CONTENTS

	Page
CHAPTER 1	U
INTRODUCTION AND AIM OF THE WORK	
INTRODUCTION	1
AIM OF THE WORK	4
CHAPTER 2	
LITERATURE REVIEW	
1- General remarks about venerid clams	5
2- Morphological characters used in venerids taxonomy	8
3- Application of RAPD-PCR technique in taxonomy	9
4- Biomonitors/bioindicators	13
5- Interactions between dissolved metals and aquatic organisms	14
5-1- Metal speciation	14
5-2- Metal bioaccumulation	16
5-3- Metal uptake and depuration	17
5-4- Metal toxicity and detoxification	19
6- Oil pollution	22
7- The use of biomarkers in biomonitoring	23
7-1- Histopathological biomarker	27
7-2- Genetic ecotoxicological biomarker	29
CIVA PETER A	
CHAPTER 3	
MATERIALS AND METHODS	
1- Study areas	32
1-1- Mediterranean Sea stations.	32
1-2- Suez Canal stations.	33
1-3- Red Sea stations.	33
2- Morphological investigation	33
3- Ecological investigation	33
3-1- Physico-chemical parameters determination	34
3-1-1- Water temperature (°C)	34
3-1-2- Hydrogen ion concentration (pH)	34
3-1-3- Salinity (‰)	34
3-1-4- Dissolved oxygen (DO) mg/l	34
3-2- Heavy metals determination	34
3-2-1- Heavy metals in surface sea water	34
3-2-2- Heavy metals in sediment.	35
3-2-3- Heavy metals in soft tissues	35
3-2-4- Heavy metals in shells	36
3-3- Total petroleum hydrocarbons (TPHs) determination	37
4- Histopathological study	37

CONTENTS/CONT.

001,120,001,10	Page
5- Genetic diversity.	38
5-1- Different species from the same station	38
5-1-1- Genomic DNA extraction and purification	38
5-1-2- Polymerase Chain Reaction (PCR) amplification	39
5-1-3- Preparations for gel electrophoresis	41
A- Running buffers	41
B- Ethidium bromide	41
C- Sample loading dye (5x)	41
D- 1.5% Agarose gel preparation	41
5-2- One species from different stations	42
6- Statistical analysis	42
CHAPTER 4	
RESULTS	
1- Morphological investigation.	44
1-1- Identification of the collected samples	44
1-2- Common venerid (Tapes decussatus) collected from the	
different stations.	53
2- Ecological investigation.	59
2-1- Physico-chemical parameters of water	59
2-1-1- Temperature (°C)	59
2-1-2- Hydrogen ion concentration (pH)	59
2-1-3- Salinity (‰)	60
2-1-4- Dissolved oxygen (DO)	60
2-2- Heavy metals in surface sea water	65
2-3- Heavy metals in sediment.	77
2-4- Heavy metals in <i>Tapes decussatus</i> whole soft tissues	89
2-5- Heavy metals in <i>Tapes decussatus</i> shell	101
2-6- Comparison between heavy metals content in surface sea	
water, sediment and <i>Tapes decussatus</i> whole soft tissues and shell	112
overall stations and seasons	113
2-7- Total petroleum hydrocarbons (TPHs) in surface sea water.	113
3- Histopathological studies	116
	116
3-1-1 Description of digenean larval stages inside the clam	116 116
3-1-1-1- <i>Cercaria lata</i> Lespés, 1857 larvae	118
3-1-2- Prevalence of infection	110
3-2- Histopathological investigations	119
A- Gonads	130
B- Digestive gland	130
D- Digestive gland	131

CONTENTS/CONT.

