TABLE OF CONTENTS

	Page	
APROVAL SHEET	1 450	i
ACKNOWLEDGMENTS		ii
ABSTRACT		iii
TABLE OF CONTENTS		iv
LIST OF TABLES	,	vii
LIST OF FIGURES	,	viii
CHAPTER 1 INTRODUCTION		
1.1 General		1
1.2 Problem Statement, Research Significance		1
1.3 Main Objectives, Scope and Methodology of the Study		2
CHAPTER 2 LITERATURE REVIEW and RECENT DEVELOPMENTS		
2.1 Masonry Shear Walls		3
2.2 Reinforced Concrete Infilled Frames under Monotonic Loading		9
2.3 Reinforced Concrete Infilled Frames under Cyclic Loading		18
CHAPTER 3 FINITE ELEMENT MODELING		
3.1 Theoretical Descriptions of Elements		26
 3.1.1 Solid 65-3-D Reinforced Concrete and Masonry 3.1.2 Link 8 (Steel Reinforcement) 3.1.3 Contact 52 (Concrete-Masonry Interface) 	,	26 27 28
3.2 Material Modeling		29

3.2.	1 Material Modeling for Concrete 3.2.1.1 Nonlinear Behavior of concrete	29 32
		32
	i. Modeling of a Crackii. Modeling of Crushing	33
	II. Modering of Crushing	33
3.2.	2 Material Modeling for Steel Reinforcement	34
3.2.	3 Material Modeling for Masonry	35
3.2.	4 Material Modeling for Infill/Frame Interface	35
CHAPTER 4 IMPLEMENT	ATION AND NUMERICAL EVALUATION	
4.1 General		37
4.2 Non linear	finite element verification	38
4.2.1 Firs	st verification example (brae frame)	39
	and verification example (masonry wall)	41
	rd verification example (Infilled Frame under monotonic loading)	43
	orth verification example (Infilled Frame under cyclic loading)	46
	th verification example (Two Story Bare Frame)	48
	th verification example (Two Story infilled Frame)	51
CHAPTER 5 PARAMETRI	<u>C STUDY</u>	
5.1 General		54
5.2 Description	of the Investigated Infilled Frames	55
5.2.1 Re	einforced Concrete Frame	55
5.2.2 Th	ne Infill Panel	57
5.2.3 In	fill-Frame Interface	57
5.3 Results and	Discussion	57
5.3.1 Ef	fect of Infill Panel	58
	5.3.1.1 Behavior of Infilled frame under cyclic loading.	60
	fect of Infill Panel Thickness	64
	fill panel compressive strength.	68
	fect of interface normal stiffness (Kn)	72
	fect of Interface shear stiffness (Ks)	74
	esence of shear connectors at the infill-frame interface	77
5.3.7 O ₁	penings dimensions and locations	81

5.3.7.1 Presence of Window Opening in the Infill Panel	81
5.3.7.2 Effect of Door Opening	89
5.3.7.3 Effect of Opening Size	94
5.3.8 Effect of rectangularity ratio of infill panel	95
5.3.9 Frame compressive strength	97
5.3.10 Effect of frame reinforcing steel yield stress	100
5.3.11 Effect of vertical distributed stress on frame	102
5.3.12 Effect of frame beam/column relative stiffness	104
5.3.13 Effect of Number of stories	106
5.3.14 Effect of Number of bays	113
5.4 Diagonal Strut Model CHAPTER 6 SUMMARY and CONCLUSIONS	120
6.1 Summary	125
6.2 Conclusions	126
6.3 Recommendations for Future Studies	129
REFERENCES	130
ARABIC SUMMARY	139