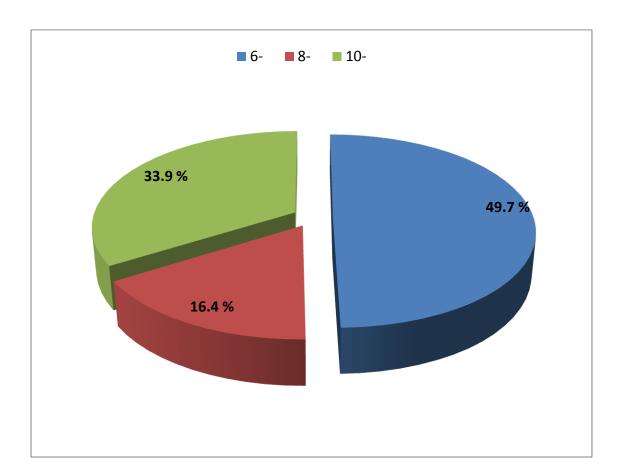

Table (1): Distribution of studied group according to sex:

Sex	No.	°/ ₀
Female	475	50.0%
Male	475	50.0%
Total	950	100.0%

Table (1) shows the total number of registered school children included in the study which was 950. Out of them 475 (50%) were males and 475 (50%) were females.

Figure (1)


Distribution of studied group according to sex

<u>Table (2):</u> Distribution of studied group according to age groups:

Age	No.	0/0
6-<8	472	49.7%
8-<10	156	16.4%
10-14	322	33.9%
Total	950	100.0%

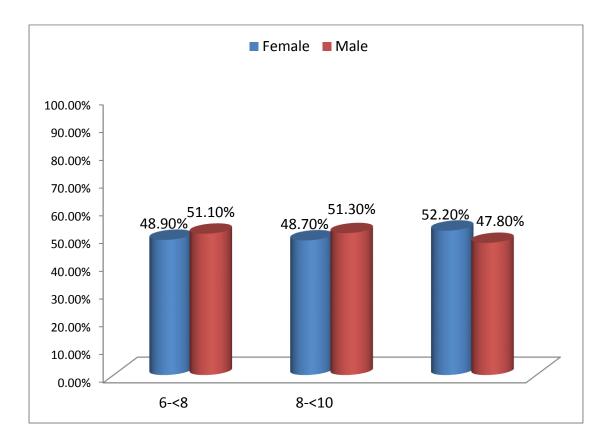
Table (2) shows different age groups included in our study:

Figure (2)

Distribution of studied group according to age groups

<u>Table (3):</u> Mean and SD of age of study group:

	No.	Minimum	Maximum	Mean	Std. Deviation
Age	950	6	14	8.81	2.151


<u>Table (4):</u> Age and sex distribution of the studied population:

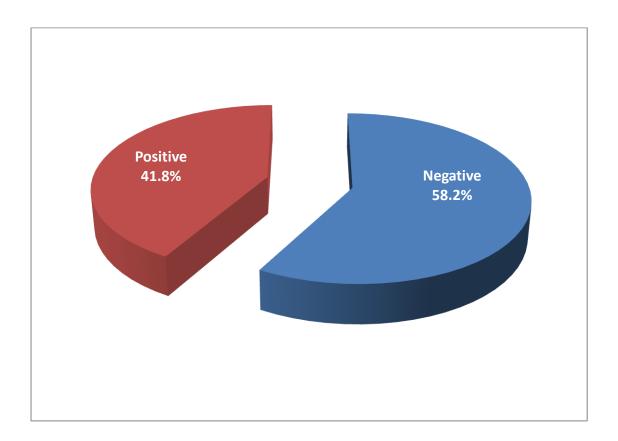
	Sex							
Age	Fei	nale	M	Male		otal		
Group	No.	%	No.	%	No.	%		
6-<8	231	48.9%	241	51.1%	472	100.0%		
8-<10	76	48.7%	80	51.3%	156	100.0%		
10-14	168	52.2%	154	47.8%	322	100.0%		
Total	475	50.0%	475	50.0%	950	100.0%		

$$X^2 = 0.9$$
 p>0.05

Table (4) shows male and female distribution of different age groups with no statistically significant difference.

