## BESULTS

## RESULTS

This study was conducted in NICU in Benha University Hospitals.

The subjects were divided into two groups.

**Group I (Neonates group):** 175 neonates compromised all neonates attended NICU during the period of the study. They were subdivided into three subgroups according to the results.

**Group I (A):** This group comprised 10 neonates with intrauterine (congenital) CMV infection. They were 5 males and 5 females. Their age ranged from one to three days with a mean of  $1.3 \pm 0.68$ . They were positive for CMV-DNA in their PBLs by PCR and their sera were positive for CMV IgM by ELISA.

**Group I (B):** This group comprised 12 neonates with perinatal (acquired) CMV infection. They were 5 males and 7 females. Their age ranged from one to ten days with a mean of  $3.2 \pm 3.16$ . They were positive for CMV-DNA in their PBLs by PCR and their sera were negative for CMV IgM by ELISA.

Group I (C) (Control Group): This group comprised 153 neonates without evidence of CMV infection. They were 74 males 79 females. Their age ranged from one to ten days with a mean of  $2.81 \pm 2.52$ . They were negative for CMV-DNA by PCR and their sera were negative for CMV IgM by ELISA.

Group II (NICU Employee Group): This group comprised 19 employee at NICU. They were 16 females and 3 males. Their age ranged from 19 to

38 years with a mean of  $24.56 \pm 6.1$ . They were investigated twice, one at start and another one at its end.

All results of the study are shown in the following tables and figures.

Table (2): Distribution of the studied groups according to the results of investigations to CMV.

| Investigations   | CMV PCR |       | CMV IgM |                                                  | CMV IgG |       |
|------------------|---------|-------|---------|--------------------------------------------------|---------|-------|
|                  | No.     | %     | No.     | %                                                | No.     | %     |
| Studied groups   |         |       |         | <del>                                     </del> |         |       |
| * Group I ( 175) | 22      | 12.57 | 10      | 5.71                                             | 147     | 84.0  |
| * Group II (19)  | 2       | 10.53 | 0       | 0.00                                             | 19      | 100.0 |

Table (3): Classification of group I

| Percent<br>Group (I)         | No  | %     |
|------------------------------|-----|-------|
| Group I (A) (Congenital CMV) | 10  | 5.71  |
| Group I (B) (Perinatal CMV)  | 12  | 6.86  |
| Group I (C) (Control)        | 153 | 87.43 |
| Total                        | 175 | 100.0 |

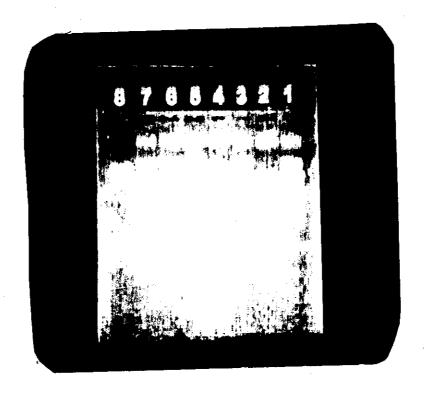



Fig. (7): CMV-DNA after PCR amplification: Amplified DNA was electrophoresed on agarose gel containing 2.5ul ethedium bromide and visualized on ultraviolet transilluminator:

- Lane I shows positive control (CMV AD 169).
- Lane II shows negative cotnrol.
- Lanes 3,5,6 and 7 show positive CMV-DNA.
- Lanes 4 & 8 show negative CMV-DNA.

(%) 8 Fig. (11): Investigations of CMV in the studied I Group II Group ! groups lgG

PCR

ig**M** 

Fig. (12): CMV among group I

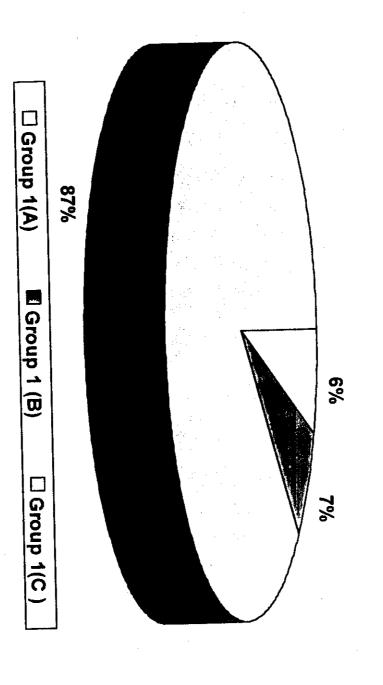



Table (4): Mean and range of age among Group I at the time of admission:

