RESULTS

Hematological parameters:

Table (1) and Figures (1 and 2) illustrated the hematological parameters of control rats group (group I), rats group supplemented with vitamins C and E (group II), STZ-diabetic rats group (group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (group IV) and rats group supplemented with vitamin C and E post STZ-diabetic induction (group V).

WBCs count showed significant increase (P < 0.01) in group II and significant decrease (P < 0.05) in group III related to that of the group I. WBCs count in group III showed significant decrease (P < 0.05) compared to that of the group II. WBCs count in group IV and V showed significant increases (P < 0.05) compared to that of the group III (Table 1 & Fig. 1-1).

RBCs count showed non significant decreases in all treated groups compared to that of the group I (Table 1 & Fig. 1-2).

Blood hemoglobin (Hb) concentration showed non significant decreases in all treated groups compared to that of the group I (Table 1 & Fig. 1-3).

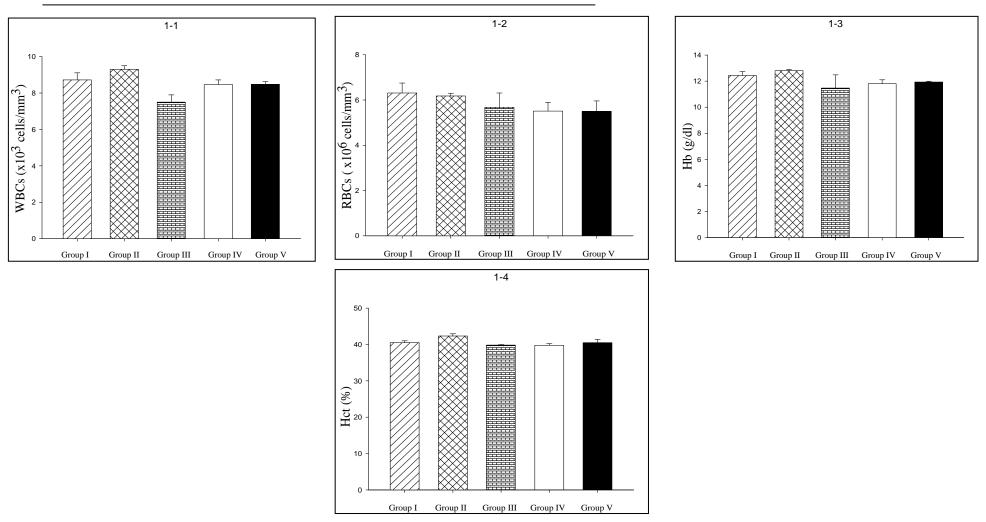
Hematocrit value (Hct) significantly increased (P < 0.05) in group II in relation to those of group I. Hematocrit value significantly decreased (P < 0.05, P < 0.01 & P < 0.05) in group III, group IV and group V respectively compared to that of the group II (Table 1 & Fig. 1-4).

MCV decreased significantly (P < 0.05) in group III and group IV compared to that of the group II (Table 1 & Fig. 2-1).

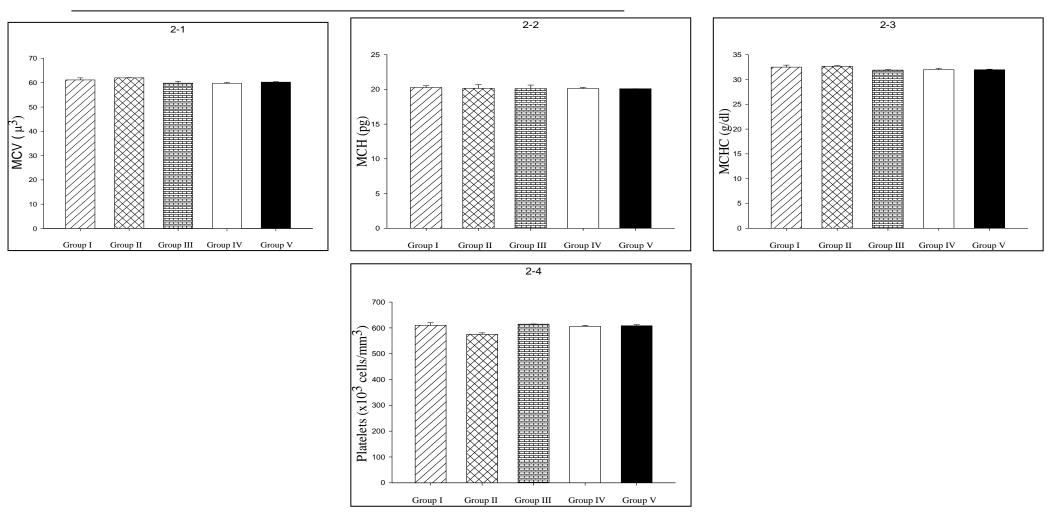
Table (1): Hematological parameters of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Rat groups Parameters	Group I	Group II	Group III	Group IV	Group V	Р
WBCs $(x10^3 \text{ cells/mm}^3)$	8.72 ± 0.39	$9.30 \pm 0.20^{@**}$	$7.50 \pm 0.40^{@*\alpha*}$	$8.47 \pm 0.25^{\beta*}$	$8.48 \pm 0.15^{\beta*}$	***
RBCs $(x10^6 \text{ cells/mm}^3)$	6.31 ± 0.44	6.18 ± 0.12	5.68 ± 0.63	5.51 ± 0.39	5.50 ± 0.46	N.S
Hb (g/dl)	12.43 ± 0.30	12.8 ± 0.10	11.47 ± 1.01	11.8 ± 0.30	11.93 ± 0.06	N.S
Hct (%)	40.50 ± 0.50	$42.33 \pm 0.60^{@*}$	$39.83 \pm 0.15^{\alpha*}$	$39.78 \pm 0.45^{\alpha **}$	$40.50 \pm 0.87^{\alpha*}$	*
MCV (μ ³)	61.16 ± 0.85	62.00 ± 0.10	$59.83 \pm 0.76^{\alpha*}$	$59.73 \pm 0.45^{\alpha*}$	60.26 ± 0.21	**
MCH (pg)	20.27 ± 0.25	20.14 ± 0.55	20.13 ± 0.50	20.13 ± 0.15	20.10 ± 0.01	N.S
MCHC (g/dl)	32.50 ± 0.40	32.67 ± 0.15	$31.90 \pm 0.10^{\alpha **}$	$31.97 \pm 0.25^{\alpha*}$	$31.97 \pm 0.11^{\alpha*}$	**
Platelets (x10 ³ cells/mm ³)	610.00 ± 9.89	575.00 ± 5.86	$614.50 \pm 0.71^{\alpha*}$	$606.00 \pm 4.24^{\alpha*}$	$608.00 \pm 4.24^{\alpha*}$	**

@: refers to the relation of the groups with group I


 $\alpha\!\!:$ refers to the relation of the group III or group IV or group V with group II

 $\beta\text{:}$ refers to the relation of group IV or group V with Group III


^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01

^{***:} Significant difference at P < 0.001

Figure (1): Hematological parameters of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Figure (2): Blood indices and Platelets count of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

MCH showed non significant decreases in all treated groups compared to that of the group I (Table 1 & Fig. 2-2).

