<u>Table: (1): Means of age ±SD standard deviations</u> <u>among the study groups</u>

Age (m) Study group	Mean ± SD	t	P
- Cases (n = 44)	30. 7 ± 43.4	0.53	> 0.05 (NS)
- Control (n = 16)	34.4 ± 9.3		

- ➤ NS= Non significant.
- This table shows insignificant difference between cases and controls as regard age.

Figure (1): Means of age:

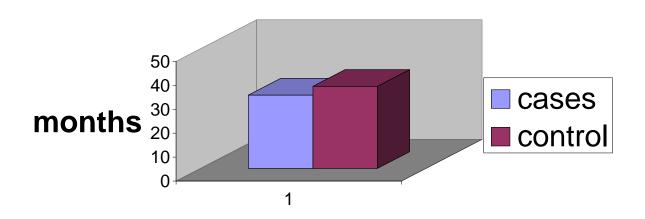


Table: (2) Means of weight ± SD among study groups

Wt (kg) Study group	X ± SD	t	P
- Cases (n = 44)	11.8 ± 10.8	0.8	> 0.05
- Control (n = 16)	13.2 ± 1.4	0.8	> 0.03 (NS)

► NS= Non significant.

This table shows insignificant difference between cases and controls as regard weight.

Figure (2): Means of weight:

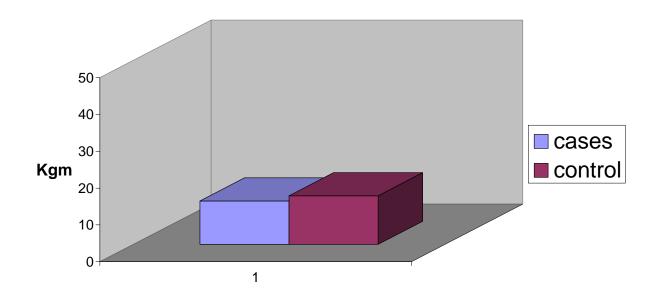


Table (3): Means of height ±SD among study groups

Ht (cm) Study group	X ± SD	t	P
- Cases(n = 44)	85.6 ± 25.9	2.24	< 0.05 (S)
- Control (n = 16)	94.6 ± 3.8		

^{ightharpoonup} S= significant.

This table shows significant difference between cases and controls as regard height.

Figure (3): Means of height:

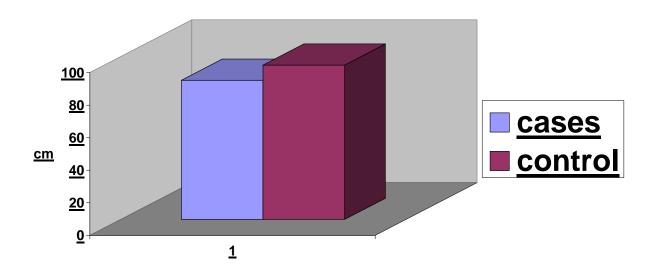


Table (4): Means of hemoglobin \pm SD among study groups

HB (gm) Study group	X ± SD	t	P
- Cases (n = 44)	9.7 ± 1.7	5.85	< 0.001
- Control (n = 16)	11.9 ± 1.1	. 5.06	(HS)

^{ightharpoonup} HS = highly significant.

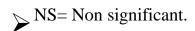

This table shows highly significant difference between cases and controls as regard hemoglobin.

Figure (4): Means of hemoglobin%:

Table (5): Means of urea ±SD among study groups

Urea Study group	X ±SD (mg/dl)	t	P
- Cases (n = 44)	26.3±8.4	1.09	> 0.05
- Control (n = 16)	24.6 ± 3.6		(NS)

This table shows insignificant difference between cases and controls as regard urea.

Figure (5): Means of blood urea:

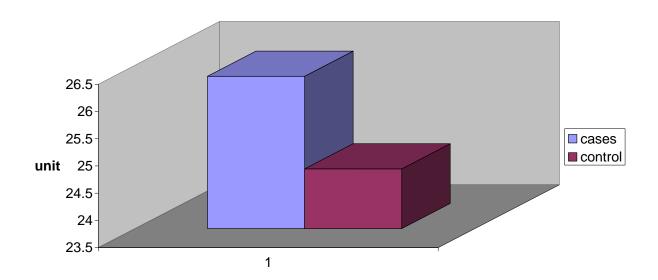


Table (6): Means of creatinine ±SD among study groups

Creatinine Study group	X ±SD		P
- Cases (n = 44)	0.8 ± 0.3	2 97	< 0.001
- Control (n = 16)	0.6 ±0.1	3.87	(HS)

- > HS= Highly Significant.
- > This table shows highly significant difference between cases and controls as regard creatinine although both parameters values are normal.