	Page
4- Genetic diversity	143
4-1- RAPD profiles for the collected venerid clams from	
Ismalilia	143
4-2- RAPD profile for Tapes decussatus collected from different	
stations	164
CHAPTER 5	
DISCUSSION	
DISCUSSION	176
SUMMARY	192
REFERENCES	198
ARABIC SUMMARY	-, -

LIST OF TABLES

	Page
Table (1) : List of arbitrary primers sequences and their G+C contents	
used in RAPD analysis of venerid clams.	40
Table (2): Venerid clams species and stations of collection.	54
Table (3): Seasonal variations in temperature (°C) and hydrogen ion	
concentration (pH), of surface sea water at different	
stations in 2006.	61
Table (4): Seasonal variations in salinity (‰) and dissolved oxygen	
(DO mg/1) of surface sea water at different stations in	
2006.	62
Table (5) : Seasonal variations in Cd and Co concentrations (μg/ml) in	
surface sea water at different stations in 2006.	69
Table (6): Seasonal variations in Cu and Fe concentrations (µg/ml) in	
surface sea water at different stations in 2006.	70
Table (7): Seasonal variations in Mn and Ni concentrations (µg/ml) in	
surface sea water at different stations in 2006.	71
Table (8): Seasonal variations in Pb and Zn concentrations (µg/ml) in	
surface sea water at different stations in 2006.	72
Table (9) : Seasonal variations in Cd and Co concentrations (μg/ g dry	
weight) in sediment at different stations in 2006.	81
Table (10): Seasonal variations in Cu and Fe concentrations (μg/ g	
dry weight) in sediment at different stations in 2006.	82
Table (11): Seasonal variations in Mn, and Ni concentrations (µg/g	
dry weight) in sediment at different stations in 2006.	83
Table (12): Seasonal variations in Pb and Zn concentrations (μg/g dry	
weight) in sediment at different stations in 2006.	84
Table (13) : Seasonal variations in Cd and Co concentrations (μg/ g	
dry weight) in whole soft tissues of Tapes decussatus	
collected from different stations in 2006.	93
Table (14) : Seasonal variations in Cu and Fe concentrations (μg/ g	
dry weight) in whole soft tissues of Tapes decussatus	
collected from different stations in 2006.	94
Table (15): Seasonal variations in Mn and Ni concentrations (µg/g	
dry weight), in whole soft tissues of Tapes decussatus	
collected from different stations in 2006.	95
Table (16): Seasonal variations in Pb and Zn concentrations (μg/g dry	
weight) in whole soft tissues of Tapes decussatus	
collected from different stations in 2006.	96

LIST OF TABLES/CONTINUE

LIST OF TABLES/CONTINUE	Page
Table (17): Seasonal variations in Cd and Co concentrations (μg/ g	
dry weight) in Tapes decussatus shells collected from	
different stations in 2006.	105
Table (18) : Seasonal variations in Cu and Fe concentrations (μg/ g	
dry weight) in Tapes decussatus shells collected from	
different stations in 2006.	106
Table (19): Seasonal variations in Mn and Ni concentrations (µg/g	
dry weight) in shells of Tapes decussatus collected from	
different stations in 2006.	107
Table (20) : Seasonal variations in Pb and Zn concentrations (μg/g dry	
weight) in shells of Tapes decussatus collected from	
different stations in 2006.	108
Table (21): Comparison between heavy metals content in surface sea	
water, sediment and <i>Tapes decussatus</i> whole soft tissues	
and shell overall stations and seasons.	114
Table (22) : Monthly infection prevalence of digenean larvae during	
sampling period for Tapes decussatus populations	107
collected from Ismailia and Suez.	127
Table (23) : Monthly infection prevalence of digenean larvae during	
sampling period for <i>Venerupis pullastra</i> and <i>Venerupis</i>	120
aureus collected from Ismailia.	128
Table (24) : Number of amplified bands based on RAPD arbitrary	
primers for seven species of venerid clams collected from Ismailia.	160
Table (25) : Number of monomorphic bands based on RAPD arbitrary	100
primers for seven species of venerid clams collected	
from Ismailia.	160
Table (26) : Number of polymorphic bands based on RAPD arbitrary	100
primers for seven species of venerid clams collected	
from Ismailia.	161
Table (27): Number of unique bands based on RAPD arbitrary	101
primers for seven species of venerid clams collected	
from Ismailia.	161
Table (28) : Size range of bands (molecular weights in base pairs [bp])	
based on RAPD arbitrary primers for seven species of	
venerid clams collected from Ismailia.	162
Table (29): Genetic similarity matrix index calculated by pairwise	
comparison of seven species of venerid clams collected	
from Ismailia.	163