MCHC was decreased significantly (P < 0.01, P < 0.05 & P < 0.05) in group III, group IV and group V respectively compared to that of the group II (Table 1 & Fig. 2-3).

Platelets count showed significant increases (P < 0.05) in group III, group IV and group V compared to that of the group II (Table 1 & Fig. 2-4).

Respiratory functions of blood:

I. Blood gases:

1. Blood oxygen partial pressure (PO₂):

Arterial blood PO_2 (P_aO_2) of rats group supplemented with vitamins C and E (group II) and the STZ-diabetic rats group (group III) increased significantly (P < 0.05 & P < 0.01, respectively) compared to those of the control rats group (group I). P_aO_2 values of the rats groups supplemented with vitamins C and E before or post STZ-diabetic induction (group IV and group V, respectively) decreased significantly (P < 0.05) compare to that of the STZ-diabetic rats group (group III).

Venous blood PO_2 (P_vO_2) of the rats group supplemented with vitamins C and E (group II) showed significant increases (P < 0.01) compared to those of the control rats group (group I). The STZ-diabetic rats group (group III) and the rats group supplemented with vitamins C and E post STZ-diabetic induction (group V) showed significant decreases (P < 0.05) in P_vO_2 compared to that of the group II (Table 2 & Fig.3-1).

Table (2): Blood gases of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Rat groups Parameters	S	Group I	Group II	Group III	Group IV	Group V	Р
PO_2	a	75.67 ± 8.62	$102.00 \pm 7.81^{@*}$	$119.67 \pm 8.39^{@**}$	$94.33 \pm 9.50^{\beta*}$	$88.00 \pm 1.39^{\beta*}$	**
(mm Hg)	V	44.25 ± 3.5	$59.67 \pm 4.04^{@**}$	$45.33 \pm 4.04^{\alpha*}$	42.00 ± 11.36	$44.00 \pm 8.00^{\alpha*}$	*
Blood O ₂	a	97.57 ± 0.21	96.57 ± 0.71	$98.00 \pm 0.52^{\alpha*}$	97.23 ± 0.85	$96.27 \pm 0.40^{@*\beta*}$	*
Saturation(%)	V	78.13 ± 3.92	87.11 ± 4.16	80.17 ± 4.91	79.30 ± 4.48	75.17 ± 8.26	N.S
PCO ₂	a	39.67 ± 0.58	$34.25 \pm 1.76^{\text{@*}}$	$35.75 \pm 0.35^{@*}$	$40.50 \pm 0.70^{\alpha **\beta *}$	$27.50 \pm 0.70^{@***\alpha**\beta**\delta**}$	***
(mm Hg)	V	45.00 ± 2.00	45.00 ± 2.00	49.67 ± 4.61	54.00±2.08 ^{@*α*}	$51.33 \pm 2.08^{@*_{\alpha*}}$	*

a =arterial blood v = venous blood @: refers to the relation of the groups with group I

 $\alpha\!\!:$ refers to the relation of the group III or group IV or group V with group II

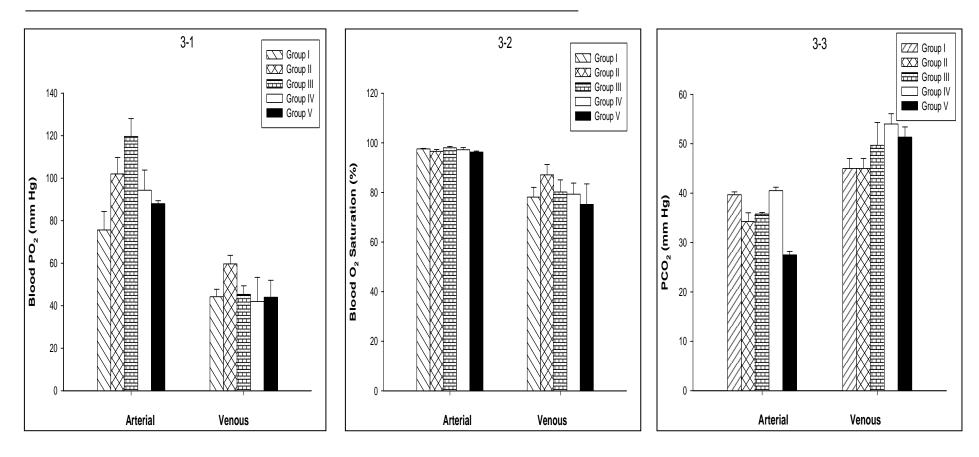
β: refers to the relation of group IV or group V with Group III

δ: refers to the relation of group V and group IV

^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01

^{***:} Significant difference at P < 0.001


2. Blood oxygen saturation:

There was a significant decrease (P < 0.05) in arterial blood oxygen saturation (%) of the rats group supplemented with vitamins C and E post STZ-diabetic induction (group V) compared to that of the control rats group (group I). The STZ-diabetic rats group (group III) showed significant increase (p < 0.05) in arterial blood oxygen saturation (%) than that of rats group supplemented with vitamins C and E (group II). Rats group supplemented with vitamins C and E post STZ-diabetic induction (group V) showed significant decreases (P < 0.05) in arterial blood oxygen saturation (%) compared to that of the STZ-diabetic rats group.

Venous blood oxygen saturation (%) showed non significant decreases in all treated groups compared to that of the control group (Table 2 & Fig. 3-2).

3. Blood carbon dioxide partial pressure (PCO₂):

Rats group supplemented with vitamins C and E (group II), STZ-diabetic rats group (group III) and rats group supplemented with vitamins C and E post STZ-diabetic induction (group V) showed significant decreases (P < 0.05, P < 0.05 & P < 0.001, respectively) in arterial blood PCO_2 (P_aCO_2) in comparison with that of the control rats group (group I). P_aCO_2 of rats groups supplemented with vitamins C and E before or post STZ-diabetic induction showed a significant increase and decrease (P < 0.01) respectively compared to rats group supplemented with vitamins C and E. P_aCO_2 of rats group supplemented with vitamins C and E before or post STZ-diabetic induction were

Figure (3): Blood gases of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

significantly increased and decreased (P < 0.05 and p < 0.01, respectively) compared to that of the STZ-diabetic rats group. Rats group supplemented with vitamins C and E post STZ-diabetic induction was significantly decreased (p < 0.01) compared to that of the rats group supplemented with vitamins C and E before STZ-diabetic induction.

