Table (7): Biochemical reaction of shigella

Organism Glucose Lactose	Glucose	Lactose	Maltose	Maltose Mannite Sucrose Indole Methyl	Sucrose	Indole	Methyl	Voges	Citrate	Urea	H ₂ S	Motility
Shigella,												
dysenteriae	ᅱ	1	•	ı	,	3	+	,		1	1	ı
Shigella, flexneri	1	t	ŧ	-	ı	3	+	1				
Shigella sonnei	T	(T)	1	-1		a .	+	,		,	,	

Positive reactionSugar fremented with no gas.Variable result 3 + +

\$ 87 æ

The study also showed that the mean presumptive count for 4 water samples out of 40 chlorinated water samples was (0-10). For under ground water samples, the mean presumptive counts in 24, 8 and 13 water samples were 0-10, 10-100 and 100-200 respectively (Table 13, 14).

Bacteriological study of chlorinated and underground water samples for both *faecal streptococci* and *C. perfringens* showed that only 6 samples from the rural villages were containing *feacal streptococci*; 2 samples were from rural taps and 4 samples from rural hand pumps, and both chlorinated and underground water samples, were found to be free from *C. perfringens*.

b- Results of bacteriological examination of water samples for pathogenic organisms:

All the collected water samples from Benha city and the surrounded rural villages were bacteriologically examined for detection of pathogenic organisms: samlonellae, shigellae, and vibrios.

The study showed that only (1) sample from rural hand pump out of 100 contain salmonella para typhi B (S.P.B) and the rest of all collected water samples from both chlorinated and underground water showed negative result for salmonellae, shigellae, and vibrios (Table 15).

C- Results of bacteriological examination of water samples for Aeromonas SPP.

Bacteriological analysis of 40 water samples out of 100 samples collected from Benha city and the surrounded rural villages were carried up for detection of *Aeromonas* using membrane filter method. This study revealed negative results for *Aeromonas* Spp.

Table (8): Frequency of pollution in 40 chlorinated water samples from Benha city.

Source of samples	No. of samples	No. of polluted samples	%
Main source	4	0	0
Reservoirs	13	1	7.6
Public taps	23	3	13.1
Total	40	4	10

^{*} Pollution in reservoir water samples (7.6%) is higher than that of public taps (13.1%).

Table (9): Frequency of pollution in 60 underground water samples from rural areas.

Source of samples	No. of samples	No. of polluted samples	%
Storage tanks	5	0	0
Rural hand pumps	30	14	46.6
Rural taps	25	7	28
Total	60	21	35

* Pollution in rural hand pumps samples (46.6%) is higher than that of rural taps (28%).

Table (10): Frequency of pollution in both chlorinated and underground water samples.

Source of samples	Chlorinat	ed water	Undergrou	ınd water	Z	P
	No.	%	No.	%		
Main sources	0	0	0	0		
Final outlet	4	.10	21	35	2.001	* <0.05

^{*} Significant difference (P < 0.05).

Table (11): Pattern of pollution in 40 chlorinated water samples from Benha city.

Source	No. of tested	Typical (co		Aty	pical	7	otal
 	samples	No.	%	No.	%	No.	%
Main source	4	0	0	0	0	0	0
Reservoir	13	0	0	1	7.6	1	7.6
Final outlet (public taps)	23	0	0	3	13.1	3	13.1
Total	40	0	0	4	10	4	10

^{*} Pollution in chlorinated water samples mainly by atypical coliforms.

^{*} Pollution by atypical coliforms is higher in public taps (13.1%) than that of reserviors water samples (7.6%).

Table (12): Pattern of pollution in 60 underground water samples from rural areas.

Source	No. of tested	Typical (c E, c		Aty	pical	To	otal
	samples	· No.	%	No.	%	No.	%
Main source	5	0	0	0	Ó	0	0
Rural hand pump	30	8	26.6	6	20	14	46.6
Rural taps	25	4	16	3	12	7	28
Total	60	12	20	9	15	21	35

^{*} Underground water samples found to be polluted by both typical and atypical coliform.