| Age (days)        |     |       |         | Range        |              | _     | ance against<br>oup I (c) |
|-------------------|-----|-------|---------|--------------|--------------|-------|---------------------------|
| Studied<br>groups | No  | x     | ± SD    | Mini-<br>mum | Maxi-<br>mum | t     | P                         |
| Group I (A)       | 10  | 1.3   | ± 0.675 | 1            | 3            | 5.122 | <0.001 (H.S)              |
| Group I (B)       | 12  | 3.2   | ± 3.155 | 1            | 10           | 0.416 | > 0.05 (N.S)              |
| Group I (C)       | 153 | 2.812 | ± 2.522 | 1            | 10           | _     | -                         |

 $\tilde{\mathbf{X}}$ : Arithmatic mean.

SD: standard deviation.

**P**: Probability of error.

P < 0.001 (highly significant) (H.S)

P > 0.05 (Non significant) (N.S)

P < 0.05 (significant) (S)

- \* Group I (A) is significantly lower than control group
- \* There is no significant differences between group I (B) and control group.

Fig. (8): Mean age among group I




Table (5): Sex distribution among group I:

| Sex         | N   | Iale  | Fe  | male  | Т   | otal  |
|-------------|-----|-------|-----|-------|-----|-------|
| Studied     | No. | %     | No. | %     | No. | %     |
| groups      |     |       |     |       |     |       |
| Group I (A) | 5   | 5.95  | 5   | 5.49  | 10  | 5.71  |
| Group I (B) | 5   | 5.95  | 7   | 7.69  | 12  | 6.86  |
| Group I (C) | 74  | 88.10 | 79  | 86.82 | 153 | 87.43 |
| Total       | 84  | 100.0 | 91  | 100.0 | 175 | 100.0 |

$$\chi^2 = 0.217$$

Group I (A): congenital CMV infection.

Group I (B): perinatal (acquired) CMV infection.

Group I (C): No evidence of CMV infection.

χ2: Chi square

i.e.: No significant difference in the sex among the studied groups and control group.

Table (6): Mean gestational age among Group I:

| Gestational age        | x     | ± S.D.  |       | cance against<br>oup I (C) |
|------------------------|-------|---------|-------|----------------------------|
| in weeks               |       |         | t     | Р                          |
| Studied groups         |       |         |       |                            |
| 1- Group I (A) (n=10)  | 35.5  | ± 1.169 | 4.652 | < 0.05 (S)                 |
| 2- Group I (B) (n=12)  | 35.9  | ± 1.383 | 3.364 | < 0.05 (S)                 |
| 3- Group I (C) (n=153) | 37.29 | ± 1.319 |       |                            |

<sup>\*</sup> Prematurity in neonate born before 37 weeks of gestation.

S: Significant.

Group I (A) and group I (B) are significantly lower than control group.

Fig. (9): Sex distribution among group (

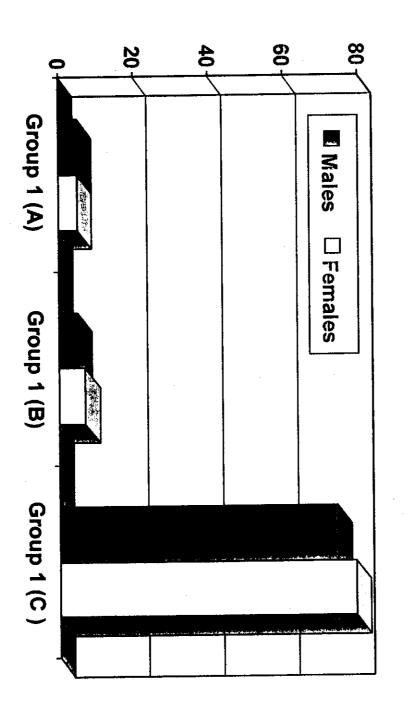
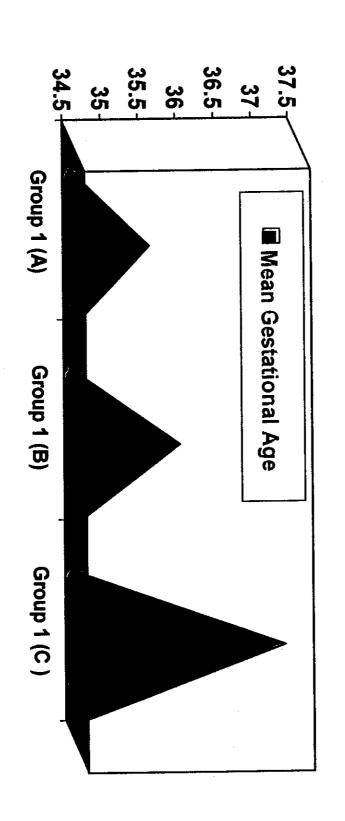