Venous blood PCO₂ (P_v CO₂) was significantly increased (P < 0.05) in rats groups supplemented with vitamins C and E before or post STZ-diabetic induction (groups IV and group V) in relation to control rats group (group I). Rats group supplemented with vitamins C and E before or post STZ-diabetic induction showed significant increase (P < 0.05) in P_v CO₂ in comparison with those of the rats group supplemented with vitamins C and E before (Table 2 & Fig. 3-3).

II. Blood acid-base status parameters:

1. Blood pH:

Arterial blood pH of the rats group supplemented with vitamins C and E (group II) and STZ-diabetic rats group (group III) showed significant decreases (P < 0.05) compared to that of the control rats group (group I).

Venous blood pH of the STZ-diabetic rats group (group III) showed a significant increase (P < 0.05) in relation to that of the rats group supplemented with vitamins C and E (Table 3 & Fig. 4-1).

2. Blood bicarbonate (HCO₃⁻):

Arterial blood HCO_3^- concentration of rats' group supplemented with vitamins C and E (group II) was significantly decreased (P < 0.05) compared to that of the control rats group (group I). Rats group supplemented with vitamins C and E before STZ-diabetic induction was

Table (3): Acid-base status of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Rat gr Parameters	roups	Group I	Group II	Group III	Group IV	Group V	Р
рН	a	7.47 ± 0.09	$7.26 \pm 0.08^{@*}$	$7.25 \pm 0.06^{@*}$	7.34 ± 0.07	7.32 ± 0.07	N.S
pii	V	7.23 ± 0.07	7.23 ± 0.04	$7.33 \pm 0.03^{\alpha*}$	7.30 ± 0.05	7.29 ± 0.03	N.S
HCO ₃	a	21.85 ± 2.49	$15.93 \pm 2.25^{@*}$	18.50 ± 0.36	$20.33 \pm 1.30^{\alpha*}$	18.40 ± 4.55	N.S
(mmol/l)	V	26.80 ± 2.54	22.88 ± 1.73	$29.93 \pm 0.81^{\alpha **}$	25.97 ± 2.39	25.17 ± 2.40	*
TCO ₂	a	24.43 ± 0.32	$16.77 \pm 2.45^{@**}$	21.23 ± 3.18	23.37 ± 3.82	19.50 ± 4.70	N.S
(mmol/l)	V	28.27 ± 1.88	$22.10 \pm 1.73^{@*}$	$31.77 \pm 1.21^{\alpha **}$	$28.30 \pm 2.84^{\alpha*}$	29.36 ± 6.44	N.S
BE	a	-6.00 ± 0.66	-9.55 ± 2.55	-5.60 ± 0.99	-4.00 ± 0.85	$-3.20 \pm 0.57^{@*}$	*
(mmol/l)	V	-1.75 ± 0.21	-4.15 ± 0.91	$2.45 \pm 0.07^{@***\alpha**}$	$2.60 \pm 1.56^{\alpha*}$	$2.25 \pm 1.48^{\alpha*}$	**

a =arterial blood v = venous blood @: refers to the relation of the groups with group I

 $\alpha\!\!:$ refers to the relation of the group III or group IV or group V with group II

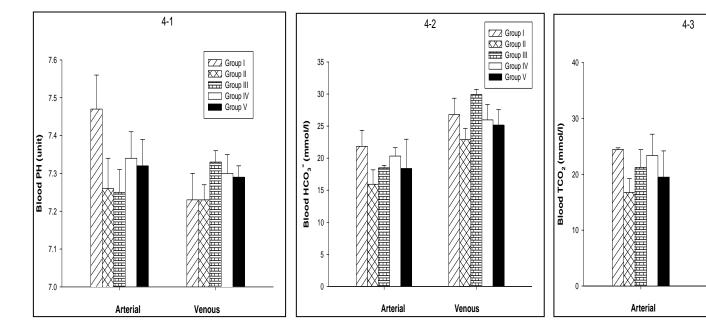
^{*:} Significant difference at P < 0.05

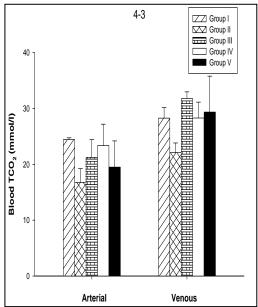
^{**:} Significant difference at P < 0.01

^{***:} Significant difference at P < 0.001

significantly increased (p < 0.05) in arterial blood HCO₃⁻ concentration than that of the rats group supplemented with vitamins C and E (group II).

Venous blood HCO_3^- concentration of the STZ-diabetic rats group showed a significant increase (P < 0.01) compared to that of the rats group supplemented with vitamins C and E (group II) (Table 3 & Fig. 4-2).

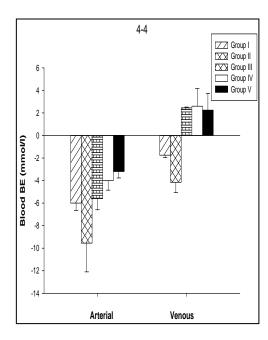

3. Blood total carbon dioxide (TCO₂):

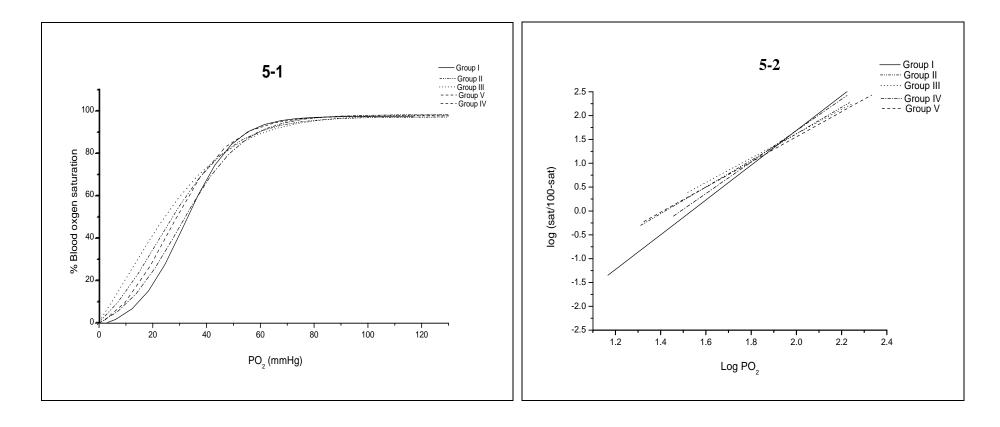

It was obvious from the data presented in table (3) and Figure (4-3) that there was a significant decrease (P < 0.01) in arterial blood TCO_2 of the rats group supplemented with vitamins C and E (group II) in relation to that of the control rats group (group I).