Figure (6): Means of creatinine:

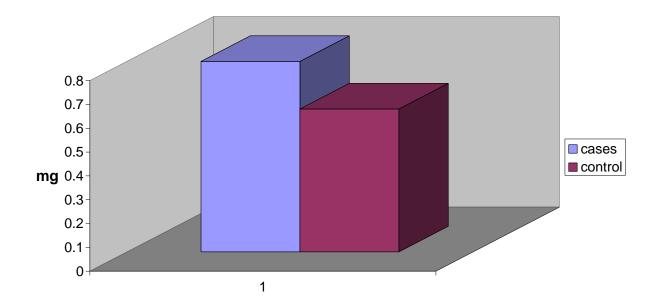


Table (7): Means of creatinine clearance± SD among study groups

Creatinine clearance Study group	$X \pm SD$ (ml/min/1.73 m ²)	t	P
- Cases (n = 44)	61.8 ± 31.9	4.20	< 0.001
- Control (n = 16)	88.9 ± 15.4	4.39	< 0.001 (HS)

- > HS= Highly Significant.
- > This table shows highly significant difference between cases and controls as regard creatinine clearance.

Figure (7): Means of creatinine clearance:

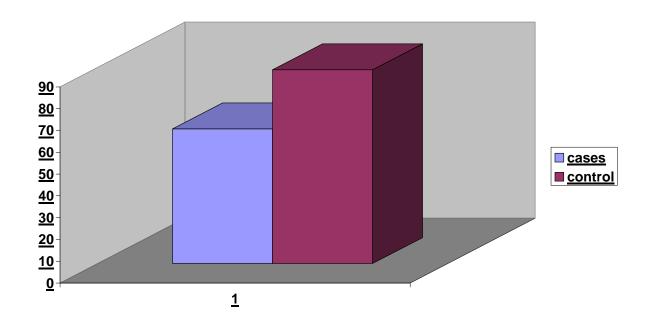


Table (8): Means of cystatin C ±SD among study groups

Cystatin C Study groups	X ±SD (mg/dl)	t	P
- Cases (n = 44)	0.88 ± 0.64	2.79	< 0.01
- Control (n = 16)	0.6 ± 0.12	2.19	(S)

 $[\]searrow$ S = significant.

This table shows significant difference between cases and controls as regard cystatin C.

Figure (8): Means of cystatin C:

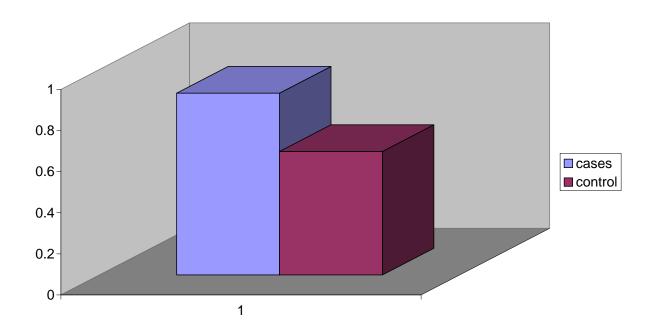


Table (9): Means of beta 2-microglobulin± SD among study groups

Beta 2 microglobulin Study group	X±SD (mg/dl)	t	P
- Cases (n = 44)	4.8±2.8	3.55	< 0.01
- Control (n = 16)	3.1 ± 0.9	3.33	(S)

> S= significant.

This table shows significant difference between cases and controls as regard beta 2-microglobulin.

Figure (9): Means of beta 2-microglobulin:

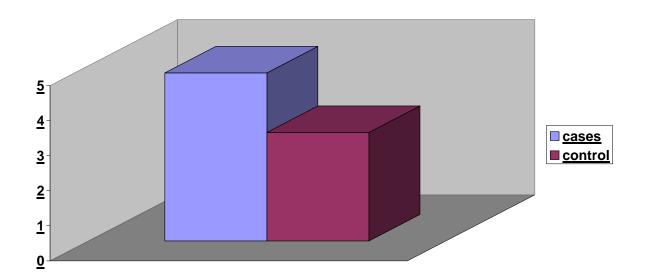
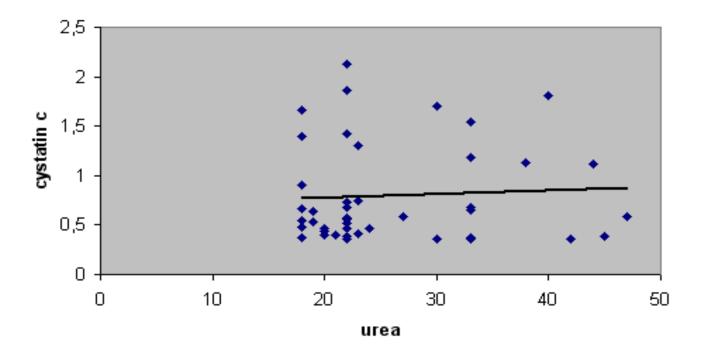


