TABLE OF CONTENTS

<u>P</u>	age
List of Tables	vi
List of Figures	xiii
Acknowledgements	xvii
Aims of Study	x .ı x
Review of Literature	xxi
Introduction	XXI
CHAPTER 1 : The Classic Growth Promoting Hormones	
A. The Endocrinological Control of Growth	1
B. The Growth Promoting Actions of the Classic Growth	
Promoting Hormones	2
1. Growth promoting actions of growth hormone	2
2. Growth promoting actions of prolactin	5
3. Growth promoting action of thyroid hormones	7
C. The Essential Factors Regulating the Secretion of the	
Classic Growth Promoting Hormones	9
1. The control of growth hormone secretion	9
2. The control of prolactin secretion	12
3. The control of thyroid hormone secretion	13
D. The Hormonal Interactions of the Classic Growth Promoting	
Hormone	15
I. Interactions of the classic growth promoting with	
one another	15
II. Interactions of the classic growth promoting hormones	
with other hormones affecting skeletal tissue growth .	20

CHAPTER II: The Growth Promoting Factors: Somatomedins	Paga
Introduction and Classification	Page 30
A. Site of synthesis and binding proteins	33
B. Actions of somatomedin	35
	38
C. Factors affecting somatomedin activity	38
I. Growth hormone and other hormones	
II. The effect of other growth factors	42
III. Somatomedins and nutritional status	42
D. The clinical value of the somatomedin concept	44
CHAPTER III: Normal Growth Introduction	59
A. Growth of the child from birth to adolescence	60
B. Factors affecting growth post-natally, during early	
and late childhood and during puberty	69
C. Assessment of physical growth and maturation	74
D. Population differences in skeletal rates of maturation	81
E. Hormonal changes at puberty	82
CHAPTER IV: Short Stature Introduction and Classification	85
Short Stature of Endocrine Origin	90
	99
Growth Hormone Deficiency (GHD)	99
Classification	99
I. Aetiological classification	
II. Clinical classification	103

																			<u>Page</u>
Α.	True	GHD .	•	•	•	•	•	•	•	•	•	•	•	•		•		•	103
В.	False	GHD	•	•	•	•	•	•	•	•	•			•	•			•	106
c.	GHD i	n othe	r d	ise	ase	st	ate:	s	•	•	•	•	•	•		•		•	110
D.	Diagn	osis a	nd 1	man	agei	nen	t o	f G	HD	•	•	•	•	•	•	•	•	•	112
<u>CHAP</u>	TER V:	Maln	utr	iti.	on	and	Gr	owt	h Fa	ail	ure	-							
Α.	Prima	ry mal	nut	rit	ion	st	ate	s	•	•	•	•	•	•	•	•	•	•	117
В.	Malnu	tritio	n a	sso	cia	ted	wi	th	gasi	tro	-in	ites	tin	al					
	disor	ders.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	119
C.	Malnu	itritio	n,	gro	wth	di	stu	rba	nce	s a	nd	chr	oni	c i	lln	ess	•	•	120
D.	Failu	re to	thr	ive	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	121
E.	Inter	action	of	ho	rmo	nal	an	d n	utr	iti	ona	l f	act	ors	•		•	•	123
<u>Mate</u>	rial a	and Met	hod	<u>s</u>	•			•	•		•	•	•	•	•			•	125
Sele	ction	of Cas	es	•	•		•	•	•	•	•	•		•	•	•	•	•	. 126
Coll	ection	n of Au	ıxol	ogi	cal	Da	ta	•	•		•	•	•	•	•		•	•	1 27
Endo	crine	Studie	2 S	•		•	•		•	•	•		•	•	•	•	•	•	137
Disc	cussion	n of Me	tho	dol	ogy	•			•	•	•		•	•			•	•	157
	1.	Growth	n st	and	lard					•				•		•		•	1 59
	2.	Bone a	age				•						•		•	•	•		168
	3.	Sexual	l ma	tur	ati	on					•				•			•	169
	4.	The e	ffic	асу	of	th	e i	กรเ	ılin	to	le	cano	ce t	est			•	•	171
	5.	Thyro	id h	orn	ione	s					•		•				•		173
	6.	The th	nyro	tro	pir	ı re	elea	sir	ng h	om	none	e (7	rrh)) te	st	•		•	175
	7.	The e														•			175

