CONTENTS

Part I Chapter 1. Introduction 1. Importance of 4H-3,1-benzoxazinone and quinazolin-4-one classes 1.1. Importance of 4H-3,1-benzoxazinone class 1.1.1. In the industrial field 1.1.2. In the agriculture field 1.1.3. In the agriculture field 1.2. Importance of quinazolin-4-one class 1.2.1.In the clinical field 1.2.2. In the industrial field 1.2.3.In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	Title	Page
General introduction Part I Chapter 1. Introduction 1. Importance of 4H-3,1-benzoxazinone and quinazolin-4-one classes 1.1. Importance of 4H-3,1-benzoxazinone class 1.1.1. In the industrial field 1.1.2. In the agriculture field 1.1.3. In the agriculture field 1.2. Importance of quinazolin-4-one class 1.2.1.In the clinical field 1.2.2. In the industrial field 1.2.3. In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	Summary	i
Part I Chapter 1. Introduction 1. Importance of 4H-3,1-benzoxazinone and quinazolin-4-one classes 1.1. Importance of 4H-3,1-benzoxazinone class 1.1.1. In the industrial field 1.1.2. In the agriculture field 1.1.3. In the agriculture field 1.2. Importance of quinazolin-4-one class 1.2.1.In the clinical field 1.2.2. In the industrial field 1.2.3.In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	The aim of the work	1
Chapter 1. Introduction 1. Importance of 4H-3,1-benzoxazinone and quinazolin-4-one classes 1.1. Importance of 4H-3,1-benzoxazinone class 1.1.1. In the industrial field 1.1.2. In the agriculture field 1.1.3. In the agriculture field 1.2. Importance of quinazolin-4-one class 1.2.1. In the clinical field 1.2.2. In the industrial field 1.2.3. In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	General introduction	3
 Importance of 4H-3,1-benzoxazinone and quinazolin-4-one classes In Importance of 4H-3,1-benzoxazinone class In the industrial field In the agriculture field In the agriculture field Importance of quinazolin-4-one class Importance of quinazolin-4-one class In the clinical field In the industrial field In the agriculture field Synthesis of 4H-3,1-benzoxazin-4-ones From anthranilic acids In the action of acid chlorides on anthranilic acid Via the action of acid anhydrides on anthranilic acid Via reaction of anthranilic acid with aromatic carboxylic acid Reaction of substituted anthranilic acid with Boc-protected amino acids Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	Part I	6
1.1. Importance of 4 <i>H</i> -3,1-benzoxazinone class 1.1.1. In the industrial field 1.1.2. In the agriculture field 1.1.3. In the agriculture field 1.2. Importance of quinazolin-4-one class 1.2.1.In the clinical field 1.2.2. In the industrial field 1.2.3.In the agriculture field 2. Synthesis of 4 <i>H</i> -3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	Chapter 1. Introduction	6
1.1.1. In the industrial field 1.1.2. In the agriculture field 1.1.3. In the agriculture field 1.2. Importance of quinazolin-4-one class 1.2.1.In the clinical field 1.2.2. In the industrial field 1.2.3.In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	1. Importance of 4H-3,1-benzoxazinone and quinazolin-4-one classes	6
1.1.2. In the agriculture field 1.1.3. In the agriculture field 1.2. Importance of quinazolin-4-one class 1.2.1.In the clinical field 1.2.2. In the industrial field 1.2.3.In the agriculture field 2. Synthesis of 4 <i>H</i> -3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	1.1. Importance of 4H-3,1-benzoxazinone class	6
1.1.3. In the agriculture field 1.2. Importance of quinazolin-4-one class 1.2.1.In the clinical field 1.2.2. In the industrial field 1.2.3.In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	1.1.1. In the industrial field	6
 1.2. Importance of quinazolin-4-one class 1.2.1.In the clinical field 1.2.2. In the industrial field 1.2.3.In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	1.1.2. In the agriculture field	6
1.2.1.In the clinical field 1.2.2. In the industrial field 1.2.3.In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	1.1.3. In the agriculture field	7
 1.2.2. In the industrial field 1.2.3.In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	1.2. Importance of quinazolin-4-one class	7
 1.2.3.In the agriculture field 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	1.2.1.In the clinical field	7
 2. Synthesis of 4H-3,1-benzoxazin-4-ones 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	1.2.2. In the industrial field	7
 2.1. From anthranilic acids 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	1.2.3.In the agriculture field	7
 2.1.1. Via the action of acid chlorides on anthranilic acid 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	2. Synthesis of 4H-3,1-benzoxazin-4-ones	8
 2.1.2. Via the action of acid anhydrides on anthranilic acid 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	2.1. From anthranilic acids	8
 2.1.3. Via reaction of anthranilic acid with aromatic carboxylic acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	2.1.1. Via the action of acid chlorides on anthranilic acid	8
acid 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	2.1.2. Via the action of acid anhydrides on anthranilic acid	15
 2.1.4. Reaction of substituted anthranilic acid with Boc-protected amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid 	2.1.3. Via reaction of anthranilic acid with aromatic carboxylic	
amino acids 2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	acid	18
2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro fluoroalkanoic acid	2.1.4. Reaction of substituted anthranilic acid with Boc-protected	
fluoroalkanoic acid	amino acids	21
	2.1.5. Reaction of substituted anthranilic acid with 2,2-dihydro	
2.1.6. Synthesis of Bis(4H)-3,1-benzoxazin-4-one derivatives	fluoroalkanoic acid	21
	2.1.6. Synthesis of $Bis(4H)$ -3,1-benzoxazin-4-one derivatives	22