LIST OF TABLES/CONTINUE

	Page
Table (30): Number of amplified and monomorphic bands based on	
RAPD arbitrary primers for Tapes decussatus collected	
from different stations.	173
Table (31): Number of polymorphic and unique bands based on	
RAPD arbitrary primers for Tapes decussatus collected	
from different stations.	173
Table (32): Size range of bands (molecular weights in base pairs [pb])	
based on RAPD arbitrary primers for Tapes decussatus	
collected from different stations.	174
Table (33): Genetic similarity matrix index values calculated by	
pairwise comparison of four populations of Tapes	
decussates collected from different stations.	175

LIST OF FIGURES

	Page
Fig. (1): A map showing the study areas.	32
Fig. (2): Seasonal variations in temperature at the investigated stations.	63
Fig. (3): Seasonal variations in pH at the investigated stations.	63
Fig. (4): Seasonal variations in salinity at the investigated stations.	64
Fig. (5): Seasonal variations in DO at the investigated stations.	64
Fig. (6): Seasonal variations in Cd concentration of surface sea water at	
the investigated stations.	73
Fig. (7): Seasonal variations in Co concentration of surface sea water at	
the investigated stations.	73
Fig. (8): Seasonal variations in Cu concentration of surface sea water at	
the investigated stations.	74
Fig. (9): Seasonal variations in Fe concentration of surface sea water at	
the investigated stations.	74
Fig. (10): Seasonal variations in Mn concentration of surface sea water	
at the investigated stations.	75
Fig. (11): Seasonal variations in Ni concentration of surface sea water	
at the investigated stations.	75
Fig. (12): Seasonal variations in Pb concentration of surface sea water	
at the investigated stations.	76
Fig. (13): Seasonal variations in Zn concentration of surface sea water	
at the investigated stations.	76
Fig. (14): Seasonal variations in Cd concentration of sediment at the	
investigated stations.	85
Fig. (15): Seasonal variations in Co concentration of sediment at the	
investigated stations.	85
Fig. (16): Seasonal variations in Cu concentration of sediment at the	
investigated stations.	86
Fig. (17): Seasonal variations in Fe concentration of sediment at the	
investigated stations.	86
Fig. (18): Seasonal variations in Mn concentration of sediment at the	
investigated stations.	87
Fig. (19): Seasonal variations in Ni concentration of sediment at the	
investigated stations.	87
Fig. (20): Seasonal variations in Pb concentration of sediment at the	0.0
investigated stations.	88
Fig. (21): Seasonal variations in Zn concentration of sediment at the	0.5
investigated stations.	88