Fig. (10): Gestational age among group I



| Table (7): Distribution | of breast | Milk | Feeding | among | Group | l: |
|-------------------------|-----------|------|---------|-------|-------|----|
|-------------------------|-----------|------|---------|-------|-------|----|

| Variable                     | Neonates with Breast<br>Milk Feeding |           | Neonates without Breas<br>Milk Feeding |            |  |
|------------------------------|--------------------------------------|-----------|----------------------------------------|------------|--|
| Studied<br>Groups            | No.                                  | %         | No.                                    | %          |  |
| Group I (A)<br>(No. =10)     | 8                                    | 80.0      | 2                                      | 20.0       |  |
| Group I (B)<br>(No. = 12)    | 9                                    | 75.0      | 3                                      | 25.0       |  |
| Group I (C)<br>(No. 153)     | 46                                   | 30.07     | 107                                    | 69.93      |  |
| Significance Z1<br>Versus Z2 | 3.1<br>2.8                           | 85<br>319 |                                        | 744<br>769 |  |
| Group I (C) P                | < 0.001                              | (HS)      | < 0.001                                | (HS)       |  |

- Z1: test of significance between percent of positive in group I (A) and control.
- **Z2**: test of significance between percent of positive in group I (B) and control

Group I (A) and group I (B) are significantly higher than control group.

Table (8): Distribution of low birth weight neoborns among group I:

| Variable                     | Neonates with low<br>Birth weight |            | Neonates with<br>Normal Birth Weight |        |  |
|------------------------------|-----------------------------------|------------|--------------------------------------|--------|--|
| Studied<br>Groups            | No.                               | %          | No.                                  | %      |  |
| Group I (A)<br>(No. =10)     | 8                                 | 80.0       | 2                                    | 20.0   |  |
| Group I (B)<br>(No. = 12)    | 9                                 | 75.0       | 3                                    | 25.0   |  |
| Group I (C)<br>(No. 153)     | 65                                | 42.48      | 88                                   | 57.52  |  |
| Significance Z1<br>Versus Z2 | 3.185<br>2.819                    |            | 1.744<br>1.769                       |        |  |
| Group I (C) P                | < 0.                              | < 0.05 (S) |                                      | 05 (S) |  |