	·	Page
Resu:	<u>lts</u>	178
Anal	ysis and Discussion of Results	2 10
I.	Discussion and Interpretation of the Clinical Disorders,	
	Clinically, Endocrinologically and Aetiologically	2 13
Α.	Growth hormone deficiency	213
В.	Acquired hypothyroidism	230
с.	The Turner syndrome	235
D.	The Mauriac syndrome	238
	Patients with disordered somatomedin activity	246
Ε.	Silver-Russell syndrome	252
F.	Silver-Russell Syndrome	257
G.	Growth delay	23,
Н.	Impaired prolactin secretion in a two-year old - could it	
	be the cause of short stature in an apparently normal child?	27 5
II.	Analysis of Inter-Hormonal Relationships Using a Micro-	
·	Computer	27 7
Α.	Growth hormone and somatomedins	27 7
•	 Correlating GH secretion in relation to age, sex 	
		278
	the descriptions in SM	284
	3. Correlations between GH values and bioassayable SM	207
	activity in relation to age, sex and clinical disorder .	
В.	Thyroid hormones and growth hormone	. 289
	 Age related variations in thyroxine and thyroid 	
	stimulating hormone	. 29
	2. Hormonal variations related to sex	29

			Page
	3.	Thyrotropin and thyroxine interrelationships in	
		normal children and children with thyroid dysfunction.	300
	4.	Interrelationships between GH and thyroid hormones	305
c.	Corr	elating the secretory patterns of prolactin with	
	thyr	oid hormones, growth hormone and somatomedins in	
	rela	tion to age, sex and the clinical disorders of growth .	309
D.	Corr	relating the hormonal data in the delay group and	
	the	control group separately	325
Summ	ary a	and Conclusion	334
	ence		339

ν

LIST OF TABLES AND DIAGRAMS

IN THE REVIEW OF LITERATURE

		<u>P</u>	age
Table A:	Comparison of factors controlling growth hormone (GH) and prolactin (PRL) in humans (Frantz, 1978).	•	19
Table B :	Tissue effects of somatomedins (Phillips and Vassilopoulou-Sellin, 1980)	•	36
Table C:	Etiology of hypothyroidism (LaFranchi, 1979)	•	93
Table D:	Clinical features of hypothyroidism in childhood (LaFranchi, 1979)	•	94
Diagram A:	Summary of the metabolic actions, control of secretion and hormonal interactions of growth hormone (GH), prolactin (PRL) and thyroid		
Diagram B:	A diagramatic representation of the relationships between somatomedin and growth hormone (GH), prolact (PRL), thyroid stimulating hormone (TSH), insulin,	in	29
	placental lactogen (PL), thyroxine (T4) and	•	42

		II. Tables in Results and Discussion	Page
Table	1:	Growth assessment data of cases with growth	
		hormone deficiency	183
Table	2 :	Growth assessment data of cases with hypothyroidism.	183
Table	3 :	Growth assessment data of cases with growth	
		delay	184
Table	4:	Miscellaneous cases with short stature	185
Table	5 :	Combined hypothalamo-pituitary function test in	
		control cases	186
Table	6:	Combined hypothalamo-pituitary function test in	
		cases of short stature: Cases of growth hormone	
		deficiency	188
Table	7 :	Combined hypothalamo-pituitary function test in	
		cases of short stature: Cases of hypothyroidism	
		(acquired hypothyroidism, autoimmune thyroiditis and	
		congenital hypothyroidism)	189
Table	8 :	Combined hypothalamo-pituitary function test in	
		cases of short stature: Cases of growth delay .	190
Table	9 :	Combined hypothalamo-pituitary function test in	
		cases of short stature: Miscellaneous cases of	
		-large skakuma	192

		Page
Table 10:	Basal levels of somatomedin (SM) and thyroxine	
	(T4), basal, peak values degree and type of	
	response of growth hormone (GH), thyrotropin	
	(TSH) and prolactin (PRL) in a combined ITT and	
	TRH stimulation test in the age group 2-5	
	years	193
Table 11 :	Basal levels of somatomedin (SM) and thyroxine	
	(T4), basal levels, peak values, degree and type	
	of response of growth hormone (GH), thyrotropin	
	(TSH) and prolactin (PRL) during a combined ITT	
	and TRH test in the age group 5-12 years	194
Table 12:	Basal levels of somatomedin (SM) and thyroxine	
	(T4), basal levels, peak values, degree and type	
	of response of growth hormone (GH), thyrotropin	
	(TSH) and prolactin (PRL) during a combined ITT	
	and TRH test in males aged 12-16 years	195
Table 13 :	Basal levels of somatomedin (SM) and thyroxine	
	(T4), basal levels, peak values, degree and type	
	of response of growth hormone (GH), thyrotropin	
	(TSH) and prolactin (PRL) during a combined ITT	
	and TRH stimulation test in females aged 5-10	
	and 10-14 years	196