	Page
Fig. (22): Seasonal variations in Cd concentration of <i>Tapes decussatus</i>	
whole soft tissues at the investigated stations.	97
Fig. (23): Seasonal variations in Co concentration of <i>Tapes decussatus</i>	
whole soft tissues at the investigated stations.	97
Fig. (24): Seasonal variations in Cu concentration of <i>Tapes decussatus</i>	
whole soft tissues at the investigated stations.	98
Fig. (25): Seasonal variations in Fe concentration of <i>Tapes decussatus</i>	
whole soft tissues at the investigated stations.	98
Fig. (26): Seasonal variations in Mn concentration of <i>Tapes decussatus</i>	
whole soft tissues at the investigated stations.	99
Fig. (27): Seasonal variations in Ni concentration of <i>Tapes decussatus</i>	
whole soft tissues at the investigated stations.	99
Fig. (28): Seasonal variations in Pb concentration of <i>Tapes decussatus</i>	
whole soft tissues at the investigated stations.	100
Fig. (29): Seasonal variations in Zn concentration of <i>Tapes decussatus</i>	
whole soft tissues at the investigated stations.	100
Fig. (30): Seasonal variations in Cd concentration of <i>Tapes decussatus</i>	
shell at the investigated stations.	109
Fig. (31): Seasonal variations in Co concentration of <i>Tapes decussatus</i>	
shell at the investigated stations.	109
Fig. (32): Seasonal variations in Cu concentration of <i>Tapes decussatus</i>	
shell at the investigated stations.	110
Fig. (33): Seasonal variations in Fe concentration of <i>Tapes decussatus</i>	
shell at the investigated stations.	110
Fig. (34): Seasonal variations in Mn concentration of <i>Tapes decussatus</i>	
shell at the investigated stations.	111
Fig. (35): Seasonal variations in Ni concentration of <i>Tapes decussatus</i>	
shell at the investigated stations.	111
Fig. (36): Seasonal variations in Pb concentration of <i>Tapes decussatus</i>	
shell at the investigated stations.	112
Fig. (37): Seasonal variations in Zn concentration of <i>Tapes decussatus</i>	
shell at the investigated stations.	112
Fig. (38): Comparison between heavy metals content in surface sea	
water, sediment and Tapes decussatus whole soft tissues and	
shell overall stations and seasons.	115
Fig. (39): Monthly infection prevalence of digenean larvae in (A) <i>Tapes</i>	
decussatus (Ismailia), (B) Tapes decussatus (Suez),	
(C) Venerupis pullastra and (D) Venerupis aureus.	129

LIST OF FIGURES/CONTINUE	D
	Page
Fig. (40): Photograph of transverse section through the normal testis of	
Tapes decussatus (A) scale bar = 100 μm and (B) scale bar =	
25 μm.	133
Fig. (41): Photograph of transverse section through the testis of <i>Tapes</i>	
decussatus (A) normal and (B) light infected by Cercaria lata	
larvae.	134
Fig. (42): Photograph of transverse section through the testis of <i>Tapes</i>	
decussatus infected by Cercaria lata larvae (A) light infection	
and (B) moderate infection.	135
Fig. (43): Photograph of transverse section through the testis of <i>Tapes</i>	
decussatus infected by Cercaria lata larvae (A) moderate	
infection, scale bar = 5 μ m and (B) heavy infection, scale bar	106
$=400 \mu m.$	136
Fig. (44): Photograph of transverse section through the normal ovary of	
Tapes decussatus (A) scale bar = 125 μm and (B) scale bar =	4.0=
50 μm.	137
Fig. (45): Photograph of transverse section through the ovary of <i>Tapes</i>	
decussatus (A) normal and (B) light infected by Cercaria lata	100
larvae.	138
Fig. (46): Photograph of transverse section through the ovary of <i>Tapes</i>	
decussatus infected by Cercaria lata larvae (A) moderate	120
infection and (B) heavy infection.	139
Fig. (47): Photograph of transverse section through the normal	
digestive gland of <i>Tapes decussatus</i> (A) scale bar = $100 \mu m$	1.40
and (B) scale bar = 15 μ m.	140
Fig. (48): Photograph of transverse section through the digestive gland	
of <i>Tapes decussatus</i> collected from Suez (A) uninfected, scale	
bar = 15 μ m and (B) infected by <i>Cercaria lata</i> larvae, scale	1.41
bar = $100 \mu \text{m}$.	141
Fig. (49): Photograph of transverse section through the of digestive	
gland of <i>Tapes decussatus</i> infected by <i>Cercaria lata</i> larvae	1.40
(A) scale bar = $100 \mu m$ and (B) scale bar = $10 \mu m$.	142
Fig. (50): Bands generated by PCR using RAPD primer (P1) for the	
seven species of venerid clams (A) amplified bands and	1.47
(B) bands types. Fig. (51): Pands congreted by PCP, using PAPD primer (P2) for the	147
Fig. (51): Bands generated by PCR using RAPD primer (P2) for the	
seven species of venerid clams (A) amplified bands and	148
(B) bands types. Fig. (52): Pands congreted by PCP, using PAPD primar (P2) for the	148
Fig. (52): Bands generated by PCR using RAPD primer (P3) for the	
seven species of venerid clams (A) amplified bands and	149
(B) bands types.	147