2.1.7. From interaction of anthranilic acid with heterocyclic	
compounds	23
2.1.7.1. From 4-arylidene-2-aryl- Δ ² -oxazolin-5-one	23
2.1.7.2. From iminodithiazole	24
2.1.7.3. From (4 <i>H</i>)-3,2-benzoxazin-4-one	25
2.1.7.4. From 3-methyl-2-(ethoxycarbonylmethoxy)	
quinoxaline	25
2.1.7.5. From 2-ethoxycarbonyl-4(3H)quinazolin-4-one	26
2.1.7.6. From 3-ethoxycarbonylcoumarin	26
2.1.7.7. From hetero-ring opening of furanone derivatives	28
2.1.7.8. From hetero-ring opening of 1.3-dioxin-4-one	
derivatives	28
2.2.From N-acylanthranilic acid	29
2.2.1. Acetic anhydride as cyclizing agent	29
2.2.2. Thionyl chloride as cyclizing agent	30
2.2.3. Vilsmeier reagents as cyclizing agent	30
2.2.4. Cyanuric chloride as cyclizing agent	31
2.2.5. Dicyclohexylcarbodiimide as cyclizing agent	32
2.3. From 2-methyl-4 <i>H</i> -3,1-benzoxazin-4-one	33
2.4. From isatoic anhydrides	35
2.4.1. Reaction of isatoic anhydride with acid anhydrides	35
2.4.2. Reaction of isatoic anhydride with acid chlorides	35
2.4.3. Reaction of isatoic anhydride with phosphoryl-stabilized	
anions	37
2.5. Oxidation of indoles	38
2.6. Miscellaneous	39
2.6.1. From β-(Triphenylphosphoranylidene) amino esters	39

2.6.2. From iminophosphorane	39
2.6.3. From N-benzenesulphonylanthranilic acid	40
2.6.4. From thioamide derivatives	40
2.6.5. From electrochemical cyclization of o-trichloroacetyl	
anilides	41
2.6.6. CO2 incorporation reaction using arynes	41
2.6.7. From 2-(1H-1,2,3-benzotrizol-1-yl)phenyl ethanone	42
2.6.8. From heating of acetylanthranilic acid by microwave	42
2.6.9. Thermolysis of 2-(3-benzoylthioureido)-4,5-dimethoxy	
benzoic acid	44
2.6.10. Thermally induced cyclization of keten imines	44
2.6.11. From o-iodoaniline	45
3. Reactions of 4H-3,1-benzoxazin-4-ones	47
3.1. Reactions with Hydrogen nucleophiles	47
3.2. Reactions with oxygen nucleophiles	48
3.3. Reactions with nitrogen nucleophiles	49
3.3.1. Ammonlysis	50
3.3.2. Reactions with oxygen nucleophiles	52
3.3.2.1. Reactions with hydrazine hydrate	52
3.2.2.2. Reactions with hydrazine hydrate	59
3.3.2.3. Reactions with substituted hydrazines	59
3.3.2.4. Reactions with hydroxylamine hydrochloride	64
3.3.2.5. Reactions with thiosemicarbazide and amino	
guanidines	64
3.3.3. Aminolysis	65
3.3.3.1. Reactions with primary nonaromatic amines	65
3.3.3.2. Reactions with secondary amines	68
3.3.3.Reactions with aralkylamines	70