Table (10): Correlation coefficient "r" between cystatin C and renal functions


Cystatine C Renal function	"r"	P
Urea	0.084	>0.05 (NS)
Creatinine	0.189	>0.05 (NS)
Creatinine clearance	-0.326	<0.05 (S)
Beta 2-microglobulin	0.634	<0.001 (HS)

This table shows:

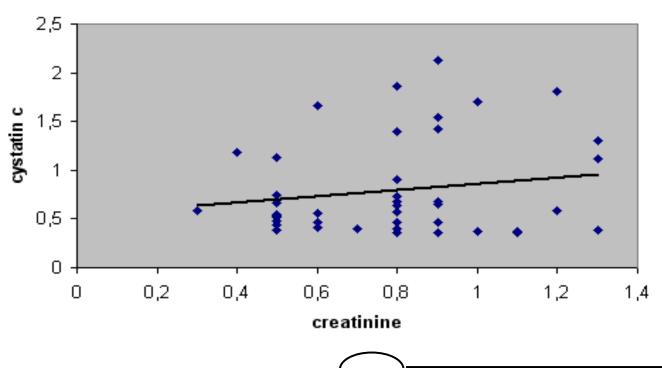
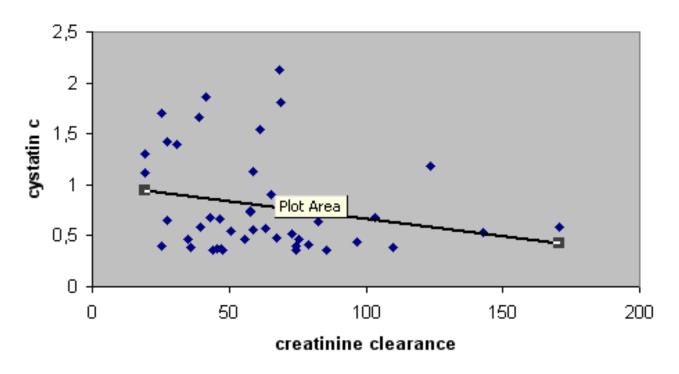
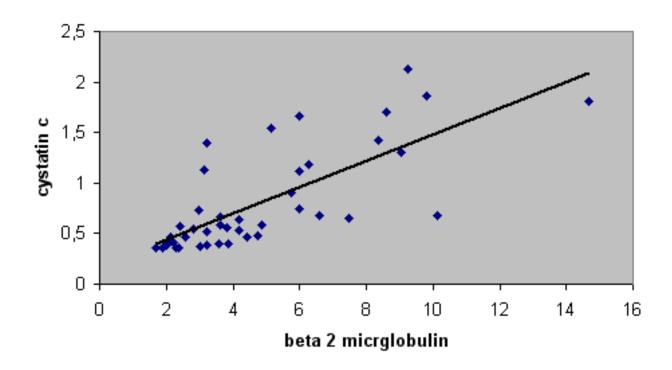

- Insignificant correlation between cystatin C with urea or creatinine.
- Negative significant correlation between cystatin C with creatinine clearance.
- Highly significant correlation between cystatin C with beta 2-microglobulin.

Figure (10): Correlation between cystatin C and renal functions:

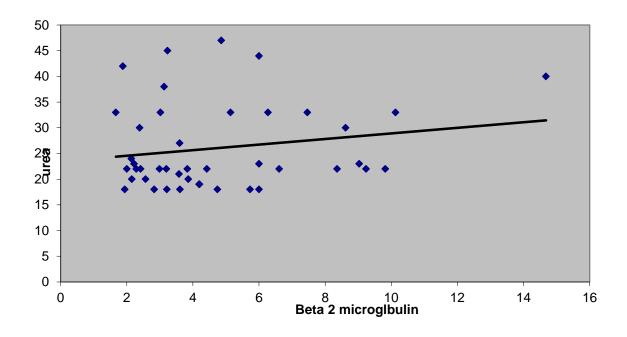

A: Correlation between cystatin C and urea


B:-Correlation between cystatin C and creatinine

C:-Correlation between cystatin C and creatinine clearance

D:-Correlation between cystatin C and beta 2-micrtoglobulin

<u>Table (11): Correlation coefficient "r" between Beta 2-microglobulin and renal functions</u>


Beta 2-microglobulin Renal function	" r "	Р
Urea	0.192	> 0.05 (NS)
Creatinine	0.304	<0.05 (S)
Creatinine clearance	-0.357	< 0.05 (S)

This table shows:

