Introduction

Hemodynamic and pathological studies demonstrate changes such as left ventricular dysfunction with filling abnormalities in diabetic heart usually asymptomatic unless congestive heart failure supervenes. (*Fein et al.*, 1990)

The underlying mechanisms of myocardial dysfunction are proposed to be multifactorial such as metabolic disturbances, myocardial fibrosis, microangiopathy, autonomic dysfunction (Fang et al., 2004)

The development of myocardial dysfunction represents a major complication of diabetes. This condition is characterized by defects of contractile and relaxation functions in the absence of significant coronary artery disease. (*Di Bello et al.*, 1995)

Left ventricular (LV) diastolic dysfunction has been described as an early sign of diabetic cardiomyopathy preceding the systolic dysfunction (*Cosson et al.*, 2003). A worldwide survey showed that in 40% of the patients with diabetes and without known kidney disease, the levels of urinary albumin were in the microalbuminuric range. (*Parving et al.*, 2006)

Albuminuria is an early marker of diabetic nephropathy and has been shown to strongly predict future cardiovascular morbidity and mortality in patients with type 2 diabetes (**de Zeeuw et al., 2004**). This is independent of conventional cardiovascular risk factors including age, arterial hypertension, and hypercholesterolemia (*Mattock et al., 1992*).

The risk of CVD in patients with diabetes increased almost 10 fold when albuminuria rose from 10 to 30 mg/day.

(Hoy et al., 2001)

Although the pathophysiologic mechanism underlying this relationship has not been elucidated, it was suggested that generalized vascular damage might serve as a common pathogenetic mechanism linking albuminuria and premature atherosclerosis (*Gerstein et al.*, 2001).

This is supported by the findings of higher incidence of coronary and peripheral vascular disease in diabetic patients with microalbuminuria compared with those without microalbuminuria. (Cruickshank et al., 2002)

Aim of the work

The aim of this work was to study the relationship between albuminuria and LV systolic and diastolic function in diabetic adults without overt heart diseases.