Venous blood TCO_2 of the rats group supplemented with vitamins C and E was significantly decreased (p < 0.05) than that of the control rats group. Venous blood TCO_2 of STZ-diabetic rats group (group III) and rats group supplemented with vitamins C and E before STZ-diabetic induction (group IV) were significantly increased (P <0.01 and P < 0.05, respectively) than that of the rats group supplemented with vitamins C and E (group II) (Table 4 & Fig. 4-3).

4. Blood base excess (BE):

Base excess (BE) of the arterial blood showed a significant increase (P < 0.05) in rats group supplemented with vitamins C and E post STZ-induction (group V) in comparison to that of the control rats group (group I).




Figure (4): Blood acid-base status parameters and base excess of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Venous blood BE of STZ-diabetic rats group (group III) showed a significant increase (P <0.01) compared to that of the control rats group (group I). Venous blood BE of the STZ-diabetic rats group (group III) and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction showed significant increase (P < 0.01, P < 0.05 & P < 0.05, respectively) compared to that of the rats group supplemented with vitamins C and E (group II) (Table 3 & Fig. 4-4).

III. Blood oxygen equilibrium curve (OEC):

The blood OEC of rats group supplemented with vitamins C and E (group II), STZ-diabetic rats group (group III) and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were found to be shifted to the left compared to that of the control rats group (group I).

The blood oxygen half saturation pressure (P_{50}) of rats group supplemented with vitamins C and E (group II) and rats group supplemented with vitamins C and E post STZ-diabetic induction (group V) were significantly lower (P < 0.01 & P < 0.05, respectively) than that of the control rats group (group I). P_{50} of STZ-diabetic rats group (group III) and rats group supplemented with vitamins C and E before STZ-diabetic induction (group IV) was significantly lower (P < 0.05 and P < 0.01, respectively) than that of the rats group supplemented with vitamins C and E (group II). P_{50} of rats group supplemented with vitamins C and E post STZ-diabetic induction was significantly lower (P < 0.05) than that of the STZ-diabetic rats group and rats group supplemented with vitamins C and E before STZ-diabetic induction (Table4&Fig.5-1).

Figure (5): The blood oxygen equilibrium curves and Hill's Plot of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Table (4): The blood oxygen half pressure (P₅₀) and Hill's constants (n values) of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ- diabetic induction (Group V).

Rat groups Parameters	Group I	Group II	Group III	Group IV	Group V	P
P ₅₀ (mmHg)	33.95 ± 0.17	22.39 ± 0.65 ^{@**}	$30.20 \pm 0.36^{\alpha*}$	$33.09 \pm 0.33^{\alpha^{**}}$	$25.27 \pm 0.97^{@**\beta*\delta*}$	*
n	3.64 ± 0.13	$2.16 \pm 0.08^{@**}$	$2.05 \pm 0.08^{@**}$	$2.86 \pm 0.12^{@*}$	$2.06 \pm 0.1^{@**}$	***

@: refers to the relation of the groups with group I

 $\alpha\!\!:$ refers to the relation of the group III or group IV or group V with group II

 $\beta\text{:}$ refers to the relation of group IV or group V with Group III

 $\delta\text{:}\ \text{refers to the relation of group }V\ \text{and group }IV$

^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01

^{***:} Significant difference at P < 0.001

Hill's constant (n-value in Hill's equation) was significantly decreased (P < 0.01, P < 0.01, P < 0.05 & P < 0.01) in rats supplemented with vitamins C and E (group II), STZ-diabetic rats group (group III) and rats groups supplemented with vitamins C and E before or post STZ-diabetic induction (groups IV and V) respectively compare to control rats group (group I) (Table 4 and Fig. 5-2).

Biochemical parameters:

• Antioxidants:

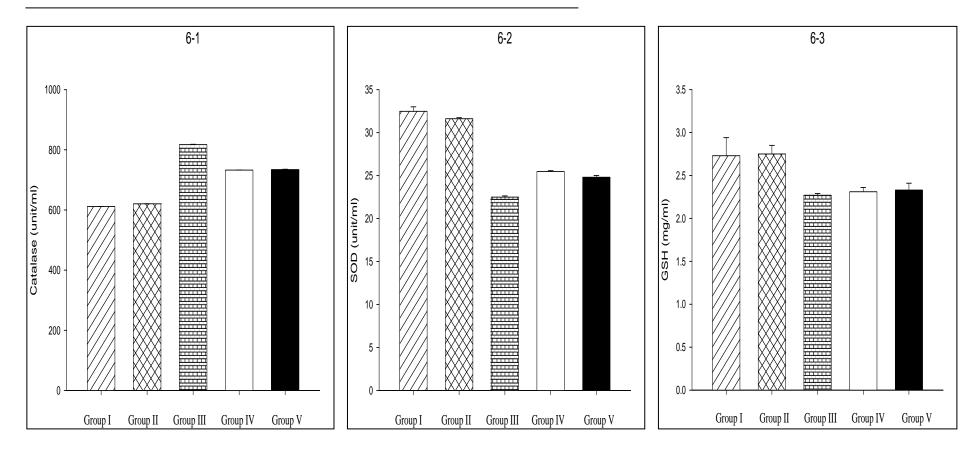
Plasma catalase activities of rats group supplemented with vitamins C and E (group II), STZ-diabetic rats group (group III) and rats groups supplemented with vitamins C and E before or post STZ-diabetic induction (groups IV and V) showed significant increases (P < 0.05, P < 0.001, P < 0.001 & P < 0.001, respectively) compared to that of the control rats group (group I). Plasma catalase activities of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction showed significant increase (P < 0.001) compared to that of the rats group supplemented with vitamins C and E (group II). Plasma catalase activities of rat groups supplemented with vitamins C and E before or post STZ-diabetic induction was significantly decreased (P < 0.001) compared to those of the STZ-diabetic rats group (Table 5 & Fig. 6-1).

Plasma superoxide dismutase activities of rats group supplemented with vitamins C and E, STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction showed significant decreases (P < 0.05, P < 0.001, P < 0.001 & P < 0.001, respectively) compared to that of the control rats group.