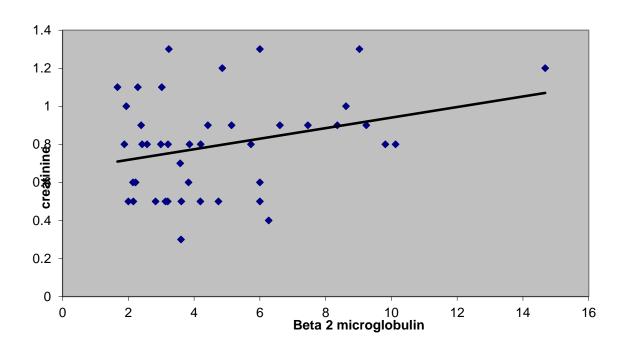

- Insignificant correlation between beta 2-microglobulin with urea.
- Significant correlation between beta 2-microglobulin with creatinine.
- Negative significant correlation between beta 2-microglobulin with creatinine clearance.

Figure (11): Correlation between beta 2-microglobulin and renal functions:

A: Correlation between beta 2-microglobulin and urea:

B: Correlation between beta 2-microglobulin and creatinine:

<u>C: Correlation between beta 2-microglobulin and creatinine clearance:</u>

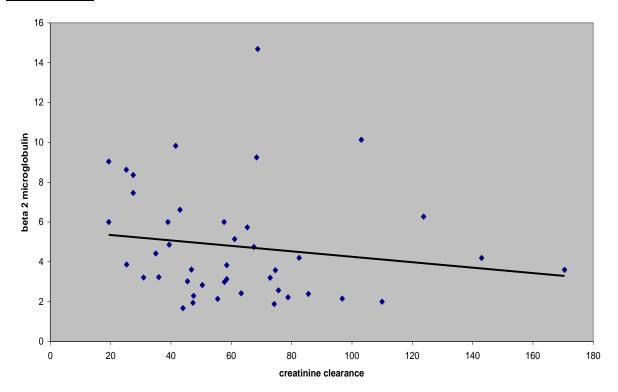


Table (12): Distribution of the study groups according to normality of different markers of kidney injury

	Study groups Abnormal cases Kidney markers Normal cases				
•	Creatinine clearance	18 cases	40.9%	26cases	59%
	Beta 2- microglobulin	31 cases	70.5%	13cases	9.5%
	Cystatin C	21 cases	47.7%	23cases	52.3%

This table shows that beta 2-microglobulin is the most sensitive marker for changes occur in kidney injury then cystatin C and the last marker is creatinine clearance.

<u>Table (13): Means of creatinine clearance ±SD according to age of cases</u>

Creatinine clearance Study group	X±SD	t	P
<1 year	42.2± 16.4	t ₁ = 2.49	<0.005 (S)
>1 year	58.23± 18.9	t ₂ =4.32	<0.001 (S)
2-5 years	88.9± 35.1	$t_3 = 2.69$	<0.001 (S)

• This table shows significant difference of creatinine clearance with different ages.

Table (14): Means of cystatin c ±SD according to age of cases

Cystatin C Study group	X±SD	t	P
<1 year	0.7 ± 0.4	t ₁ = 2.18	<0.05 (S)
>1 year	1.06 ±0.5	t ₂ =1.09	>0.05 (NS)
2-5 years	1.06 ±0.5	t ₃ = 0.2	>0.05 (NS)

- This table shows significant difference of cystatin C with age less than 1 year.
- Insignificant difference of cystatin C with age of 1 year or more.

Table (15): Means of beta 2-microglobulin ±SD according to age of cases

Beta 2-microglobulin Study group	X±SD	t	P
<1 year	5.4± 2.4	t ₁ = 1.47	>0.05 (NS)
>1 year	3.9 ±2.4	t ₂ = 0.7	>0.05 (NS)
2-5 years	4.6 ±3.5	$t_3 = 0.58$	>0.05 (NS)

• This table shows insignificant difference of beta 2-microglobulin with different ages.

Table (16): Distribution of the cases according to abnormality between creatinine clearance and cystatin C

Kidney markers	Abnormal Cases		t	p
Creatinine clearance	18 cases	40.9%	12 665	<0.001
Cystatin C	21 cases	47.7%	12.665	(HS)

This table shows that cystatin C better than creatinine clearance.

<u>Table (17): Distribution of the cases according to abnormality between creatinine clearance and beta 2-microglobulin</u>

Kidney markers	Abnormal Cases		t	p
Creatinine clearance	18 cases	40.9%		
Beta 2- microglobulin	31 cases	70.5%	11.807	<0.001 (HS)

This table shows that beta 2-microglobulin better than creatinine clearance.

Table (18): Distribution of the cases according to bnormality between cystatin C and beta 2-microglobulin

Kidney markers	Abnormal Cases		t	P
Cystatin C	21 cases	47.7%	9.053	<0.001
Beta 2- microglobulin	31 cases	70.5%	7.000	(HS)

This table shows that beta 2-microglobulin better than cystatin C.