<u>Table of Contents</u> VI

TABLE OF CONTENTS

		PAGE
ABSTR	ACT	I
ACKNO	OWLEDGEMENTS	III
LIST O	F ABBREVIATIONS	\mathbf{V}
TABLE	OF CONTENTS	VI
LIST O	F TABLES	XII
LIST O	F FIGURES	XIV
СНАРТ	ER 1 INTRODUCTION	1
1.1	FIELD OF STUDY	1
1.2	PURPOSE OF THE STUDY	6
1.3	OUTLINE OF THESIS	8
СНАРТ	ER 2 LITERATURE REVIEW	11
2.1	INTRODUCTION	11
2.2	ALKALI-AGGREGATE REACTIONS (AAR)	11
	2.2.1 Alkali-Silica Reaction	12
	2.2.2 Alkali-Carbonate Reaction	13
2.3	ESSENTIAL COMPONENTS OF ALKALI-AGGREGATE REACTION	14
	2.3.1 Sufficient Alkalis	14
	2.3.2 Reactive Constituents	15
	2.3.3 Sufficient Moisture	20
	2.3.4 Temperature	21
2.4	MECHANISMS OF ALKALI-AGGREGATE REACTIONS	22
	2.4.1 Chemistry and Mechanism of Alkali-Silica Reaction	23
	2.4.2 Chemistry and Mechanism of Alkali-Carbonate Reaction	29
	2.4.2.1 Characteristics of alkali-carbonate reactive aggregate	35
2.5	SYMPTOMS OF AAR AND THEIR IMPACT ON THE ENGINEERING	39
PRO	OPERTIES OF CONCRETE	
	2.5.1 Symptoms of Alkali-Silica Reaction	39
	2.5.2 Effect of Alkali-Silica Reaction on the Engineering Properties of	43
	Concrete	
	2.5.3 Symptoms of Alkali-Carbonate Reaction	44

Table of C	Contents	VII
2.6	DIFFERENT TEST METHODS USED IN EVALUATING ALKALI-	46
AG	GREGATE REACTIONS	
	2.6.1 Petrographic Examination of Aggregate	47
	2.6.2 Mortar-bar Expansion Test	48
	2.6.3 Accelerated Mortar-bar Expansion Test	49
	2.6.4 Quick Chemical Method	50
	2.6.5 Concrete Prism Test	50
	2.6.6 Rock Cylinder Test	51
	2.6.7 Concrete Prism Test for Alkali-Carbonate Reactivity	52
	2.6.8 Concrete Micro-Bar Test	52
	2.6.9 Tests for Evaluation of Alkali-Aggregate Reactions in Hardened	53
	Concrete	
2.7	MITIGATION MEASURES AGAINST ALKALI-AGGREGATE	55
REA	ACTIONS	
	2.7.1 Mitigation Measures Against Alkali-Silica Reaction	55
	2.7.1.1 Limiting moisture	55
	2.7.1.2 Using non-reactive aggregate	56
	2.7.1.3 Limiting the alkali content of concrete	56
	2.7.1.4 Using supplementary cementing materials (SCM)	56
	2.7.2 Guidelines for Avoiding ASR in New Structures	60
	2.7.3 Mitigation Measure Against Alkali-Carbonate Reaction	61
СНАРТ	ER 3 MATERIALS AND EXPERIMENTAL DETAILS	64
3.1	INTRODUCTION	64
3.2	MATERIALS	64
	3.2.1 Aggregate Samples Collection	64
	3.2.2 Cement and SCMs	68
3.3	EXPERIMENTAL PROGRAM AND DETAILS	69
	3.3.1 Evaluation of Alkali-Reactivity of the Egyptian Aggregate	70
	3.3.1.1 Petrographic study	70
	3.3.1.2 Standard test methods	71
	3.3.2 Concrete mixes containing low-alkali cement, SCMs and chemical	77
	admixtures	

3.3.3 Concrete Microbar and Rock Cylinder Test Mixes

82

Table of C	Contents	VIII
	3.3.4 Concrete mixes used in structural performance of concrete affected	82
	by ACR	
	3.3.5 Mechanism of ACR	83
3.4	TEST TECHNIQUES AND PROCEDURES	85
	3.4.1 Petrographic Analysis of Coarse Aggregates	85
	3.4.2 Concrete Prism Test (CPT)	86
	3.4.3 Accelerated Mortar Bar Test (AMBT)	88
	3.4.4 Concrete Micro Bar Test (CMBT)	89
	3.4.5 Rock-Cylinder Method for Potential Alkali-Reactivity of the	90
	Carbonate Aggregates	
	3.4.6 Determination of Potential Alkali-Carbonate Reactivity by	91
	Chemical Composition	
	3.4.7 Compressive Strength	92
	3.4.8 Splitting Tensile Strength	93
	3.4.9 Pull-Out Test	93
	3.4.10 Rapid Chloride Permeability Test	94
	3.4.11 Chloride Migration Coefficient from Non-Steady State Migration	96
	Experiment	
	3.4.12 Scanning Electron Microscopy (SEM)	99
	3.4.13 X-Ray Diffraction (XRD)	100
	3.4.14 X-Ray Florescence (XRF)	100
СНАРТЕ	CR 4 EVALUATION OF ALKALI-REACTIVITY FOR THE	101
	EGYPTIAN AGGREGATE	
4.1	INTRODUCTION	101
4.2	EXPERIMENTAL RESULTS	102
	4.2.1 Petrographic Study	102
	4.2.2 XRF Test Results	120
	4.2.3 XRD Test Results	123
	4.2.4 SEM Test Results	129
	4.2.5 The Determination of the Potential Alkali-Carbonate Reactivity of	135
	Quarried Carbonate Rocks By Chemical Composition (CSA A23.2-26A)	
	4.2.6 Petrographic Number	137
	4.2.7 Concrete Prism Test Results	137