**N.B.:** Low birth weight was diagnosed if the body weight at the time of delivery was less than 2500 gram.

Group I (A) and group I (B) are significantly higher than control

Fig. (13): Breast milk feeding among group I

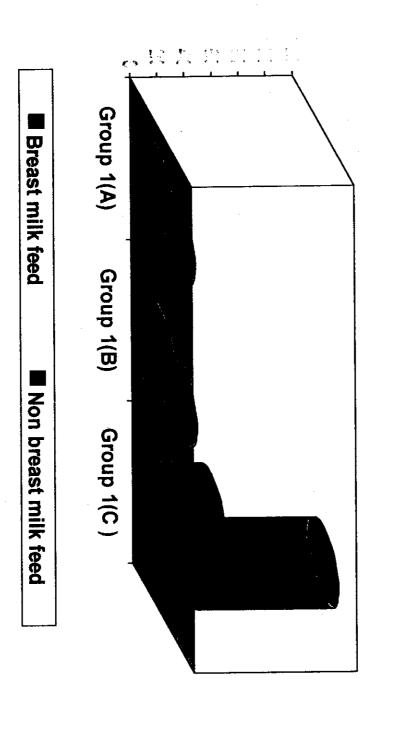
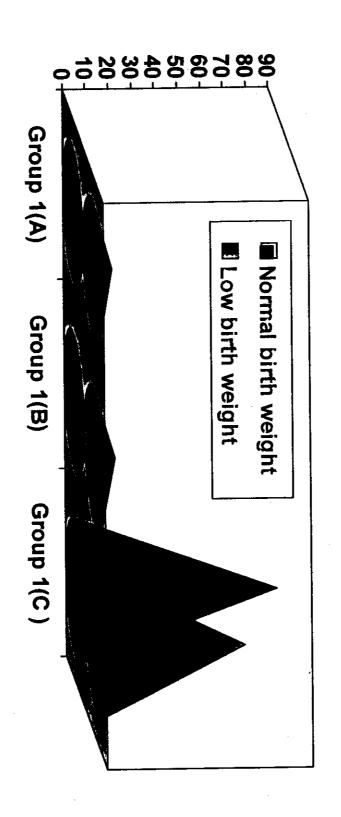




Fig. (14): Distribution of low birth weight among group l



| Table (9): Period | of stay | in NICU | among grou | p I: |
|-------------------|---------|---------|------------|------|
|-------------------|---------|---------|------------|------|

| Period of stay in days in NICU | Ń      | ± S.D.  | Significance compared<br>to group I (C) |              |
|--------------------------------|--------|---------|-----------------------------------------|--------------|
| Studied groups                 |        |         | t                                       | P            |
| 1- Group I (A) (n=10)          | 15.0   | ± 5.011 | 3.056                                   | < 0.001 (HS) |
| 2- Group I (B) (n=12)          | 13.5   | ± 5.104 | 2.277                                   | < 0.05 (S)   |
| 3- Group I (C) (n=153)         | 10.097 | ± 3.901 | -                                       | -            |

<sup>\*</sup> Group I (A) and group I (B) are significantly higher than control group.

Table (10): Distribution of congenital anomalies in group 1:

| Variable<br>Studied                           | 1                              | th Congenital nalies | Neonates without<br>Congenital Anomalies |       |  |
|-----------------------------------------------|--------------------------------|----------------------|------------------------------------------|-------|--|
| Groups                                        | No.                            | %                    | No.                                      | %     |  |
| Group I (A)<br>(No. =10)                      | 3                              | 30.0                 | 7                                        | 70.0  |  |
| Group I (B)<br>(No. = 12)                     | 2                              | 16.67                | 10                                       | 83.33 |  |
| Group I (C)<br>(No. 153)                      | 4                              | 2.61                 | 149                                      | 97.39 |  |
| Significance Z1<br>Versus Z2<br>Group I (C) P | 2.489<br>1.138<br>< 0.001 (HS) |                      | 2.175<br>1.664<br>< 0.05 (S)             |       |  |

- Group I (A) and group I (B) are significantly higher than control group.
- Congenital anomalies in group I (A) was one had microcephaly, one had cleft pallet and the last one had congenital heart disease.
- Congenital anomalies in group I (B) was: one had sinus inversus totalis and one had cleft palat.
- Congenital anomalies in group I (C):
  - Two congenital heart disease.
  - One hare lip.
  - One imperforate anus.

Fig. (15): Distribution of congenital anomalies among group I

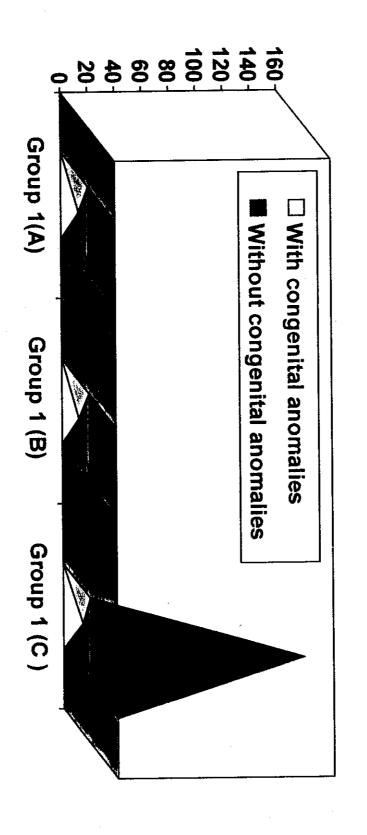



Table (11): Distribution of fever in group I:

