RESULTS

Table (8): Comparison of age (years) between the study groups

	GI	GII	GIII		
Number of cases	30	15	20		
$\bar{x} \pm SD$	1.67±1.05	1.76±0.79	1.82±0.70		
Minimum	0.2	0.3	0.2		
Maximum	5	3	3		
Median	1.45	1.60	1.83		
H^*		1.268			
Overall p value [*]		> 0.05			
GI # GII [†]		> 0.05			
GI # GIII [†]	> 0.05				
GII # GIII [†]		> 0.05			

^{*} Kruskal Wallis ANOVA

† Mann Whitney test

p values > 0.05 is statistically insignificant

 $p \ values < 0.05$ is statistically significant

p values < 0.01 is statistically highly significant

Comparing the age of the groups revealed statistically non significant relation (p> 0.05), denoting a good matching of the age of all the studied groups.

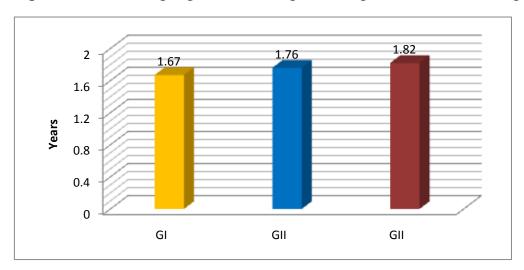


Figure (3): Mean age (years) between the study groups

Table (9): Sex distribution among the study groups

		GI	GII	GIII		
Females	no. of cases	14	7	5		
	%	46.7%	35.0%	33.3%		
Males	no. of cases	16	13	10		
Males	%	53.3%	65.0%	66.7%		
χ^2		1.042				
p value > 0.05						

Considering the sex, the difference between group I ,group II and group III was statistically non significant (P>0.05) denoting a good matching of the sex of all the studied groups.

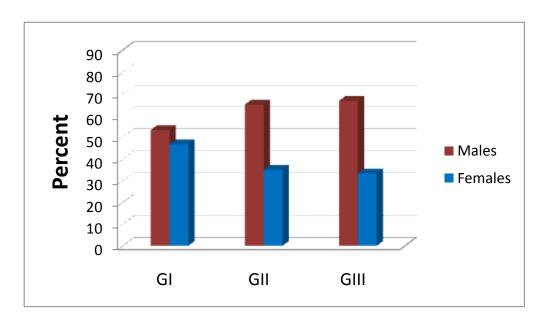


Figure (4): Distribution of sex among the study groups

Table (10): Comparison of height or length (cm) between the study groups

	GI	GII	GIII		
Number of cases	30	15	20		
$\overline{x} \pm SD$	75.72±10.78	69.37±10.16	89.65±5.21		
Minimum	58	55	78		
Maximum	97	97	98		
Median	76.25	65.50	89.00		
H^*		27.101			
Overall p value*		< 0.001			
GI # GII [†]		> 0.05			
GI # GIII [†]	< 0.001				
GII # GIII [†]		< 0.001			

^{*} Kruskal Wallis ANOVA

p values > 0.05 is statistically insignificant

p values < 0.05 is statistically significant

p values < 0.01 is statistically highly significant

Regarding the height (Cm), the mean height of group I was (75.72 ± 0.78) , the mean height of group II was (69.37 ± 10.16) , and the mean height of group III was (89.65 ± 5.21) . this denoted that there is no significant statistical difference between group I & group II as regard height (P> 0.05). But the differences between both groups (I&II) and group III was statistically highly significant (P<0.001)

Comparing the height of the groups revealed the difference in height between 3 groups was statistically highly significant (P< 0.001)

[†] Mann Whitney test

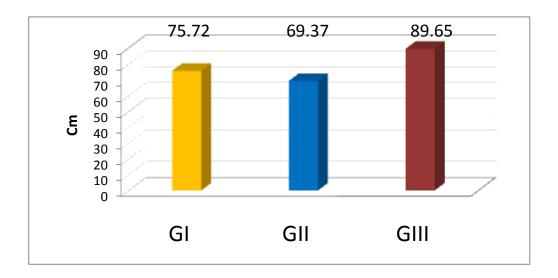


Figure (5): Mean height (cm) between the study groups

Table (11): Comparison of weight (kg) between the study groups

	GI	GII	GIII		
Number of cases	30	20			
$\bar{x} \pm SD$	8.73±2.69	7.52±2.55	13.60±2.05		
Minimum	5	3	10		
Maximum	15	13	19		
Median	8.50	6.90	13.25		
H^*		32.776			
Overall p value [*]		< 0.001			
GI # GII [†]	> 0.05				
GI # GIII [†]	< 0.001				
GII # GIII [†]		< 0.001			