3.3.3.1. Reactions with benzylamine	70
3.3.3.2. Reactions with phenethylamine	71
3.3.4. Reactions with anilines	75
3.3.3.4.1 Reactions with <i>P</i> -bromoanilines	76
3.3.3.4.2. Reactions with <i>P</i> -aminodiphenylamine	77
3.3.3.4.3. Reactions with o -toluidine	77
3.3.3.4.4. Reactions with 2-substituted and/or	
2,6-disubstituted anilines	79
3.3.3.4.5. Reactions with anilines containing reactive	
function groups	81
3.3.4.5.1. Reaction with 2-cyanoanilines	81
3.3.4.5.2. Reactions with <i>p</i> -aminoacetophenone	81
3.3.4.5.3. Reactions with 4-hydroxyanilines	83
3.3.4.5.4. Reaction with sulphanilamide	83
3.3.3.5. Reactions with amino heterocyclic compounds	85
3.3.3.6. Reactions with diamines	89
3.3.3.6.1. Reactions with o -phenylenediamine	89
3.3.3.6.2. Reactions with ethylenediamine	90
3.3.3.6.3. Reactions with <i>p</i> -phenylenediamine	91
3.3.3.7. Reactions with aminoacids	92
3.3.3.8. Reactions with aminoalcohols	94
3.3.3.9. Reaction with Schiff's bases	95
3.3.3.10. Reactions with azines	96
3.3.3.11. Reactions with sodium azide	96
3.3.4. Reactions with carbon nucleophiles	98
3.3.4.1. Reactions with Grignard reagents	98
3.3.4.2. Friedel-Craft's reactions	104
3.3.4.3. Reactions with active methylene containing	

compounds	106
Chapter 2. Results and Discussions	109
Chapter 3. Experimental section	122
Part II	149
Chapter 1. Introduction	149
1. Biosynthesis of 2-Phenyl-7-hydroxy-3,1-benzoxazin-4-one, the	
phytoalexin dianthalexin	150
1.1. Accumulation of the dianthalexin in the infected	
carnation stems	150
1.2. Biosynthetic sequence for formation dianthalexin	150
2. Carnation (Dianthus caryophyllus)	152
2.1. Overview on carnation (Dianthus caryophyllus L.)	152
2.2. Taxonomy of carnation	152
2.3. Importance of carnation	152
2.4. Protection of carnation	153
3. Detection of the phytoalexin dianthalexin in the infected carnation	
tissue	154
3.1. Detection of the phytoalexin dianthalexin in the infects	
carnation tissue using pyrolysis-mass spectrometry (PY-MS)	154
3.2. Detection of the phytoalexin dianthalexin in the infects	
carnation tissue using High pressure liquid chromatography	
(HPLC)	154
Chapter 2. Results and Discussions	156
1. Biosynthesis of 2-Phenyl-7-hydroxy-3, 1-benzoxazin-4-one compound	
1.1. Phytoalexins in the artificially infected plants	156
1.1.1. Phytoalexins in artificially infected American carnation	156
cv. Madam collect	
1.1.2. Phytoalexins in artificially infected Egyptian carnation cy.	157