| Variable                     | Neonates       | with Fever | Neonates without Fever |        |  |
|------------------------------|----------------|------------|------------------------|--------|--|
| Studied<br>Groups            | No.            | %          | No.                    | %      |  |
| Group I (A)<br>(No. =10)     | 4              | 40.0       | 6                      | 60.0   |  |
| Group I (B)<br>(No. = 12)    | 3              | 25.0       | 9                      | 75.0   |  |
| Group I (C)<br>(No. 153)     | 15             | 9.81       | 138                    | 90.19  |  |
| Significance Z1<br>Versus Z2 | 3.512<br>2.718 |            | 2.518<br>2.491         |        |  |
| Group I (C) P                | < 0.0          | 05 (S)     | < 0.                   | 05 (S) |  |

<sup>\*</sup> Group I (A) and group I (B) are significantly higher than control group.

Table (12): Distribution of jaundice among group I:

| Variable        | Neonates w   | ith Jaundice | Neonates without Jaundice |       |  |
|-----------------|--------------|--------------|---------------------------|-------|--|
| Studied         | No.          | %            | No.                       | %     |  |
| Groups          |              |              |                           | 50.0  |  |
| Group I (A)     | 5            | 50.0         | 5                         | 50.0  |  |
| (No. =10)       |              | <u> </u>     |                           |       |  |
| Group I (B)     | 2            | 16.67        | 10                        | 83.33 |  |
| (No. = 12)      |              |              |                           |       |  |
| Group I (C)     | 47           | 30.72        | 106                       | 69.28 |  |
| • ' '           | 1,           |              |                           |       |  |
| (No. 153)       |              | 926          | 0.845                     |       |  |
| Significance Z1 | 0.826        |              |                           |       |  |
| Versus Z2       | 0.517        |              | 1.114                     |       |  |
| Group I (C) P   | < 0.001 (HS) |              | < 0.05 (S)                |       |  |

<sup>\*</sup> There is no significant difference between the studied groups and control group.

Fig. (16): Distribution of jaundice among group (

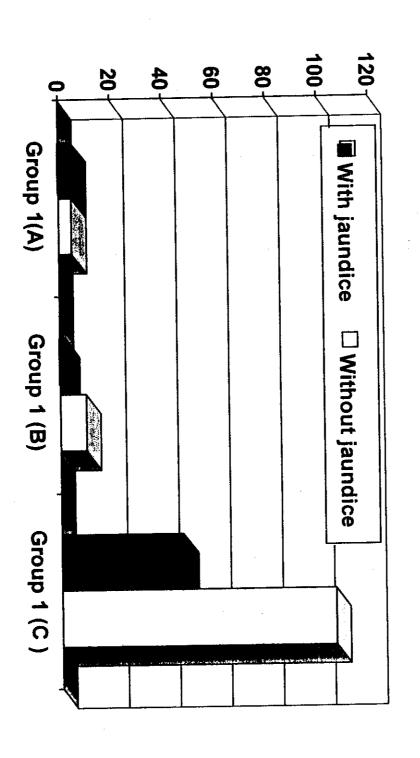



Table (13): Hepatosplenomegaly among group I:

| Variable                                      |                              | tes with<br>lenomegaly | Neonates without<br>Hepatosplenomeglay |       |  |
|-----------------------------------------------|------------------------------|------------------------|----------------------------------------|-------|--|
| Studied<br>Groups                             | No.                          | %                      | No.                                    | %     |  |
| Group I (A)<br>(No. =10)                      | 5                            | 50.0                   | 5                                      | 50.0  |  |
| Group I (B)<br>(No. = 12)                     | 7                            | 58.33                  | 5                                      | 41.67 |  |
| Group I (C)<br>(No. 153)                      | 10                           | 6.54                   | 143                                    | 93.46 |  |
| Significance Z1<br>Versus Z2<br>Group I (C) P | 2.023<br>2.779<br>< 0.05 (S) |                        | 2.146<br>2.553<br>< 0.05 (S)           |       |  |

<sup>•</sup> Group I (A) and group I (B) are significantly higher than control group.