Figure (4)

Age and sex distribution of the studied population


<u>Table (5):</u> Distribution of studied group according to BCG vaccination:

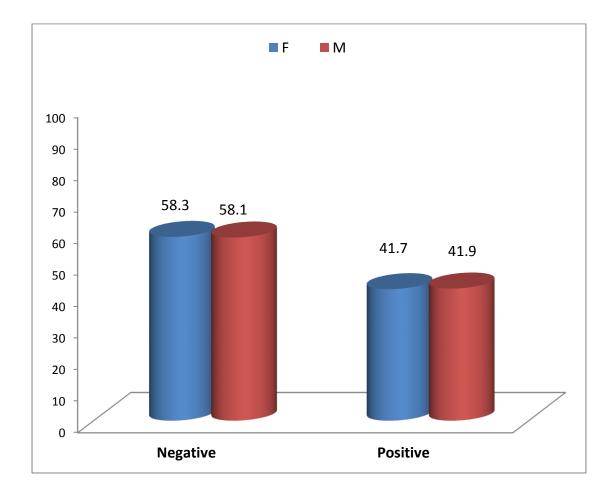
BCG scar	No.	%
Negative	553	58.2%
Positive	397	41.8%
Total	950	100.0%

Table (5) shows the distribution of children according to presence or absence of BCG scar which is considered the only evidence of BCG vaccination:

Children with scar (positive) → 41.8% Children without scar (negative) → 58.2%

Figure (5)

Distribution of studied group according to BCG vaccination


<u>Table (6):</u> Distribution of BCG vaccination according to sex:

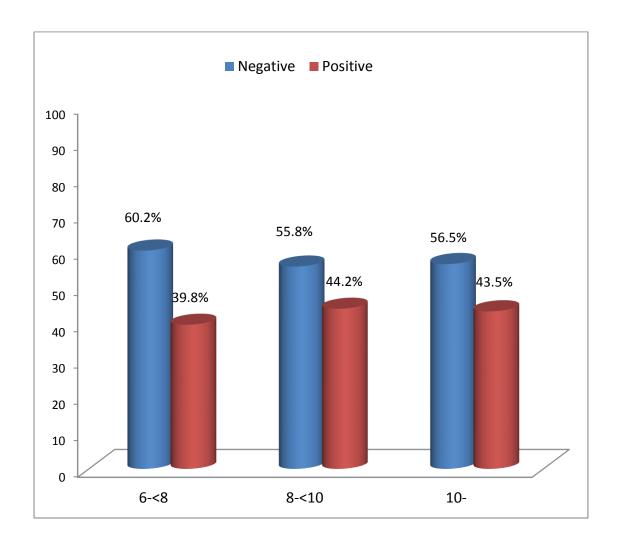
BCG		F	M		Total	
scar	No.	%	No.	%	No.	%
Negative	277	58.3%	276	58.1%	553	58.2%
Positive	198	41.7%	199	41.9%	397	41.8%
Total	475	100.0%	475	100.0%	950	100.0%

$$X^2 = 0.04$$
 p>0.05

Table (6) shows the relationship between sex and BCG vaccination coverage. There was no significant difference (p>0.05) between males (41.9%) and females (41.7%) regarding the presence of BCG scar.

Figure (6)

Distribution of BCG vaccination according to sex


Table (7): Comparison of BCG in different age groups:

			ВС	EG.		
Age	Neg	ative	Pos	itive	To	otal
	No.	%	No.	%	No.	%
6-<8	284	60.2%	188	39.8%	472	100.0%
8-<10	87	55.8%	69	44.2%	156	100.0%
10-14	182	56.5%	140	43.5%	322	100.0%
Total	553	58.2%	397	41.8%	950	100.0%

$$X^2 = 1.5$$
 p>0.05

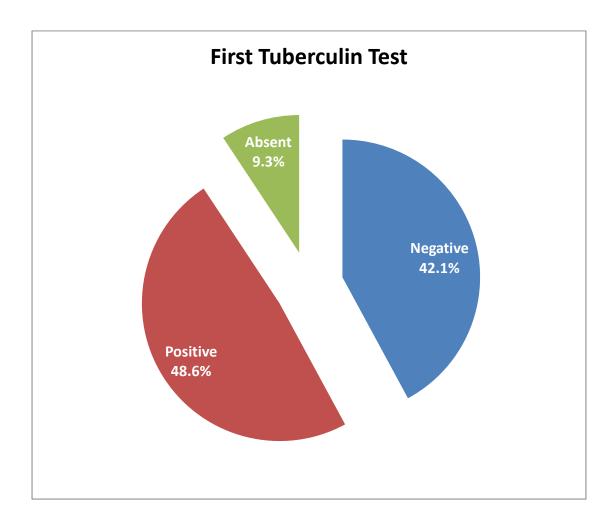
Table (7) shows BCG coverage in relation to different age groups. No significant difference between different groups.