Table of Co	ontents	IX
	4.2.8 Accelerated Mortar Bar Test Results	139
	4.2.9 Concrete Micro-Bar Test Results	140
	4.2.10 Rock Prism Test Results	143
4.3	DISCUSSION	144
4.4	CONCLUSIONS	148
СНАРТИ	ER 5 ADOPTING THE CONCRETE MICRO-BAR TEST AND	149
	ENHANCING THE ROCK CYLINDER TEST FOR	
	EVALUATION OF THE ALAKLI REACTIVITY OF THE	
	CARBONATE AGGREGATES	
5.1	INTRODUCTION	149
5.2	EXPERIMENTAL TEST RESULTS	151
	5.2.1 Concrete Microbar Test (CMBT)	151
	5.2.1.1 Specimen dimensions, mix proportion, and compaction	151
	5.2.1.2 Effect of the aggregate particle size on the expansion in	152
	CMBT	
	5.2.1.3 Effect of the alkali soaking solutions on the expansion in	155
	CMBT	
	5.2.1.4 Effect of testing period on the expansion in the CMBT	159
	5.2.1.5 Effect of testing conditions on the expansion in CMBT	161
	5.2.1.6 The efficiency of the CMBT in evaluating SCMs as	163
	mitigation measures for the AAR	
	5.2.1.7 The correlation between the different accelerated tests (CMBT, AMBT) and CPT	164
	5.2.2 Rock Prism Test	167
	5.2.2.1 Sample preparation	167
	5.2.2.2 The correlation between the expansion produced from the	172
	cylindrical and the prismatic rock samples in the rock cylinder test	
5.3	DISCUSSION	172
5.4	CONCLUSIONS	174
СНАРТІ	ER 6 STRUCTURAL PERFORMANCE AND PREVENTIVE MEASURES FOR CONCRETE PREPARED FROM ALKALI REACTIVE AGGREGATES	176

Table o	X

	6.1	INTRODUCTION	176
	6.2	EXPERIMENTAL TEST RESULTS	185
		6.2.1 Impact of ACR-Induced Expansion on Mechanical Properties of	185
		Concrete	
		6.2.1.1 Impact of ACR-induced expansion on the compressive	185
		strength of concrete	
		6.2.1.2 Impact of ACR-induced expansion on the splitting tensile	189
		strength of concrete	
		6.2.1.3 Impact of ACR-induced expansion on the bond strength of	191
		concrete	
		6.2.2 Impact of ACR-Induced Expansion on Mass Transport Properties of	193
		Concrete	
		6.2.2.1 Impact of ACR-induced expansion of concrete on charges	193
		measured in coulombs during RCPT	
		6.2.2.2 Impact of ACR-induced expansion of concrete on Non-	195
		Steady State Migration (NSSM) coefficient measured during the	
		rapid migration test	
		6.2.3 Preventive Measures for AAR-Induced Expansion of the Egyptian	198
		Aggregates	
		6.2.3.1 Low-alkali cement	198
		6.2.3.2 Fly ash	200
		6.2.3.3 Sodium monophosphate	206
	6.3	DISCUSSION	206
		6.3.1 Engineering Properties of Concrete Susceptible to ACR	206
		6.3.2 The Use of Low-Alkali Cement and Fly Ash as Mitigation Measures	208
		for AAR-Induced Expansions of Egyptian Aggregates	
	6.4	CONCLUSIONS	210
СН	[APT]	ER 7 FACTORS AFFECTING THE MECHANISM AND ALKALI-	202
		REACTIVITY OF AGGREGATES	
	7.1	INTRODUCTION	202
	7.2	EXPERIMENTAL TEST RESULTS	203
		7.2.1 The Factors Affecting AAR of Egyptian Aggregates	203

Table of C	Contents	
	7.2.1.1 Effect of alkali level on the expansion due to ACR	
	7.2.1.2 Effect of temperature on the expansion due to ACR	
	7.2.1.3 Effect of clay minerals content of the rock on the expansion	
	due to ACR	
	7.2.1.4 Effect of regeneration of alkalis	
	7.2.2 The Mechanism of the Alkali-Reactivity of Egyptian Aggregates	
7.3	DISCUSSION	
7.4	CONCLUSIONS	
СНАРТ	TER 8 GENERAL CONCLUSIONS AND RECOMMENDATIONS	
	FOR FURTHER STUDIES	
8.1	SUMMARY AND GENERAL CONCLUSIONS	
8.2	RECOMMENDATIONS FOR FURTHER STUDIES	
REFER	ENCES	
APPEN	DICES	
ARABI		