		Page
Table 14:	Syndromes clinically manifest by cryptorchidism	
	and short stature	224
Table 15 :	Syndromes and chromosomal abnormalities with	
	documented GHD	226
Table 16:	Comparison of the GH responses during an ITT test	
	in age groups in either sex at each time point	
	using the F-ratio test	281
Table 17:	Comparison between males-females for GH component	
	during the combined ITT and TRH test within each	
	age group	283
Table 18 :	A study of the peak values of GH in males with age .	284
Table 19 :	A study of the variation of the peak GH values of	
	GH in females with age	284
Table 20 :	A study of the variation of the peak responses of	
	GH with age	284
Table 21 :	A study of the variation of the degree of GH	
	response in males with age	2 84
Table 22:	A study of the variation of the degree of GH	
	response in females with age	285
Table 23:	A study of the variation of the degree of GH	
	response with age	262

		Page
Table 24 :	A study of the differences of peak GH values	
•	inbetween the clinical groups of short stature:	
	GHD, hypothyroidism and growth delay	285
Table 25a:	A study of the variation of SM with age using	
	the ANOVA test	289
Table 25b:	A study of the variation of SM with age in males	
	using the ANOVA test	289
Table 25c:	A study of the variation of SM with age in females	
	using the ANOVA test	289
Table 26 :	Comparison between males and females for SM-C	
	component	289
Table 27 :	Significance of comparing the difference of the	
	SM basal levels in the various clinical disorders	
	of short stature	291
Table 28 :	The association between low, normal SM activity	
	to low, normal and high peaks of GH responses	
·	observed in this study	291
Table 29 :	Correlation of basal, peak and degree of GH response	
	during an induced hypoglycaemic test with basal SM	
	activity in early, late childhood and puberty	294
Table 30 :	Correlation of basal, peak and degree of GH reponse	
	in an induced hypoglycaemic test in patients with	
	GHD, hypothyroidism and growth delay	294

		Page
Table 31 :	Comparison of TSH response to TRH stimulation test	
	in the age groups in either sex at each time point,	
	using the F-test	298
Table 32:	A study of the age related T4 variations in children	
	with normal thyroid function using the F-ratio	300
Table 33:	A study of the age related variations in basal	
	TSH in children with normal thyroid function using	
	the F-ratio	300
Table 34:	A study of the age related variations in the degree	
	of response of TSH to TRH test in children with	
	normal and abnormal thyroid function using the	
	F-ratio	300
Table 35 :	A study of the age related variations in the peak	
	response of TSH in a TRH test in children with normal	L
	thyroid function using the F-ratio	300
Table 36:	Correlation of basal and peak values of TSH in	
	the three age groups and in either sex	304
Table 37 :	Percentage distribution of PRL responses of cases	
	in the study according to age	316
Table 38:	Percentage distribution of PRL responses of cases	
	in the study according to sev	316

		rage
Table 39 :	Correlating the types of PRL responses with the	
	different types of SM activity in the serum of the	
	cases in this study	318
Table 40 :	Relationship between the GH and PRL responses	
	during a combined ITT and TRH stimulation test	320
Table 41 :	Correlating the peak TSH response with the type	
	of PRL response during a combined ITT and TRH	
	test	324
Table 42 :	Analysis of the types of PRL response in normal	
	controls and in patients with growth hormone	
	deficiency, hypothyroidism and growth delay	328
Table 43:	Comparison of the types of responses of GH and	
	TSH observed during the combined ITT and TRH test	
	in the control group versus the growth delay	
	group	331

LIST OF FIGURES

			Page
Figure	1 :	Assay calibration curve for thyroid stimulating	
		hormone (TSH), percent bound (%Bx/Bo) versus the	
		concentrations of the standards in μ IU/ml (i)	
		On semi-logarithmic graph paper (ii) On 3 cycle	
		logit-log paper	147
Figure	2 :	Assay calibration curve for thyroxine (T4) percent	
		bound (%Bx/Bo) versus the concentrations of the	
		standards in µg/dl (i) On semi-logarithmic paper	
		(ii) On logit-log paper	153
Figure	3 :	Egyptian standards for growth in height and weight	
•		for either sex from 6 to 11 years, 1962-63 (Sarhan,	
		1970), by permission from authors	160
Figure	4:	Median heights for age in males and females (6-19	
		years) in rural and urban areas according to endemicit	у
		of schistosomiasis in Egypt (El-Zawahry, 1970) by	
		permission from authors	162
Figure	5 :	Mean heights for male and females positive and	
		negative cases for cardiac disease in Egyptian	
		children (6-18 years of age) in rural and urban areas	
		(Moursi, Hanafi & Sarhan, 1970) by permission from	
		authors	163
Figure	6 :	: Growth curves for height in Egyptian children with	
		cardiac disease in either sex from 6 to 18 years of	