Figure (7)

Comparison of BCG in different age groups

<u>Table (8):</u> Distribution of studied group according to result of first tuberculin test:

Result	No.	%
Negative	400	42.1%
Positive	462	48.6%
Total	862	90.7%
Absent	88	9.3%


Table (8) shows the differentiation between children according to the result of first tuberculin test. The result of 10mm was taken as a cut-off point between reactors and non reactors.

Response ratio was 91%, with 88 children (9%) were absent at time of reading of the test.

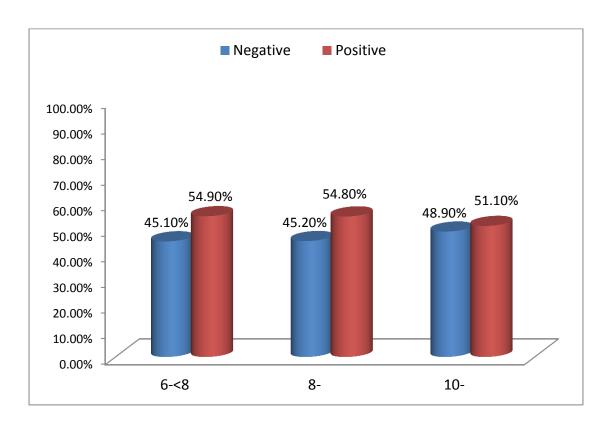
Reactors (> 10 mm) 48.6% of the total sample. (**Prevalence of TB infection**)

Non reactors (< 10mm) $\longrightarrow 41.2\%$.

<u>Figure (8)</u>

Distribution of studied group according to 1st TST

<u>Table (9):</u> Comparison of first tuberculin test in different age groups:


	First Tuberculin Test							
	Nega	ative	Posi	tive	Te	otal		
Age	No.	%	No.	%	No.	%		
6-<8	195	45.1%	237	54.9%	432	100.0%		
8-<10	66	45.2%	80	54.8%	146	100.0%		
10-14	139	48.9%	145	51.1%	284	100.0%		
Total	400	46.4%	462	53.6%	862	100.0%		

$$X^2 = 1.1$$
 p>0.05

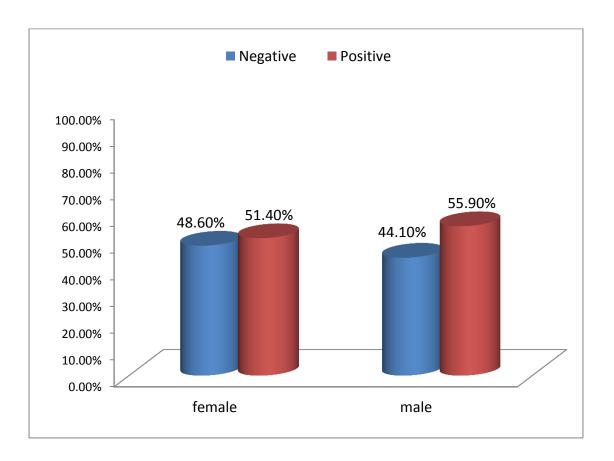
Table (9) shows the relation between the prevalence of tuberculosis infection (tuberculin reactors) and different age groups.

There was no significant difference (p>0.05) in infection prevalence with change of age in studied population.

<u>Figure (9)</u>

Comparison of 1st TST in different age groups

Table (10): Comparison of first tuberculin test according to sex:


	First Tuberculin Test							
	Neg	Negative		Positive		tal		
Sex	No.	%	No.	%	No.	%		
Female	214	48.6%	226	51.4%	440	100%		
Male	186	44.1%	236	55.9%	422	100%		
Total	400	46.4%	462	53.6%	862	100%		

$$X^2 = 1.8$$
 p>0.05

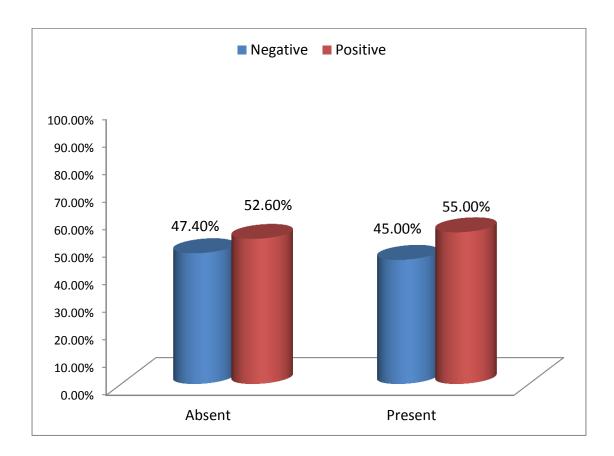
Table (10) shows the relation between the prevalence of tuberculosis infection (tuberculin reactors) and gender.

