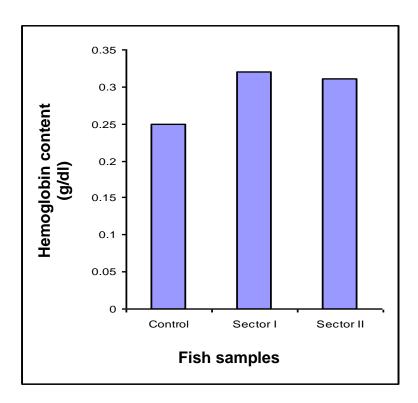


Fig. (25): Blood hemoglobin content (g/dl) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

Table (7): Arterial (a) and venous (v) Blood gases of the control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

Parameter Mean ± SE	ocation	Control	Sector I	Sector II
PO_2	a	130 ± 1.0	$41.1 \pm 1.0^{\text{ A}}$	$47.6 \pm 1.0^{~\mathrm{AB}}$
mmHg	v	47.7 ± 2.0	26.2 ± 0.4 ^A	$19.2 \pm 0.70^{\text{ AB}}$
% O ₂	a	97.2 ± 0.2	$77.2 \pm 2.0^{\text{ A}}$	$73.9 \pm 2.0^{\text{ A}}$
sat	v	59.4 ± 0.3	$55.9 \pm 2.0^{\text{ A}}$	$26.4 \pm 1.0^{~AB}$
PCO ₂	a	16.0 ± 0.3	11.7 ± 0.4 ^A	21.1 ± 0.2^{AB}
mmHg	v	20.0 ± 1.0	12.2 ± 0.3 ^A	24.4 ± 1.0^{AB}

 $^{^{\}rm A}$: significant difference between the control and any other group (P < 0.01).

 $^{^{\}text{B}}\text{:}$ significant difference between sector I and sector II (P <0.01).

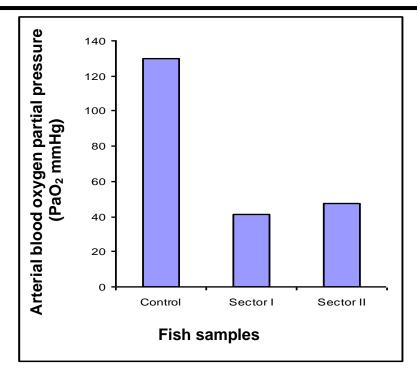


Fig. (26): Arterial blood oxygen partial pressure (PaO₂ mmHg) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

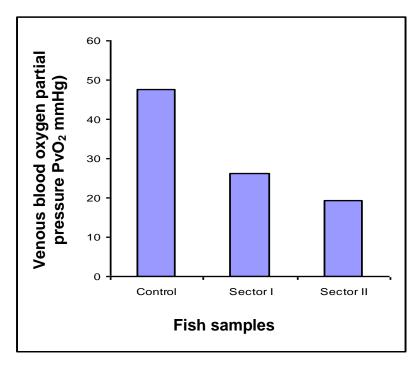


Fig. (27): Venous blood oxygen partial pressure (PvO_2 mmHg) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

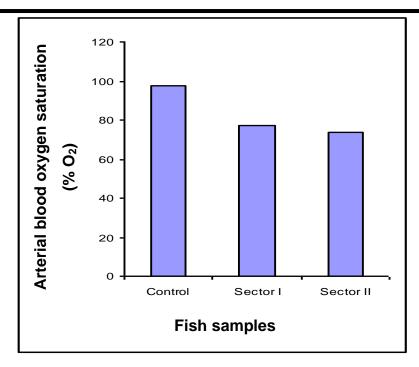


Fig. (28): Arterial blood oxygen saturation (% O₂ sat.) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

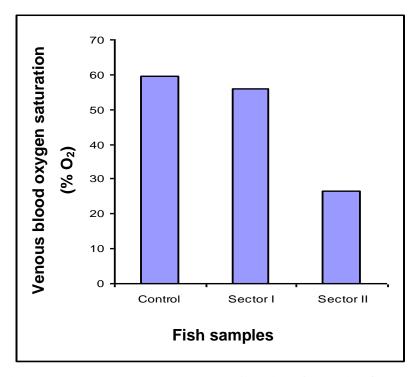


Fig. (29): Venous blood oxygen saturation (% O_2 sat.) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