			Page
		age in rural and urban areas (Moursi, Hanafi &	
		Sarhan, 1970), by permission from authors	164
Figure	7 :	Growth curves for growth in weight in Egyptian	
		children with cardiac disease (rheumatic and/or	
		congenital) in either sex from 6 to 18 years of	
•		age in rural and urban areas (Moursi, Hanafi &	
		Sarhan, 1970) by permission from authors	165
Figure	8 :	Heights and weights of the short male cases of	
		the study and the follow-up data after investigation	
		in some cases (OA, TA, ASH) and after treatment	
		in others (HA, YMM, JF) (French standards)	198
Figure	9:	Heights and weights of short females in the study	
		with follow-up data after investigation in some	
		(AAO, RSA, ES) and after treatment in others	
		(GS and HAA) (French standards)	199
Figure	10a:	Heights of the males in the study and follow-up	
		of some of these cases after investigation in some	
		and with treatment in others (British standards) .	200
Figure	10b:	Weights of males in the study and follow-up of	
		some of these cases after investigation in some and	
		with treatment in others (British standards)	200
Figure	lla:		
		some of these cases after investigation in some and	
		with treatment in others (British standards)	201

		Page
Figure 11b:	Weights of females in the study and follow-up of	
	some of these cases after investigation in some and	
	with treatment in others (British standards)	201
Figure 12a:	Skinfold thickness of some of the male cases	
	of this study: A typical GHD (KG), a GHD	
	resistant to GH therapy (JF) and the muscular	
	boys with growth delay (TA, WB) and the lean boys	
	with growth delay (AS, OA, MMM) (British standards,	
	1970)	202
Figure 12b:	Skinfold thicknesses of some of the female cases	
	of this study: A growth delayed girl (ES), familial	
	shortness and growth delay (AAO) and a girl with	
	raised SM activity (RSA). (British standards,1970).	202
Figure 13:	Dose response curves of patients with GHD (MHH,KG)	
	as compared with a control case	203
Figure 14 :	Dose response curves of a normal SM activity in	
	a pubertal GHD patient (SI) and low and inhibited	
	SM activity in a GHD patient resistant to GH therapy	
	(JF) as compared to a normal control (EG)	203
Figure 15:	Dose response curve in female Laron dwarf	
	(YM)	203
Figure 16:	Dose response curve of a case of juvenile hypothyroi	dism
	marainally low serum SM activity	203

		Page
Figure 17 :	Dose response curves in cases with growth delay	
	(normal SM activity) case MAO, a male of the lean	
	variety (inhibitory activity) and case ES, a female	
	with growth delay. A male SMH with hypogonadism	
	and receiving exogenous sex steroids (inhibitory	
	SM activity)	204
Figure 18:	Showing the control cases that had normal SM	
	activity (MAS) and those that had an inhibited	
	SM activity	204
Figure 19 :	Characterisation of the different patterns of	
	response of GH during a combined ITT and TRH	
	test	205
Figure 20 :	The different types of patterns of response of TSH	
	to TRH ellicited during a combined ITT and TRH	
	stimulation test	206
Figure 21 :	The different types of the patterns of response	
	of prolactin (PRL) in the combined ITT and TRH	
	stimulation test	207
Figure 22:	Distribution of the cases of short stature under	
	study according to their clinical diagnosis	
	and sex	210
Figure 23 :	The growth hormone (GH), insulin and somatomedin	
	metabolic interactions	243

		Page
Figure 24 :	The increase of serum SM with increase in	
	chronological age (C/A) bone age (B/A) and height	
	age (H/A) in growth delayed males towards puberty	
	and the decline of serum SM activity after	
	puberty	264
Figure 25:	Comparison of the peak GH responses in normal	
	healthy controls, patients with growth hormone	
	deficiency (GHD), hypothyroidism and growth	
	delay	
Figure 26:	Peak GH responses versus SM activity in the	
	cases of the study	292
Figure 27:	Comparison of TSH and T4 basal levels in control,	
	GHD and hypothyroid patients	307
Figure 28:	Comparison of the TSH response to TRH in controls,	
	GHD and hypothyroids	313