Table (5): Plasma antioxidant enzyme activities (catalase, CAT and superoxide dismutase, SOD) and reduced glutathione concentration (GSH) of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Rat groups Parameters	Group I	Group II	Group III	Group IV	Group V	Р
Catalase	611.51	620.62	817.30	732.45	734.34	
	±	±	±	±	±	***
(unit/mI)	0.32	0.32 ^{@*}	$1.12^{@^{***}\alpha^{***}}$	$0.12^{@^{***}\alpha^{***}\beta^{***}}$	$1.01^{^{@***}\alpha***\beta^{***}}$	
SOD	32.48	31.62	22.50	25.47	24.81	
(unit/mI)	<u>±</u>	±	±	±	±	**
	0.52	$0.12^{@*}$	$0.14^{@^{***}\alpha^{***}}$	$0.10^{^{@***}\alpha***\beta^{***}}$	$0.21^{^{@***}\alpha***\beta***}$	
GSH	2.73	2.75	2.27	2.31	2.33	
(mg/mI)	<u>±</u>	±	±	±	±	***
	0.21	0.10 ^{@*}	$0.02^{@***\alpha***}$	$0.05^{@^{***}\alpha^{***}\beta^{***}}$	$0.08^{@^{***}\alpha***\beta^{***}}$	

@: refers to the relation of the groups with group I


 $\alpha\!\!:$ refers to the relation of the group III or group IV or group V with group II

β: refers to the relation of group IV or group V with Group III

^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01

^{***:} Significant difference at P < 0.001

Figure (6): Plasma antioxidant enzymes [catalase (6-1) and superoxide dismutase, SOD (6-2)] activity and reduced glutathione, GSH concentrations (6-3) of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

The superoxide dismutase activities of STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction showed significant decreases (P < 0.001) compared to that of the rats group supplemented with vitamin C and E. Superoxide dismutase activities of rat groups supplemented with vitamins C and E before or post STZ-diabetic was significantly increased (P < 0.001) compared to those of the STZ-diabetic rats group (Table 5 & Fig. 6-2).

Plasma reduced glutathione concentration of rats supplemented with vitamin C and E (group II) showed significant increase (p < 0.05) compared to that of the control rats group. Reduced glutathione concentration of STZ-diabetic rats group (group III), rats groups supplemented with vitamins C and E before or post STZ-diabetic induction (group IV and group V) showed significant decrease (P < 0.001) compared to that of the control rats group (group I). The reduced glutathione concentration of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction showed significant decrease (P < 0.001) compared to that of the rats group supplemented with vitamins C and E. Reduced glutathione concentration of rat groups supplemented with vitamins C and E before or post STZ-diabetic induction was significantly high (P < 0.001)compared to that of the STZ-diabetic rats group (Table 5 and Fig. 6-3).

• Plasma metabolites:

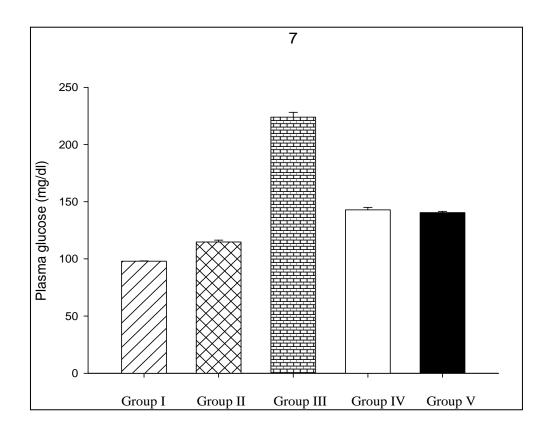
> Glucose:

The plasma glucose levels of rats group supplemented with vitamins C and E, STZ-diabetic rats group and rat groups supplemented

Table (6): Plasma glucose concentrations of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Rat groups Parameters	Group I	Group II	Group III	Group IV	Group V	Р
Glucose	97.95	114.76	223.91	142.84	140.44	
(mg/dl)	± 0.31	$\frac{\pm}{1.61^{@***}}$	$4.27^{\stackrel{\pm}{@}^{***}\alpha***}$	$\pm 2.22^{e^{***}\alpha ***\beta ***}$	$\frac{\pm}{1.11^{@^{***}\alpha^{***}\beta^{***}}}$	***

@: refers to the relation of the groups with group I


 $\alpha\text{:}\ \text{refers to the relation of the group III or group IV or group V}$ with group II

 β : refers to the relation of group IV or group V with Group III

^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01

^{***:} Significant difference at P < 0.001

Figure (7): Plasma glucose concentration of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

with vitamins C and E before or post STZ-diabetic induction were significantly increased (P < 0.001) compared to that of the control rats group. The plasma glucose level of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly increased (P < 0.001) than that of the rats group supplemented with vitamin C and E. The rat groups supplemented with vitamins C and E before or post STZ-diabetic induction showed significant decreases (P < 0.001) of plasma glucose level compared to that of the STZ-diabetic rats group (Table 6 & Fig. 7).

> Lipid profile:

Plasma total lipids showed significant increases (P < 0.001) in STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction in relation to that of the control rats group. The plasma total lipids of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly increased (P < 0.001) than that of the rats group supplemented with vitamin C and E. The rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly decreased (P < 0.001) in plasma total lipids than that of the STZ-diabetic rats group (Table 7 & Fig. 8-1).

Plasma triglyceride levels showed significant increases (P < 0.001) in STZ-diabetic rats group and rats groups supplemented with vitamins C and E before or post STZ-diabetic induction in relation to that of the control rats group. The plasma triglyceride levels of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly increased (P <

Table (7): Plasma lipid profile of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Rat groups Parameters	Group I	Group II	Group III	Group IV	Group V	P
Total lipids	1.04	1.03	1.18	1.12	1.14	
_	土	土	土	土	<u>±</u>	***
(mg/dl)	0.01	0.01	0.01 ^{—***} α***	$0.02^{\stackrel{\perp}{@}^{***}\alpha***\beta***}$	$0.04^{\frac{1}{@^{***}\alpha***\beta***}}$	
Triglycerides	82.59	82.79	212.43	112.19	115.93	
(mg/dl)	<u>±</u>	<u>±</u>	<u>±</u>	<u>±</u>	<u>±</u>	***
	1.03	1.31	1.60 ^{—***} α***	$1.25^{\frac{1}{@^{***}\alpha^{***}\beta^{***}}}$	$0.68^{\text{@}^{***}\alpha***\beta***\delta**}$	
Cholesterol	103.45	82.75	128.99	108.99	121.33	
(mg/dl)	土	<u>±</u>	<u>±</u>	<u>±</u>	<u>±</u>	***
	1.81	$0.86^{\frac{1}{@}***}$	0.86 ^{****} *****	$1.18^{^{^{-}}\alpha**}\alpha***\beta***}$	$0.67^{@^{***}\alpha^{***}\beta^{***}\delta^{***}}$	
LDL-cholesterol	24.69	19.96	52.43	37.68	51.55	
(mg/dl)	<u>±</u>	<u>±</u>	<u>±</u>	<u>±</u>	<u>±</u>	***
	0.41	0.33 ***	0.45	$0.98^{\overset{\perp}{@}^{***}\alpha***\beta***}$	$1.62^{\frac{\pm}{0}***\alpha***\delta***}$	
HDL-cholesterol	63.50	56.03	36.58	43.52	40.65	
(mg/dl)	土	土	<u>±</u>	<u>±</u>	±	***
	0.89	0.31 @***	0.31 ^{****} *****	1.38 ^{@***α***β***}	$1.29^{@***\alpha***\beta**\delta*}$	