Statistically insignificant difference (p>0.05) in tuberculosis prevalence was present between males (55.9%) and females (51.4%) in the studied group.

Figure (10)

Comparison of 1st TST according to sex

<u>Table (11):</u> Comparison of first tuberculin test according to BCG status:


		'est				
BCG Scar	Neg	Negative		Positive		otal
	No.	%	No.	%	No.	%
Absent	240	47.4%	266	52.6%	506	100%
Present	160	45.0%	196	55.0%	356	100%
Total	400	46.4%	462	53.6%	862	100%

$$X^2 = 67.4$$
 p>0.05

Table (11) shows the change of prevalence of tuberculosis in the studied population in relation to the BCG status.

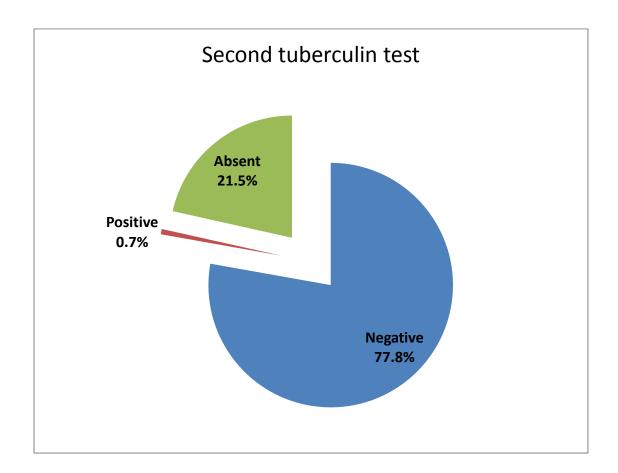
BCG vaccinated group (55%) had statistically insignificant higher prevalence than non-vaccinated group (52.6%).

Figure (11)

Comparison of 1st TST according to BCG status

Table (12): Distribution of studied group according to 2nd tuberculin test:

Result	No.	%
Negative	311	77.8%
Positive	3	0.7%
Total	314	78.5%
Absent	86	21.5%


Table (12) shows the distribution of results of the second tuberculin test performed in children found non reactors in the previous test:

77.8% \longrightarrow remained negative (< 10mm).

 $0.7\% \longrightarrow$ converted from negative to positive (>10mm).

86 children (21.5%) were absent at time of reading.

Figure (12)

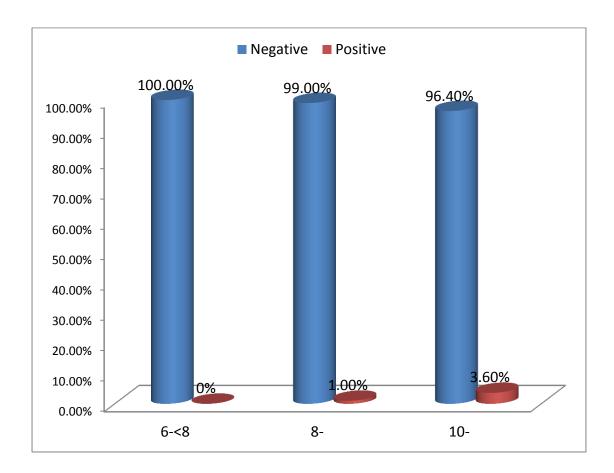
Distribution of studied group according to 2^{nd} TST

<u>Table (13):</u> Comparison of 2^{nd} tuberculin test in different age groups:

	2 nd Tuberculin Test						
Age	Negative		Positive		Total		
	No.	%	No.	%	No.	%	
6-<8	158	100.0%	0	0%	158	100.0%	
8-<10	99	99.0%	1	1.0%	100	100.0%	
10-14	54	96.4%	2	3.6%	56	100.0%	
Total	311	99.0%	3	1.0%	314	100.0%	

$$X^2 = 5.7$$
 P>0.05

Table (13) shows different conversion rates $(2^{nd} \text{ TST} > 10 \text{mm})$ in different age groups:


6-8 years → 0% converted.

8-10 years → 1% converted.