Balady 158 1.2. Phytoalexin dianthalexin in the naturally infected plants 1.2.1. Phytoalexin dianthalexin in the naturally infected 159 American carnation cv. Madam collect 1.2.1.1. Identification of phytoalexins using High pressure 160 liquid chromatography (HPLC) 1.2.1.2. Isolation of F oxysporum from naturally infected 160 leaves of the American carnation cv. Madam collect 1.2.1.3. Reaction of F oxysporum in naturally infected 162 American carnation plants cv. Madam collect 1.2.2. The naturally infected Egyptian carnation cv. Balady 163 1.2.2.1 Reaction of F oxysporum in naturally infected 163 Egyptian carnation plants cv. Balady 164 166 Chapter 3. Experimental section 1. Biosynthesis of 2-Phenyl-7-hydroxy-3,1-benzoxazin-4-one 167 1.1. Phytoalexins in the artificially infected plants 167 167 1.1.1. Test plants 1.1.2. Preparation of the conidial suspension of Fusarium oxysporum f.sp.dianthi 167 1.1.3. Inoculation of plants 168 168 1.1.4. Sample preparation 1.1.5. Extraction of phytoalexin 168 1.1.6. Identification of phytoalexins using High pressure liquid chromatography (HPLC) 169 1.1.6.1. Gradient system 169 169 1.1.6.2. Isocratic system 170 1.2. Phytoalexins in the naturally infected plants

1.2.1. The naturally infected of the American carnation plants	170
1.2.1.1 Test plants	170
1.2.1.2. Sample preparation	170
1.2.1.3. Extraction of phytoalexin	170
1.2.1.4. Identification of phytoalexin using High pressure	
liquid chromatography (HPLC)	170
1.2.1.5. Isolation of Fusarium oxysporum f.sp.dianthi from	
the naturally infected leaves of the American	
carnation cv. Madam collect	171
1.2.1.6. Reaction of F oxysporum f.sp.dianthi in the	
naturally infected American carnation plants	171
1.2.2. The naturally infected of the Egyptian carnation plants	171
1.2.2.1. Test plants	171
1.2.2.2. Reaction of F oxysporum f.sp.dianthi in naturally	
infected American carnation plants	171
Part III	173
Chapter 1. Introduction	173
Part 1. In-vitro antimicrobial activities of naturally Fusarium infected	
American carnation extracts and of the chemically synthesized	
compounds, i.e. 2-phenyl-4H-3,1-benzoxazin-4-one (III) and 2-phenyl-3-	
amino-4(3H)quinazolinone (XII)	175
1. In-vitro antibacterial activities of the tested sample	177
2. In-vitro antifungal activities of the tested samples	178
Part 2. In-vitro antimicrobial activities of all the chemically synthesized	
compounds (IV-XXV), except 2-phenyl-3-amino-4(3H)quinazolinone	
(XII)	179
1. In-vitro antibacterial activities of the chemically synthesized	
compounds	180

2. In-vitro antifungal activities of the chemically synthesized	
compounds	181
Chapter 2. Results and Discussions	182
Part 1. In-Vito antimicrobial activities of ethanolic extracts of naturally	
Fusarium infected American carnation and of chemically synthesized	
compounds, i.e. 2-phenyl-4H-3,1-benzoxazin-4-one (III) and 2-phenyl-3-	
amino-4(3H)quinazolinone (XII)	182
1. In-vitro antibacterial activities of the tested samples	182
2. In-vitro antifungal activities of the samples tested	185
Part 2. In-vitro antimicrobial activities of all the chemically synthesized	
compounds (IV-XXV), except 2-phenyl-3-amino-4(3H)quinazolinone	
(XII)	187
1. In-vitro antibacterial activities of the chemically synthesized	
compounds	187
2. In-vitro antifungal activities of the chemically synthesized	
compounds	189
Chapter 3. Experimental section	191
Part 1. The in-vitro antimicrobial activities of naturally Fusarium	
infected American carnation extracts and of the chemically synthesized	
compounds, i.e. 2-phenyl-4H-3,1-benzoxazin-4-one (III) and 2-phenyl-3-	
amino-4(3H)quinazolinone (XII)	191
1. The agar diffusion well method	192
2. Statistical analysis	193
Part 2. The in-vitro antimicrobial activities of all the chemically	
synthesized compounds (IV-XXV), except 2-phenyl-3-amino-	
4(3H)quinazolinone (XII)	194
1. Agar diffusion well method	194
2. Statistical analysis	195

Contents

Figures	199
Schemes	254
Appendix	263
Conclusions and suggesting for future work	270
References	272
Arabic summary	