@: refers to the relation of the groups with group I

 $\alpha\!\!:$ refers to the relation of the group III or group IV or group V with group II

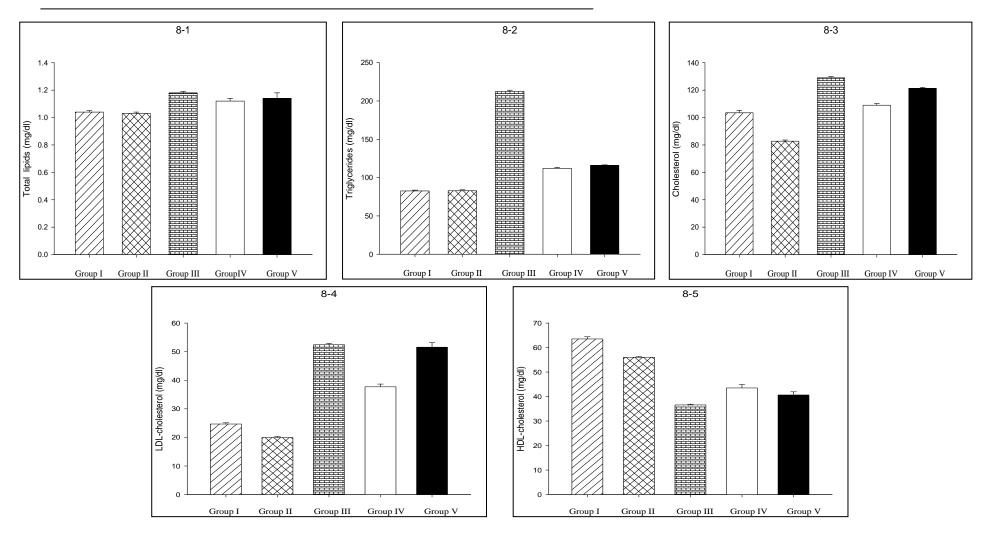
 β refers to the relation of group IV or group V with Group III

 $\delta\!\!:$ refers to the relation of group V and group IV

^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01

^{***:} Significant difference at P < 0.001


0.001) than that of the rats group supplemented with vitamin C and E. Plasma triglyceride levels of the rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly decreased (P < 0.001) than that of the STZ-diabetic rats group. Rats group supplemented with vitamins C and E post STZ-diabetic induction were a significantly increased (P < 0.01) in triglyceride level than those of rats group supplemented with vitamins C and E before STZ-diabetic induction (Table 7 & Fig. 8-2).

Rats group supplemented with vitamins C and E showed a significant decrease (p < 0.001) in plasma total cholesterol than that of control rats group. Plasma total cholesterol levels were recorded to be significantly higher (P < 0.001, P < 0.01 & P < 0.001) in STZ-diabetic rats group, rats groups supplemented with vitamins C and E before or post STZ-diabetic induction respectively than that of the control rats group. The plasma total cholesterol levels of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZdiabetic induction were significantly increased (P < 0.001) than that of the rats group supplemented with vitamin C and E. Plasma total cholesterol levels of the rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly decreased (P < 0.001) than that of the STZ-diabetic rats group. Rats group supplemented with vitamins C and E post STZ-diabetic induction were a significantly increased (P < 0.001) in total cholesterol level than those of rats group supplemented with vitamins C and E before STZ-diabetic (Table 7 & Fig. 8-3).

Plasma LDL-cholesterol level of rats group supplemented with vitamins C and E was lower (P < 0.001) than that of the control rats

group. Plasma LDL-cholesterol levels were significantly higher (P < 0.001) in STZ-diabetic rats group and rats groups supplemented with vitamins C and E before or post STZ-diabetic induction in relation to that of the control rats group. Plasma LDL-cholesterol levels of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly increased (P < 0.001) than that of the rats group supplemented with vitamin C and E. Plasma LDL-cholesterol levels of the rats group supplemented with vitamins C and E before STZ-diabetic induction was significantly decreased (P < 0.001) than that of the STZ-diabetic rats group. Rats group supplemented with vitamins C and E post STZ-diabetic induction (group V) had a significantly higher (P < 0.001) plasma LDL-cholesterol level than that of the rats group supplemented with vitamins C and E before STZ-diabetic induction (group IV)(Table 7 & Fig. 8-4).

Plasma HDL-cholesterol levels were significantly lower (P < 0.001) in rats group supplemented with vitamins C and E (group II), STZ-diabetic rats group (group III) and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction (groups IV and V) in comparison with that of the control rats group (group I). Plasma HDL-cholesterol levels of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly decreased (P < 0.001) than that of the rats group supplemented with vitamin C and E. Plasma HDL-cholesterol levels of the rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly increased (P < 0.001) than that of the STZ-diabetic rats group. Plasma HDL-cholesterol level of rats group supplemented with vitamins C and E post STZ-diabetic

Figure (8): Plasma lipid profile [total lipids (8-1), triglyceride (8-2), cholesterol (8-3), LDL-cholesterol (8-4) and HDL-cholesterol (8-5)] of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

induction (group V) was significantly lower than that of the rats group supplemented with vitamins C and E before STZ-diabetic induction (group IV) (Table 7 & Fig. 8-5).

> Total protein:

Plasma total protein of rats group supplemented with vitamins C and E (group II), STZ diabetic rats group (group III) and rats groups supplemented with vitamins C and E before or post STZ-diabetic induction (groups IV and V) were significantly lower (P < 0.001)than that of the control rats group (group I). Plasma total protein of the STZ-diabetic rats group and rats group supplemented with vitamins C and E post STZ-diabetic induction were significantly decreased (P < 0.001) than that of the rats group supplemented with vitamin C and E. Plasma total protein of rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly increased (P < 0.001 & p < 0.05, respectively) than that of the STZ-diabetic rats group. Plasma total protein of rats group supplemented with vitamins C and E post STZ-diabetic induction was significantly lower (P < 0.05) than that of the rats group supplemented with vitamins C and E before STZdiabetic induction (Table 8 & Fig. 9-1).