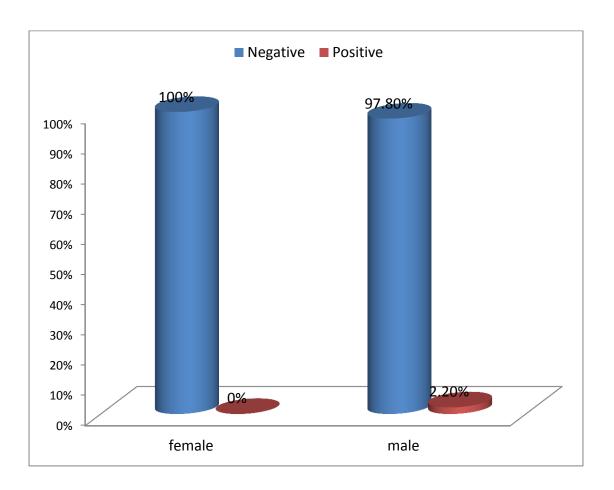
10-14 years → 3.6% converted.

The difference was statistically insignificant (p>0.05).

Figure (13)

Comparison of 2nd TST in different age groups

Table (14): Comparison of second tuberculin test according to sex:


	2 nd tuberculin test						
	Negative		Positive		Total		
Sex	No.	%	No.	%	No.	%	
F	174	100%	0	0%	174	100%	
M	137	97.8%	3	2.2%	140	100%	
Total	311	99.0%	3	1.0%	314	100%	

$$X^2 = 3.8$$
 p>0.05

Table (14) shows the relation between the conversion rate and sex in studied group:

Females \longrightarrow 0% the difference was statistically insignificant. Males \longrightarrow 2.2%

Figure (14)

Comparison of 2nd TST according to sex

Table (15): comparison of second tuberculin test according to BCG:

	Second Tuberculin Test						
BCG	Negative		Positive		Total		
	No.	%	No.	%	No.	%	
Negative	229	98.7%	3	1.3%	232	100.0%	
Positive	82	100.0%	0	0%	81	100.0%	
Total	311	99.0%	3	1.0%	314	100.0%	

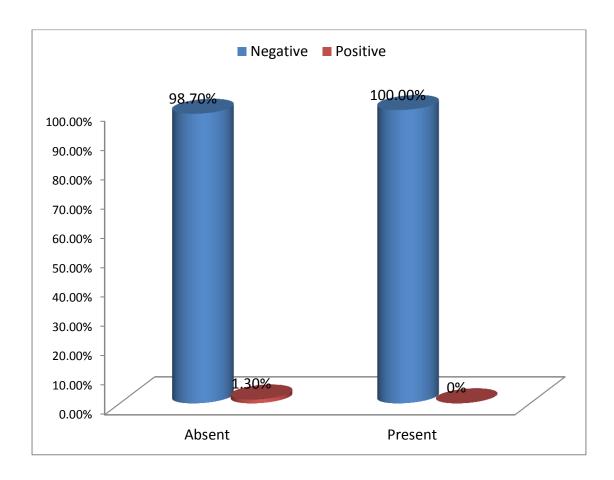

$$X^2 = 1.1$$
 p>0.05

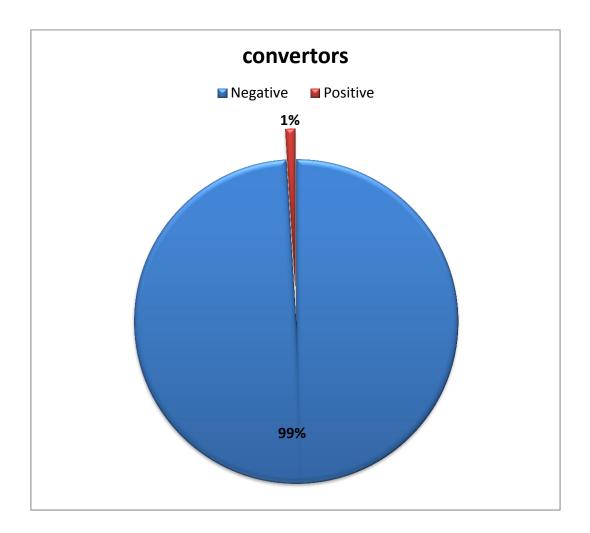
Table (15) shows the difference in conversion rate with different BCG status:

Non BCG vaccinated > BCG vaccinated.

$$(1.3\%)$$
 (0%)

Figure (15)

Comparison of 2nd TST according to BCG


Table (16): Convertors from negative to positive (ARI):

	No.	%
Convertors	3	0.96

Table (16) shows the number and percent of children who converted from a negative result (< 10mm) in the first tuberculin test into a positive result (> 10mm) in the second one, in relation to the total number of children tested and read in the later test. This represented the annual risk of tuberculosis infection in the studied group.

$$ARI = \frac{(3)}{(314)} \times 100 = 0.96\%$$

Figure (16)

Convertors from negative to positive (ARI)