Table (14): Distribution of anemia among group I:

| Variable                     | Neonates v    | vith Anemia | Neonates without Anemia |       |  |
|------------------------------|---------------|-------------|-------------------------|-------|--|
| Studied<br>Groups            | No.           | %           | No.                     | %     |  |
| Group I (A)<br>(No. =10)     | 8             | 80.0        | 2                       | 20.0  |  |
| Group I (B)<br>(No. = 12)    | 10            | 83.33       | 2                       | 16.67 |  |
| Group I (C)<br>(No. 153)     | 27            | 17.65       | 126                     | 82.35 |  |
| Significance Z1<br>Versus Z2 | 2.69<br>4.384 |             | 2.189<br>2.472          |       |  |
| Group I (C) P                | < 0.          | 05 (S)      | < 0.05 (S)              |       |  |

<sup>\*</sup> Group I (A) and group I (B) are significantly higher than control group.

Fig. (17): Distribution of anemia among group

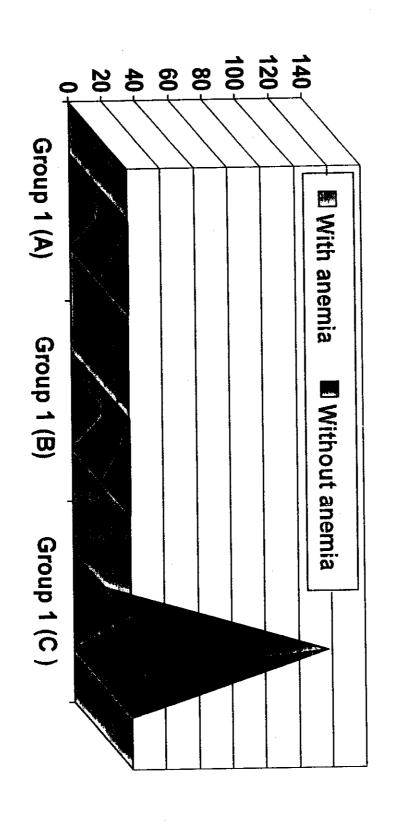



Table (15): Distribution of thrombocytopenia among group I:

| Variable                     | Neonates with Thrombocytopenia |        | Neonates without<br>Thrombocytopenia |       |  |
|------------------------------|--------------------------------|--------|--------------------------------------|-------|--|
| Studied<br>Groups            | No.                            | %      | No.                                  | %     |  |
| Group I (A)<br>(No. =10)     | 7                              | 70.0   | 3                                    | 30.0  |  |
| Group I (B)<br>(No. = 12)    | 7                              | 58.33  | 5                                    | 41.67 |  |
| Group I (C)<br>(No. 153)     | 28                             | 18.30  | 125                                  | 81.69 |  |
| Significance Z1<br>Versus Z2 | 3.469<br>2.687                 |        | 2.493<br>2.461                       |       |  |
| Group I (C) P                | < 0.                           | 05 (S) | < 0.05 (S)                           |       |  |

N.B.: Thrombocytopenia: Platelets < 100.00/ml.

Table (16): Neonates received blood transfusion among group I:

| leonates Received Neonates not Received Blood Transfusion |       | Variable                     |
|-----------------------------------------------------------|-------|------------------------------|
|                                                           | No.   | Studied<br>Groups            |
| 6 60.0 4 40.0                                             | 6 6   | Group I (A)<br>(No. =10)     |
| 6 50.0 6 50.0                                             | 6 5   | Group I (B)<br>(No. = 12)    |
|                                                           | 26 16 | Group I (C)<br>(No. 153)     |
| 2.608<br>2.104<br>2.51<br>2.005 (S)                       | 2.104 | Significance Z1<br>Versus Z2 |
| 2.000                                                     | 2.104 | Significance Z1              |

<sup>\*</sup>Group I (A) and group I (B) are significantly higher than control group.

<sup>\*</sup>Group I (A) and group I (B) are significantly higher than control group.