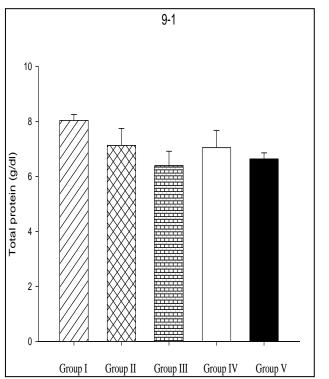
Plasma albumin contents of all treated groups were significantly decreased (P < 0.001) than that of the control rats group. Plasma albumin contents of the STZ-diabetic rats group and rats group supplemented with vitamins C and E before STZ-diabetic induction were significantly decreased (P < 0.001) than that of the rats group supplemented with vitamin C and E. Plasma albumin contents of rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly higher (P < 0.01) than that of the STZ-

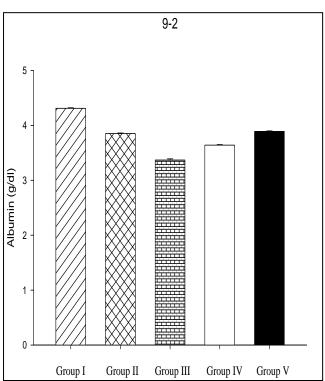
Table (8): Plasma proteins concentration of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

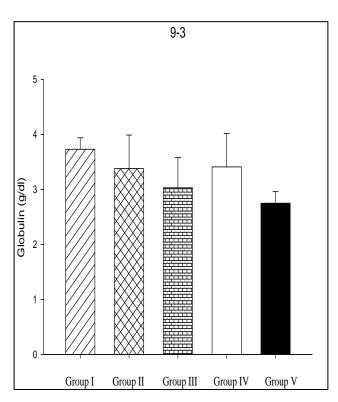
Rat groups Parameters	Group I	Group II	Group III	Group IV	Group V	P
Total protein	8.04	7.13	6.40 ±	7.05 ±	6.64 ±	***
(g/dl)	± 0.22	± 0.62 ^{@***}	$0.57^{@****\alpha***}$		$0.22^{@^{***}\alpha ***\beta *\delta *}$	
Albumin	4.31	3.85	3.37	3.64	3.89	
(g/dl)	±	±	±	±	±	***
	0.01	$0.01^{@***}$	$0.02^{@^{***}\alpha^{***}}$	$0.01^{@^{***}\alpha^{***}\beta^{***}}$	$0.01^{@***\beta***\delta**}$	
Clabulin	3.73	3.38	3.03	3.41	2.75	
Globulin (g/dl)	±	±	±	±	±	***
(g/til)	0.21	0.61 ^{@***}	$0.55^{@***\alpha***}$	$0.61^{@***\alpha*\beta***}$	$0.21^{\text{@}***\alpha***\beta***\delta***}$	

^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01


^{***:} Significant difference at P < 0.001


^{@:} refers to the relation of the groups with group I


α: refers to the relation of the group III or group IV or group V with group II

β: refers to the relation of group IV or group V with Group III

 $[\]delta$: refers to the relation of group V and group IV

Figure (9): Plasma proteins concentration [total protein (9-1), Albumin (9-2) and Globulin (9-3)] of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

diabetic rats group. Plasma total albumin contents of rats group supplemented with vitamins C and E post STZ-diabetic induction was significantly increased (P < 0.01) than that of the rats group supplemented with vitamins C and E before STZ-diabetic induction (Table 8 & Fig. 9-2).

Plasma globulin contents of all treated rats groups were significantly decreased (P < 0.001) than that of the control rats group. Plasma globulin contents of the STZ-diabetic rats group and rats group supplemented with vitamins C and E post STZ-diabetic induction were significantly decreased (P < 0.001) than that of the rats group supplemented with vitamin C and E. Rats group supplemented with vitamins C and E before STZ-diabetic induction was significantly increased than that of the rats group supplemented with vitamins C and E. Rats group supplemented with vitamins C and E before STZ-diabetic induction was significantly increased (P < 0.001) in plasma globulin content compared to that of the STZ-diabetic rats group. Rats group supplemented with vitamins C and E post STZ-diabetic induction had a significantly lower (P < 0.001) plasma globulin content than that of the STZ-diabetic rats group. Rats group supplemented with vitamins C and E post STZ-diabetic induction had a significantly lower (P < 0.001) plasma globulin content than that of the rats group supplemented with vitamins C and E before STZ-diabetic induction (Table 8 & Fig. 9-3).

> Plasma urea:

Plasma urea nitrogen was significantly higher (P < 0.001, P < 0.01 & P < 0.01) in STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction, respectively in relation to that of the control rats group. Plasma urea nitrogen were

Table (9): Plasma urea nitrogen, uric acid and creatinine concentrations of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Rat groups Parameters	Group I	Group II	Group III	Group IV	Group V	P
Urea nitrogen (mg/dl)	4.75 ± 0.04	4.74 ± 0.04	5.51 ± 0.08 ^{@***α***}	4.90 ± 0.01 ^{@**} α**β***	4.92 \pm $0.02^{\overset{\pm}{0}^{**}\alpha**\beta***}$	***
Uric acid (mg/dl)	2.86 ± 0.01	2.88 ± 0.03	2.31	2.50 \pm $0.02^{@^{***}\alpha***\beta***}$	2.52	***
Creatinine (mg/dl)	0.44 ± 0.03	0.44 ± 0.04	0.75 ± 0.05 ^{@***α***}	0.61 ± 0.05 ^{@**α**β*}	0.62 ± 0.05 ^{@***} α***β*	***

@: refers to the relation of the groups with group I

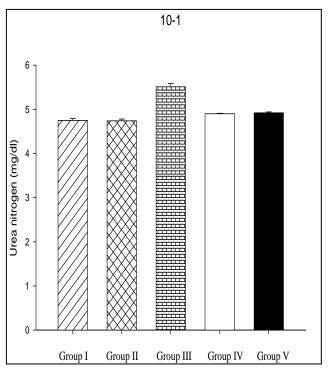
 $\alpha\text{:}\ \text{refers to the relation of the group III or group IV or group V}$ with group II

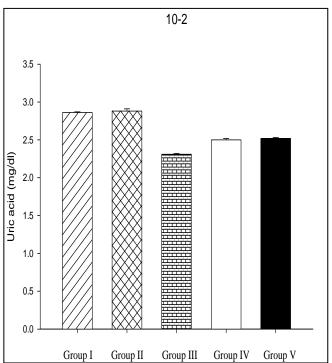
β: refers to the relation of group IV or group V with Group III

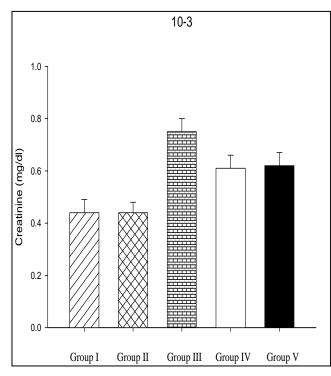
^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01

^{***:} Significant difference at P < 0.001


significantly higher (P < 0.001, p < 0.01, p < 0.01) in the STZ-diabetic rats group (group III) and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction (group IV and group V) respectively than that of the rats group supplemented with vitamins C and E. Plasma urea nitrogen were significantly lower (P < 0.001) in rat groups supplemented with vitamins C and E before or post STZ-diabetic induction compared to that of the STZ-diabetic rats group (Table 9 & Fig. 10-1).