	Page
Fig. (53): Bands generated by PCR using RAPD primer (P5) for the	
seven species of venerid clams (A) amplified bands and	
(B) bands types.	150
Fig. (54): Bands generated by PCR using RAPD primer (P7) for the	
seven species of venerid clams (A) amplified bands and	
(B) bands types.	151
Fig. (57): Bands generated by PCR using RAPD primer (P12) for the	
seven species of venerid clams (A) amplified bands and	
(B) bands types.	154
Fig. (58): Bands generated by PCR using RAPD primer (P14) for the	
seven species of venerid clams (A) amplified bands and	
(B) bands types.	155
Fig. (59): Bands generated by PCR using RAPD primer (P17) for the	
seven species of venerid clams (A) amplified bands and	
(B) bands types.	156
Fig. (60): Bands generated by PCR using RAPD primer (P18) for the	
seven species of venerid clams (A) amplified bands and	1.55
(B) bands types.	157
Fig. (61): Bands generated by PCR using RAPD primer (P19) for the	
seven species of venerid clams (A) amplified bands and	158
(B) bands types. Fig. (62): Pands congreted by PCP, using PAPD, primar (P20) for the	138
Fig. (62): Bands generated by PCR using RAPD primer (P20) for the	
seven species of venerid clams (A) amplified bands and	159
(B) bands types. Fig. (63): Unweighted pair group method using arithmetic average	137
(UPGMA) dendrogram based on genetic similarity index	
values calculated from data of 13 arbitrary primers for seven	
species of venerid clams collected from Ismailia.	163
Fig. (64): Bands generated by PCR using RAPD primers (P1 and P2)	105
for <i>Tapes decussatus</i> collected from different stations	
(A) amplified bands and (B) bands types.	168
Fig. (65): Bands generated by PCR using RAPD primers (P3 and P5)	- 30
for Tapes decussatus collected from different stations	
(A) amplified bands and (B) bands types.	169
Fig. (66): Bands generated by PCR using RAPD primers (P10 and P11)	
for Tapes decussatus collected from different stations	
(A) amplified bands and (B) bands types.	170

	Page
Fig. (67): Bands generated by PCR using RAPD primers (P12 and P14)	
for Tapes decussatus collected from different stations	
(A) amplified bands and (B) bands types.	171
Fig. (68): Bands generated by PCR using RAPD primers (P17 and P18)	
for Tapes decussatus collected from different stations	
(A) amplified bands and (B) bands types.	172
Fig. (69): Unweighted pair group method using arithmetic average	
(UPGMA) dendrogram based on genetic similarity index	
values calculated from data of 10 arbitrary primers for Tapes	
decussatus individuals collected from different stations	175

LIST OF PLATES

	Page
Plate (1): Exterior and interior views of common venerid (Tapes	
decussatus) shell showing the morphological characters of	
the family	55
Plate (2): Exterior and interior views of the venerid clams shells.	56
Plate (3): Exterior and interior views of the venerid clams shells.	57
Plate (4): Venerid clams shells show some abnormalities.	58
Plate (5): Sporocyst of Cercaria lata from Tapes decussatus	
(A) stained with carmine and (B) diagram.	121
Plate (6): Redia of Cercaria lata from Tapes decussatus (A) stained	
with carmine and (B) diagram.	122
Plate (7): Cercaria lata from Tapes decussatus (A) stained in carmine	
and (B) diagram.	123
Plate (8): Sporocyst of unknown Digenea from Venerupis pullastra	
(A) stained with carmine and (B) diagram.	124
Plate (9): Redia of unknown Digenea from Venerupis pullastra	
(A) stained with carmine and (B) diagram.	125
Plate (10): Cercaria of unknown Digenea from Venerupis pullastra	
(A) stained with carmine and (B) diagram.	126