CONTENTS

	page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	5
Drainage and waste waters	5
The importance of Tilapia in World Aquaculture	5
Water importance for aquaculture	6
Water pollution	6
Factors affecting water quality	7
Abiotic factors	7
Physical parameters of water	7
Chemical parameters of water	9
Heavy metals	18
Biotic factors	28
Phytoplankton	29
Zooplankton	31
III. MATERIALS AND METHODS	33
Location of the study area	33
Sampling points	33
Sampling Procedures	34

Water analysis	34
Physico-chemical analyses	34
I. Physical Methods	34
II. Chemical Analyses Methods	35
Heavy metal in water samples	41
Biological Analyses	41
Chlorophyll "a"	41
Phytoplankton	42
Zooplankton	42
Fish samples	43
Statistical analysis	43
IV. RESULTS	44
Water parameters	44
Physico-chemical parameters of water	44
Heavy metals residues in water	60
Heavy metals in fish (Oreochromis niloticus)	65
Plankton estimation	75
Chlorophyll "a"	75
Phytoplankton	77
Zooplankton	86

V. DISCUSSION	92
Physico-chemical parameters of water	92
Heavy Metals	97
Heavy metals in water	97
Heavy metals in fish	99
Biological characteristics	103
Chlorophyll "a" content	103
Phytoplankton	103
Zooplankton	106
VI. SUMMARY	108
VII. REFERENCES	114
ARABIC SUMMARY	

LIST OF TABLES

	Page
Table (1): Percentage of unionized ammonia in aqueous solutions at different pH values and temperatures (Boyd 1984).	38
Table (2): seasonal variations of some physico-chemical parameters of water samples collected from fresh water, agricultural drainage water, and mixed drainage water.	46
Table (3): seasonal variations of some physico-chemical parameters of water samples collected from fresh water, agricultural drainage water, and mixed drainage water.	49
Table (4): seasonal variations of some physico-chemical parameters of water samples collected from fresh water, agricultural drainage water, and mixed drainage water.	52
Table (5): seasonal variations of some physico-chemical parameters of water samples collected from fresh water, agricultural drainage water, and mixed drainage water.	57
Table (6): seasonal variations of some heavy metals in water samples collected from fresh water, agricultural drainage water, and mixed drainage water.	62
Table (7): Heavy metals concentrations in the muscle, gill, and liver tissues of (<i>Oreochromis niloticus</i>) which collected from agricultural drainage water and fresh water during different seasons.	68
Table (8): seasonal variations of chlorophyll concentrations of water samples collected from fresh water, agricultural drainage water, and mixed drainage water.	75
Table (9): Seasonal mean of phytoplankton divisions in water samples collected from fresh water.	79
Table (10): Seasonal mean of phytoplankton divisions in water samples collected from agricultural drainage water.	80
Table (11): Seasonal mean of phytoplankton divisions in water samples collected from mixed drainage water.	81

Table (12): Total Phytoplankton divisions in water samples collected from fresh water, agricultural drainage water and mixed drainage water.	82
Table (13): The qualitative composition of the phytoplankton in the different water sources during different seasons.	83
Table (14): The most dominant phytoplankton genera in water samples collected from fresh water, agricultural drainage water and mixed drainage water during different seasons.	84
Table (15): Seasonal mean of zooplankton genera in water samples collected from fresh water.	87
Table (16): Seasonal mean of zooplankton genera in water samples collected from agricultural drainage water.	88
Table (17): Seasonal mean of zooplankton genera in water samples collected from mixed drainage water.	89
Table (18): Total Zooplankton genera in water samples collected from fresh water, agricultural drainage water and mixed drainage water.	90

LIST OF FIGURES

	Page
Figure (1): Secchi disc visibility A, dissolved oxygen concentration (mg/l) B, pH value at different water sources during different seasons C.	47
Figure (2): Electrical conductivity A, Total dissolved solids concentration B., Salinity value at different water sources during different seasons C.	50
Figure (3): Total ammonia concentrations at different water sources during different seasons.	53
Figure (4): Un ionized ammonia concentrations at different water sources during different seasons.	53
Figure (5): Nitrite concentrations at different water sources during different seasons.	54
Figure (6): Nitrate concentrations at different water sources during different seasons.	54
Figure (7): Total alkalinity concentrations at different water sources during different seasons.	58
Figure (8): Total hardness concentrations at different water sources during different seasons.	58
Figure (9): Ortho phosphate concentrations at different water sources during different seasons.	59
Figure (10): Total phosphorus concentrations at different water sources during different seasons.	59
Figure (11): Iron concentrations at different water sources during different seasons.	63
Figure (12): Zinc concentrations at different water sources during different seasons.	63
Figure (13): Copper concentrations A, Cadmium concentration B, and Lead concentration C, at different water sources during different seasons.	64
Figure (14) : Iron concentrations in muscle samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	69

Figure (15): Iron concentrations in gills samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	69
Figure (16): Iron concentrations in liver samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	70
Figure (17): Zinc concentrations in muscle samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	70
Figure (18): Zinc concentrations in gills samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	71
Figure (19) : Zinc concentrations in liver samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	71
Figure (20): Copper concentrations in muscle samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	72
Figure (21): Copper concentrations in gills samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	72
Figure (22): Copper concentrations in liver samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	73
Figure (23): Cadmium concentrations in muscle samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	73
Figure (24): Cadmium concentrations in gills samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	74
Figure (25): Cadmium concentrations in liver samples of <i>Oreochromis niloticus</i> which collected from agricultural drainage water and fresh water during different seasons.	74
Figure (26): Concentrations of Chlorophyll at different water sources during different seasons.	76

Figure (27): Total Phytoplankton concentrations at different water sources during different seasons.	82
Figure (28): percentage of phytoplankton species at fresh water	85
Figure (29): percentage of phytoplankton species at agricultural drainage water	85
Figure (30) : percentage of phytoplankton species at mixed drainage water.	85
Figure (31): Total zooplankton concentrations at different water sources during different seasons.	90
Figure (32): percentage of zooplankton species at fresh water	91
Figure (33): percentage of zooplankton species at agricultural drainage water	91

List of abbreviations

АРНА	American Public Health Association
CEA	Central Environmental Authority
DWAF	Department Of Water Affairs and Forestry
NWRP	National Water Resources Plan for Egypt
FAO	Food and Agriculture Organization
WHO	World Health Organization
USEPA	United States Environmental Protection Agency
SD	Secchi disc
Do	Dissolved oxygen
EC	Electrical conductivity
TDS	Total dissolved solids
OP	Ortho phosphates
TP	Total phosphorus
mg/l	Milli gram per liter
μg/g	microgram per gram
BCM	Billion cubic meter
ND	Not detectable