^{*} Rural hand pumps samples found to be more polluted (46.6 %) than that of than that of rural taps (28%).

Table (13): Mean value of presumptive coliform count in chlorinated water samples from Benha city.

Source	No. of tested	Number of I	bacterial coloni	es /100 ml of wa	ter samples*
	samples	0	0-10	10-100	100-200
Main source	4	4	0	0	0
Reservoir	13	12	1	0	0
Final outlets (public taps)	23	20	3	0	0

* Number of bacterial colonies / 100 ml of water was calculated according to McCardy's tables (Senior, 1996).

Table (14): Mean values of presumptive coliform count in underground water samples from rural areas.

Source	No. of tested samples	Number of	bacterial col		
. 1	banapa	0	0-10	10-100	100-200
Main source	5	5	0	0	0
Rural hand pump	30	0	16	1	13
Final outlet (rural	25	0	18	7	0
taps)					

^{*} Number of bacterial colonies/ 100 of water was calculated according to McCrady's table (Senior, 1996).

Table (15): Results of examination of 100 water samples for pathogenic organisms.

Source of water		Pathogenic baeteria	
	Saimonella	Shigella	Vibrios
Chlorinated	•	-	-
Underground	1*		_

* S.P.B. (one strain)

Table (16): Cytotoxic effect of E. coli strains filtrate in vero monolayer after one day of inoculation.

Strain number			Dilution	}		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Undituted	1/4	1/16	1/64	1/256	1/1024
1	4	3	2	1	1	0
2	2	0	0	0	0	0 -
3	. 0	0	0	0	0	0
4.	0	0	0	0	0	0
5	4	3	1	1	0	0
6	4	2	2	0	0	0
7.	0	0	: 0	0	0	0
8	4	3	1	0	0	0
9	4	4	3	. 2	1	0
10	. 0	0	0	0	0	0
. 11	2	0	0	0	0	0
12	0	0	0	0	0	0

0 =no response.

 $1 = \le 25\%$.

2 = about 50%.

3 = about 75%.

 $4 = \ge 90\%$ of cells affected.

(Konowalchuk, et al., 1977).

Table (17): Cytotoxic effect of E. coli strains filtrates in vero monolayer after two days of inoculation.

Strain number			Dilution	1		
	Undiluted	1/4	1/16	1/64	1/256	1/1024
1	4	3	3	2	1	0
2	2	0	0	0	0	0
3	0	0	0	0	0	0
4	0	. 0	0	0	0	0
5	4	3	2	2	1	. 0
6	4	3	. 2	1	0	0
7	0	0	0	0	o	0
8	4	3	2	0	0	0
9	4	4	3	2	1	0
10	0	0	0	0	0	0
11	2	0	0	0	0	0
12	0	0	0	0	0	0

^{0 =} no response.

(Konowalchuk et al., 1977)

 $^{1 = \}le 25\%$.

^{2 =} about 50%.

^{3 =} about 75%.

 $^{4 = \}ge 90\%$ of cells affected.

Table (18): Cytotoxic effect of E. coli strains filtrate in vero monolayer after three day of inoculation.

Strain number			Dilution	1		
	Undiluted	1/4	1/16	1/64	1/256	1/1024
. 1	4	4	3	2	1.	0
2	3	···-•0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	4	4	2	2	1	0
6	4	4	2	1	0	0
7	0	0	0	0	0	0
8	4	4	2	0	0	0
9	4	4	4	3	2	0
10	0	0	0	0	0	0
11	3	0	0	0	0	0
12	0	0	0	0	0	0

0 = no response.

 $1 = \le 25\%$.

2 = about 50%.

3 = about 75%.

 $4 = \ge 90\%$ of cells affected.

(Konowalchuk et al., 1977)