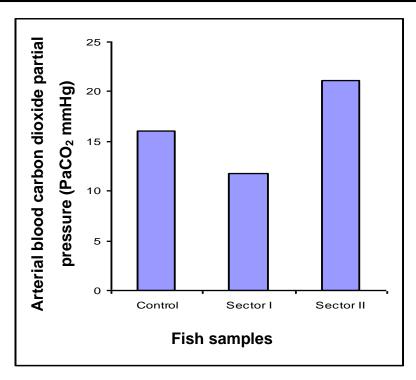


Fig. (30): Arterial blood carbon dioxide partial pressure (PaCO₂ mmHg) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

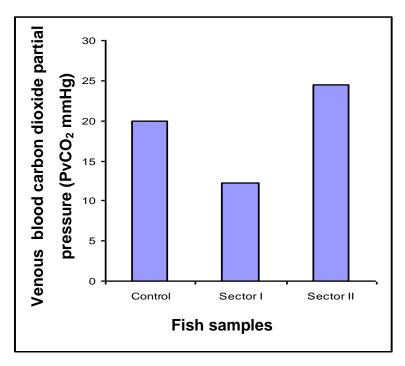


Fig. (31): Venous blood carbon dioxide partial pressure ($PvCO_2$ mmHg) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

Table (8): Arterial (a) and venous (v) blood acid – base status parameters of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

	samples	Control	Sector I	Sector II
Parameter Mean ± SE				
pН	a	7.10 ± 0.01	7.43 ± 0.01 ^A	7.19 ± 0.01 AB
(Unit)	v	7.02 ± 0.03	7.40 ± 0.01 ^A	7.28 ± 0.009 AB
HCO ₃	a	5.3 ± 0.1	8.03 ± 0.1 ^A	$7.45 \pm 0.1^{\text{ AB}}$
mmol/l	v	5.5 ± 0.1	6.3 ± 0.1 ^A	10.1 ± 0.1 AB
Total CO ₂	a	5.9 ± 0.1	8.4 ± 0.1 ^A	7.74 ± 0.1 AB
mmol/l	V	5.7 ± 0.1	6.9 ± 0.1 ^A	10.7 ± 0.1 AB
Base Excess	a	-24.3 ± 0.5	-17.4 ± 0.2 ^A	-19.4 ± 0.3 AB
mmol/l	v	-24.9 ± 0.3	-17.6 ± 0.3 ^A	-16.6 ± 0.1 A

 $^{^{\}rm A}$: significant difference between the control and any other group (P <0.01).

 $^{^{\}mathrm{B}}$: significant difference between sector I and sector II (P <0.01).

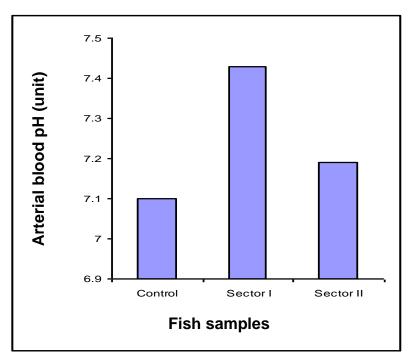


Fig. (32): Arterial blood pH (unit) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

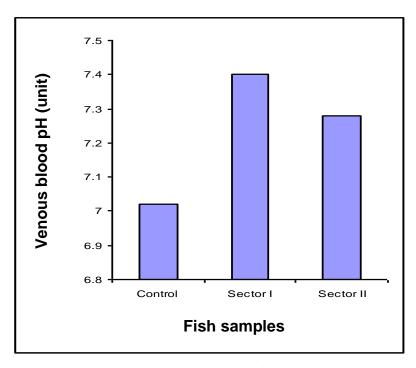


Fig. (33): Venous blood pH (unit) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

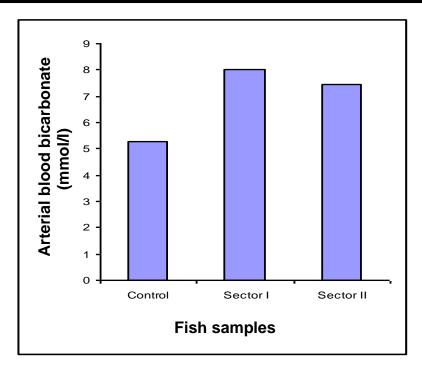


Fig. (34): Arterial blood HCO₃ mmol/l of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at benofer area respectively).