> Plasma uric acid:


Plasma uric acid was recorded to be significantly lower (P < 0.001) in STZ-diabetic rats group and rat groups supplemented with vitamins C and E before and post STZ-diabetic induction compared to that of the control rats group. Plasma uric acid was significantly lower (P < 0.001) in the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction than that of the rats group supplemented with vitamins C and E. Uric acid in plasma were recorded to be significantly higher (P < 0.001) in rat groups supplemented with vitamins C and E before or post STZ-diabetic induction than that of the STZ-diabetic rats group (Table 9 & Fig. 10-2).

> Plasma creatinine:

Plasma creatinine concentrations were recorded to be significantly increased (P < 0.001, P < 0.01 & P < 0.001) in STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction, respectively compared to that of the control rats group. Plasma creatinine concentrations of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction were significantly higher (P < 0.001, P < 0.01 & P < 0.001 & P < 0.001

Figure (10): Plasma urea nitrogen (10-1), uric acid (10-2) and creatinine (10-3) concentrations of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

0.001, respectively) than that of the rats group supplemented with vitamins C and E. Plasma creatinine concentrations were found to be significantly lower (P < 0.01) in rats group supplemented with vitamins C and E before or post STZ-diabetic induction than that of the STZ-diabetic rats group (Table 9 & Fig. 10-3).

• Plasma transaminases:

Plasma transaminases (ALT and AST) activities showed significant increase (P < 0.001) in STZ-diabetic rats group and rat groups supplemented with vitamin C and E before or post STZ-diabetic induction compared to that of the control rats group. ALT and AST activities showed significant increase (P < 0.001) in STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction compared to that of the rats group supplemented with vitamins C and E. ALT and AST activities showed significant decrease (P < 0.001) in rats group supplemented with vitamins C and E before or post STZ-diabetic induction compared to that of the STZdiabetic rats group (Table 10 and Fig.11-1 & fig.11-2).

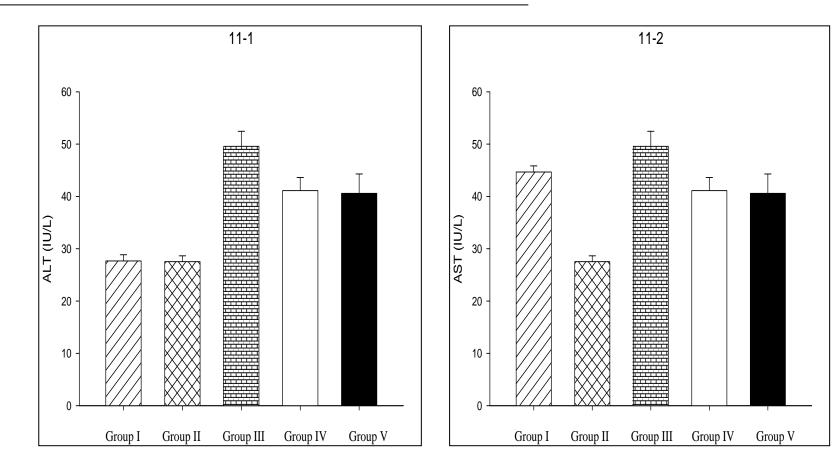
• Plasma insulin:

Plasma insulin levels of the STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction showed significant decrease (P < 0.001) compared to that of the control rats group. The STZ-diabetic rats group and rat groups supplemented with vitamins C and E before or post STZ-diabetic induction showed significant decrease (P < 0.001) in plasma insulin levels compared to that of the rats group supplemented with vitamins C and E. Plasma insulin levels of rats group supplemented with vitamins C

Table (10): Transaminases activity (alanine aminotransaminase, ALT and aspartate aminotransaminase, AST) of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Rat groups Parameters	Group I	Group II	Group III	Group IV	Group V	P
ALT	27.67	27.52	49.58	41.11	40.58	
(IU/L)	±	<u>±</u>	±	±	±	***
(16/2)	1.17	1.12	$2.87^{@***\alpha***}$	$2.52^{@***\alpha***\beta***}$	$3.71^{@***\alpha***\beta***}$	
AST	44.67	44.36	67.83	61.17	59.69	
(IU/L)	±	<u>±</u>	±	±	±	***
	1.17	1.02	$3.20^{@^{***}\alpha^{***}}$	$2.20^{@***\alpha***\beta***}$	$2.15^{@***\alpha***\beta***}$	

@: refers to the relation of the groups with group I


 $\alpha\!\!:$ refers to the relation of the group III or group IV or group V with group II

 β refers to the relation of group IV or group V with Group III

^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01

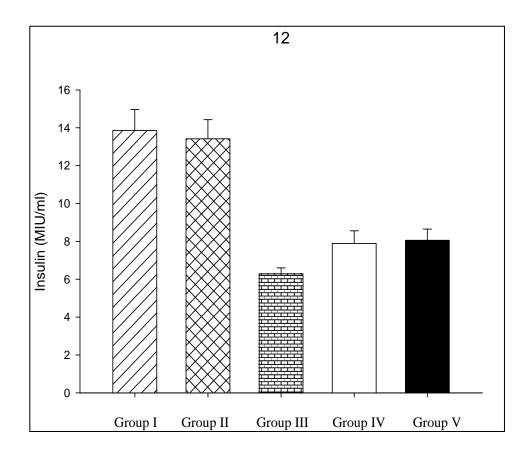
^{***:} Significant difference at P < 0.001

Figure (11): Transaminases activity [alanine aminotransaminase; ALT (11-1) and aspartate aminotransaminase, AST (11-2)] of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Table (11): Insulin levels of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

Rat groups Parameters	Group I	Group II	Group III	Group IV	Group V	P
In sulin	13.86	13.42	6.29	7.89	8.06	
Insulin	±	±	±	±	±	***
(MIU/ml)	1.11	1.01	$0.31^{@^{***}\alpha***}$	$0.67^{@***\alpha***\beta**}$	$0.59^{@***\alpha***\beta**}$	

@: refers to the relation of the groups with group I


α refers to the relation of the group III or group IV or group V with group II

 β : refers to the relation of group IV or group V with Group III

^{*:} Significant difference at P < 0.05

^{**:} Significant difference at P < 0.01

^{***:} Significant difference at P < 0.001

Figure (12): Insulin levels of control rats group (Group I), rats group supplemented with vitamins C and E (Group II), STZ-diabetic rats group (Group III), rats group supplemented with vitamins C and E before STZ-diabetic induction (Group IV) and rats group supplemented with vitamins C and E post STZ-diabetic induction (Group V).

and E before or post STZ-diabetic induction were significantly higher (P < 0.01) than that of the STZ-diabetic rats group (Table 11 & Fig. 12).