CONTENTS

Introduction	1
Aim of the work	4
Review of literatures	5
❖ Anatomy of the venous system of the lower limb	5
❖ The deep veins of the lower limbs	11
❖ Valves of veins of lower limb	19
❖ Venous anatomy of the upper limb	22
❖ Pathogenesis of deep venous thrombosis	28
❖ Risk factors	33
❖ D-dimer test in diagnosis of deep venous thrombosis	38
❖ Contrast venography	45
Duplex imaging in diagnosis of deep vein thrombosis	49
❖ Duplex findings in deep venous thrombosis	60
❖ Advantages and limitations of duplex imaging	63
❖ Duplex study versus other modalities	72
* Magnetic resonance venography in diagnosis of deep vein	76
thrombosis.	
Patients and Methods	84
Results	108
Cases	131
Discussion	145
Summary and conclusion	163
Recommendations	165
References	166
Arabic summary	7-1

List of Tables

clinical presentation and clinical probability	
ennical presentation and ennical probability	
Table (2): Relationship between findings of Contrast Venography and clinical 1	117
pretest probability of DVT	
Table (3) Distribution of cases according to their clinical probability and sites of 1	118
thrombosis	
Table (4): Relationship between the result of D-dimer test and the clinical	119
probability of our studied patients which revealed a considerable number of	
patients with a low probability group had negative D- dimer test	
Table (5): showing the sensitivity, specificity, positive predictive value (PPV)	121
and negative predictive value (NPV) of D-dimer test when compared to	
Contrast Venography . Among the twenty three positive D dimer cases, twenty	
one patients had a D V T confirmed by C V and among the remaining seven	
cases with negative D dimer, only one case had D V T confirmed by CV	
Table (6): sensitivity, specificity, positive predictive value(P P V and negative 1	122
predictive value(N P V) of D –dimer when a positive D-dimer or medium /	
high clinical pretest probability combined together and compared to C V	
Table (7): sensitivity, specificity, positive predictive value (PPV) and negative 1	123
predictive value (NPV) of D -dimer , when a positive D-dimer and medium	
/high clinical pretest probability combined together and compared to C V	
Table (8): sensitivity, specificity, positive predictive value (PPV) and negative 1	124
predictive value (NPV) of D-dimer test when positive D-dimer cases or Duplex	
findings combined together and compared to C V as gold standard, with	
increased sensitivity and specificity up to (100%)	

Table (9): sensitivity, specificity, positive predictive value (PPV) and negative	125
predictive value (NPV) of D-dimer when positive D dimmer and Duplex	
combined together and compared to C V	
Table (10) Results of Contract Venography and distribution of cases according	126
to their sites of thrombosis	
Table (11): Distribution of thrombi as detected by Contarst Venography and	127
Duplex study	
Table (12): sensitivity, specificity, positive predictive value (PPV) and negative	128
predictive value (NPV) of Duplex study when compared to C V	
Table (13): sensitivity, specificity, positive predictive value (PPV) and negative	129
predictive value (NPV) of Magnetic Resonance venography for diagnosis DVT	
when compared to C V. with complete agreement in both studies	
Table (14): Distribution of cases and their site of thrombosis in Contrast	130
Venography and MRV which showed complete agreement in both studies as	
regard to the sites of thrombosis	

List of Figures

Figure 1: Long saphenous vein and its tributaries	8
Figure 2: Short sephenous vein and its tributaries	10
Figure 3: The principal deep veins of the lower limbs	13
Figure 4: Anatomy of the deep venous system of the lower limb	14
Figure 5: sites of important perforator veins	18
Figure (6) Venous anatomy of the upper limb	23
Figure (7) Thrombosis formation on venous valve cusp (A)	29
Normally, blood flow (straight arrows) proceeds through the valve	
with the formation of eddy current (curved arrows). (B) A clot	
nidus may from on the cusp in the sitting of stasis.(C) The clot may	
then extended into the venous lumen	
Figure(8) Plasmic degradation of crosslinked fibrin	39
Fig (9), Difference in Pitch of an ambulance siren when moving	51
Fig (10) Alignment of the individual magnetic moments with the	78
external field M0 is the net magnetization	