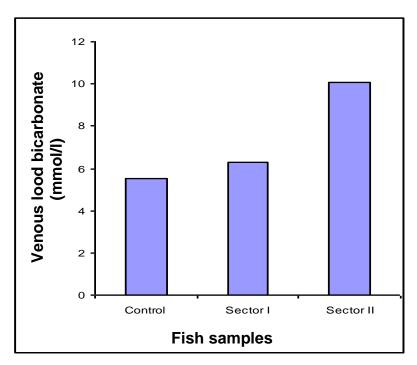


Fig.(35): Venous blood HCO₃ mmol/l of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

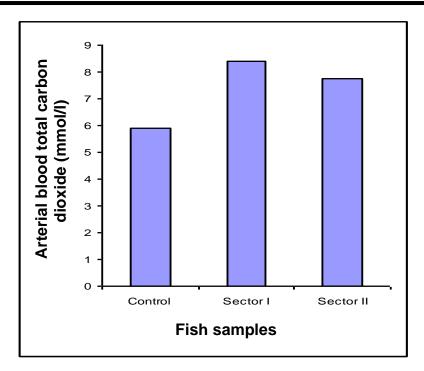


Fig. (36): Arterial blood total CO₂ mmol/l of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

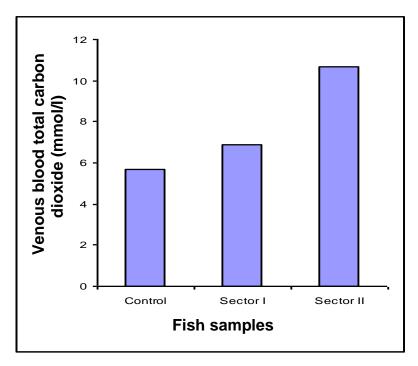


Fig. (37): Venous blood total CO₂ mmol/l of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at benofer area respectively).

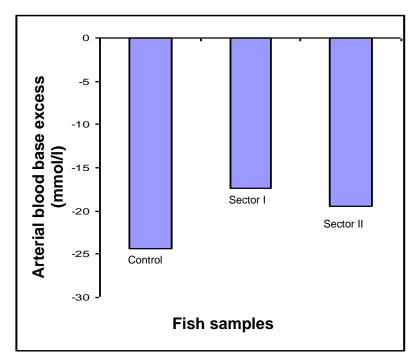


Fig. (38): Arterial blood base excess mmol/l of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at benofer area respectively).

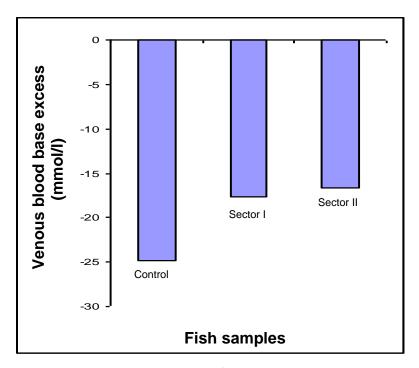


Fig. (39): Venous blood base excess mmol/l of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at benofer area respectively).

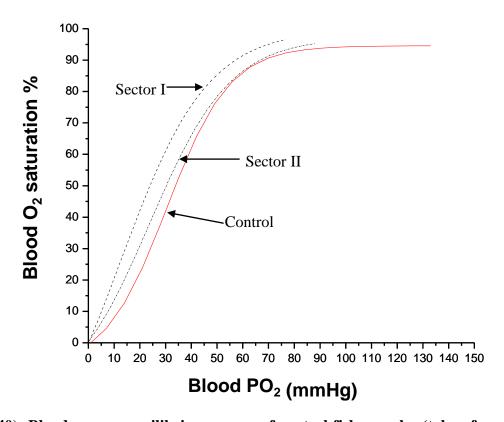


Fig. (40): Blood oxygen equilibrium curves of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at benofer area respectively).

Table (9): Blood oxygen half saturation pressure (P_{50}) of control fish samples (taken from El-kanater El-khyria) and those of sector I and sector II (taken from downstream Sabal Drainage and industrial region in Kafer El-zyat at Benofer area respectively).

Fish samples Parameter	Control	Sector I	Sector II
P ₅₀ (mmHg)	34.11	23.72 ^A	30.11 AB

^A: significant difference between the control and any other group (P < 0.01).

 $^{^{\}mathrm{B}}$: significant difference between sector I and sector II (P <0.01).