Table (17): Distribution of congenital anomalies, fever, Jaundice, hepatosplenomegaly, anemia, thrombocytopenia & blood transfusion in group I

| Studied              | Group I | Group I    | Group I  | $\mathbf{Z_1}$ | n           | $\mathbf{Z}_2$ | 1     |
|----------------------|---------|------------|----------|----------------|-------------|----------------|-------|
| groups %             | (A)     | <b>(B)</b> | (C)      |                | p           | 232            | •     |
| Variable             | (No 10) | (No 12)    | (No 153) |                |             |                |       |
| Congenital Anomalies | 30.0    | 16.67      | 2.61     | 2.489          | <0.001 (HS) | 1.138          | < 0.0 |
| Fever                | 40.0    | 25.0       | 9.81     | 3.512          | <0.05(S)    | 2.718          | < 0.0 |
| Hepatosplenomegaly   | 50.0    | 58.33      | 6.54     | 2.023          | <0.05(S)    | 2.779          | < 0.0 |
| Anemia               | 80.0    | 83.33      | 17.65    | 3.690          | <0.05(S)    | 4.384          | < 0.0 |
| Thrombocytopenia     | 70.0    | 58.33      | 18.30    | 3.469          | <0.05(S)    | 2.687          | < 0.0 |
| Jaundice             | 50.0    | 16.67      | 30.72    | 0.826          | >0.05(N.S)  | 0.517          | >0.05 |
| Blood Transfusion    | 60.0    | 50.0       | 16.99    | 2.608          | <0.05(S)    | 2.104          | < 0.0 |

• HS: Highly significant

• S: significant.

NS: Non significant.

Table (18): Mortality in group I:

| Va                | riable         | Deaths Among Neonates |                |  |  |
|-------------------|----------------|-----------------------|----------------|--|--|
| Studied<br>groups |                | No.                   | %              |  |  |
| Group I (A)       |                | 2                     | 20.0           |  |  |
| (No. = 10)        | <u> </u>       |                       |                |  |  |
| Group I (B)       |                | 2                     | 16.67          |  |  |
| (No. = 12)        |                |                       |                |  |  |
| Group I (C)       |                | 10                    | 6.54           |  |  |
| (No. = 153)       |                |                       |                |  |  |
| Significance      | $Z_1$          | 1.996                 | P < 0.001 (HS) |  |  |
| Versus            | $\mathbb{Z}_2$ | 2.163                 | P < 0.001 (HS) |  |  |
| Group I (C)       |                | <u> </u>              |                |  |  |

<sup>\*</sup>Group I (A) and group I (B) are significantly higher than control group.

Table (19): Mean age among group II:

| Age<br>Years               |     |        |        | Range        |              | Test of significance |          |  |
|----------------------------|-----|--------|--------|--------------|--------------|----------------------|----------|--|
| Studied<br>groups          | No. | x      | SD     | Mini-<br>mum | Maxi-<br>mum | t                    | P        |  |
| CMV-DNA<br>positive by PCR | 2   | 33.0   | ±4.583 | 31.0         | 35.0         | 2.763                | <0.05(S) |  |
| CMV-DNA Negative by PCR    | 17  | 24.563 | ±6.099 | 18.0         | 36.0         | -                    | -        |  |

<sup>\*</sup> The age among CMV positive employee is significantly higher than CMV negative employee.

Table (20): Sex distribution among group II:

| Sex                        | Male |       | Female |       | Total |       |
|----------------------------|------|-------|--------|-------|-------|-------|
| Studied<br>Groups          | No.  | %     | No.    | %     | No.   | %     |
| CMV-DNA positive by PCR    | 0.0  | 0.0   | 2      | 12.5  | 2     | 10.53 |
| CMV-DNA<br>negative by PCR | 3.0  | 100.0 | 14     | 87.5  | 17    | 89.47 |
| Total                      | 3.0  | 100.0 | 16     | 100.0 | 19    | 100.0 |

$$\chi 2 = 0.839$$

Table (21): Employment period among group II:

| Employment<br>Period            |       | x S.D | Ra           | nge          | Test of significance |                 |
|---------------------------------|-------|-------|--------------|--------------|----------------------|-----------------|
| (years)<br>Studied              | X     |       | Mini-<br>mum | Max-<br>imum | t                    | P               |
| Groups                          |       |       |              |              |                      |                 |
| CMV-DNA Positive by PCR No.=2   | 12.75 | ±2.15 | 11.5         | 14.0         | 1.572                | <0.001<br>(H.S) |
| CMV-DNA Negative by PCR No. =17 | 7.63  | ±3.61 | 2.5          | 10.5         | -                    | -               |

\* Employment period among CMV positive employee is significantly higher than CMV negative employee.

<sup>\*</sup> CMV- DNA is signficiantly higher in females more than males among employee.

Table (22): Correlation coeffecient (r) between CMV infection among neonates in NICU and CMV infection of employee working in the same unit:

| CMV in neonates  | r      | P            |
|------------------|--------|--------------|
| CMV in personnel | 0.0183 | > 0.05 (N.S) |

There is no statistical correlation between both groups.

Table (23): Distribution of history of blood transfusion, S. IgG, S. IgM and PCR for CMV in group II starting and at the end of study:

| Personnel            | Sta | rting | At end | of study | Z          | P           |
|----------------------|-----|-------|--------|----------|------------|-------------|
| Variables            | No. | %     | No.    | %        | , <b>L</b> | •           |
| Blood<br>transfusion | 4   | 21.05 | 4      | 21.05    | 0.0        | > 0.05 (NS) |
| CMV - IgG            | 19  | 100.0 | 19     | 100.0    | 0.0        | > 0.05 (NS) |
| CMV- IgM             | 0   | 0.0   | 0      | 0.0      | 0.0        | > 0.05 (NS) |
| PCR for CMV          | 2   | 10.53 | 2      | 10.53    | 0.0        | > 0.05 (NS) |

All variables of personnel in group II were statistically insignificant.

**Table (24):** Regression variables related to congenital CMV infection among neonates in NICU:

| Variable             | Reg. Coeff. | S.E.  | F value | P      |  |
|----------------------|-------------|-------|---------|--------|--|
| Congenital anomalies | + 1.663     | 0.769 | 4.639   | < 0.05 |  |
| Low birth weight     | + 1.119     | 0.429 | 6.557   | < 0.05 |  |
| Constant             | 22.269      |       |         |        |  |

<sup>\*</sup> SE = Standard Error

- \* The most predictor regressions variables related to congenital CMV in the study were congenital anomalies and low birth weight.
- \* NB: Other variables such as gestational age, breast milk feeding, fever, jaundice, anemia ... etc are not related statistically by regression analysis.

Table (25): Regression variables related to acquired CMV infection among neonates in NICU:

| Variable            | Reg. Coeff. | S.E.  | F value | P      |  |
|---------------------|-------------|-------|---------|--------|--|
| Low birth weight    | + 1.584     | 0.287 | 5.188   | < 0.05 |  |
| Breast milk feeding | + 0.519     | 0.189 | 4.989   | < 0.05 |  |
| Constant            | 24.289      |       |         |        |  |

$$R = 0.289$$

\* The most predictor regression variables among acquired CMV in the study were low birth weight and breast milk feeding.

Table (26): Regression variables related to CMV infection among neonates in NICU (both congenital and acquired):

| Variable               | Regression coefficient | S.E   | F. value | P      |
|------------------------|------------------------|-------|----------|--------|
| - low birth weight     | + 1.394                | 0.477 | 6.713    | < 0.05 |
| - Congenital anomalies | + 1. 261               | 0.713 | 3.851    | < 0.05 |
| - Breast milk feeding  | + 1.193                | 0.372 | 4.152    | < 0.05 |
| Constant               | 20.142                 |       |          |        |

$$R = 0.681$$

\* The most predictor regression variables among neonates in NICU were low birth weight, congenital anomalies and breast milk feeding.

Table (27): Regression variables related to CMV infection among employee in NICU.

| Variable                  | Regression coefficient | S.E    | F. value | P          |
|---------------------------|------------------------|--------|----------|------------|
| Blood transfusion         | + 1.251                | 0. 679 | 4.128    | < 0.05 (s) |
| Employment period (years) | + 1.087                | 0.438  | 6.334    | < 0.05 (s) |
| Constant                  | 21. 057                |        |          |            |

$$R = 0.283$$

<sup>\*</sup> The most predictor regression variables related to CMV infection in employees in NICU were blood transfusion and employment period.