^{*} Kruskal Wallis ANOVA

p values > 0.05 is statistically insignificant

p values < 0.05 is statistically significant

 $p\ values < 0.01\ is\ statistically\ highly\ significant$

Regarding the weight (kg), the mean weight of group I was (8.73 ± 2.69) , the mean weight of group II was (7.52 ± 2.55) , and the mean weight of group III was (13.60 ± 2.05) . This denoted that there was no significant statistical difference between group I & group II as regard weight (P> 0.05) But the differences between both groups (I&II) and group III were statistically highly significant (P<0.001)

Comparing the weight of the studied groups revealed the differences in weight between 3 groups were statistically highly significant (P< 0.001)

[†] Mann Whitney test

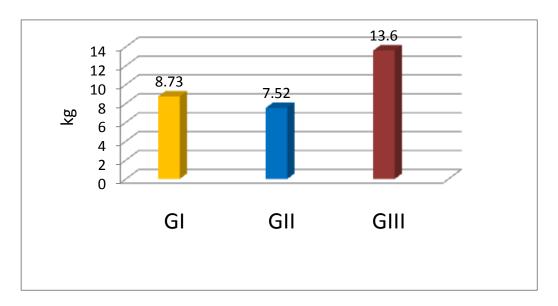


Figure (6): Mean weight (kg) between the study groups

Table (12): Comparison of head circumference (cm) between the study groups

	GI	GII	GIII		
Number of cases	30	15	20		
$\overline{x} \pm SD$	43.51±2.65	42.63±2.65	47.60±2.21		
Minimum	38	39	44		
Maximum	48	48	52		
Median	43.25	42.00	47.50		
H^*		26.101			
Overall p value [*]		< 0.001			
GI # GII [†]	> 0.05				
GI # GIII [†]	< 0.001				
GII # GIII [†]		< 0.001			

^{*} Kruskal Wallis ANOVA

† Mann Whitney test

p values > 0.05 is statistically insignificant

p values < 0.05 is statistically significant

p values < 0.01 is statistically highly significant

Regarding the head circumference (cm), the mean head circumference of group I was (43.51 ± 2.65) , the mean head circumference of group II was (42.63 ± 2.65) , and the mean head circumference of group III was (47.60 ± 2.21) . This denoted that there was no significant statistical difference between group I & group II as regard head circumference (P> 0.05). But the differences between both groups (I&II) and group III were statistically significant (P<0.001)

Comparing the head circumference of the student that groups that revealed the differences in height between 3 groups were statistically highly significant (P< 0.001)

Figure (7): Mean head circumference (cm) between the study groups

Table (13): Comparison of mid-arm circumference (cm) between the study groups

	GI	GII	GIII		
Number of cases	30	15	20		
$\overline{x} \pm SD$	11.95±1.82	11.31±1.12	12.55±1.07		
Minimum	8.0	10.0	11.0		
Maximum	17.0	13.0	14.5		
Median	12.00	11.00	12.25		
H^*		6.911			
Overall p value [*]		< 0.05			
GI # GII [†]	> 0.05				
GI # GIII [†]	> 0.05				
GII # GIII [†]		< 0.01			

^{*} Kruskal Wallis ANOVA

† Mann Whitney test

p values > 0.05 is statistically insignificant

p values < 0.05 is statistically significant

 $p\ values < 0.01\ is\ statistically\ highly\ significant$

Regarding the mid-arm circumference (cm) there was no significant statistical difference between group I & group II (P>0.05) also there was no statistical difference between group I & group III as regard mid-arm circumference, But the difference between both groups (I &II) and group III were highly statistically significant (P<0.01)

Comparing the mid arm-circumference of the studied groups revealed that the difference in mid-arm circumference between three groups were statistically significant (P<0.05).

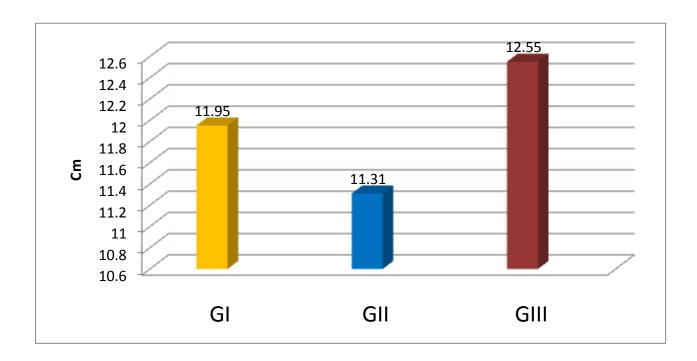


Figure (8): Mean mid-arm circumference (cm) between the study groups

GI **GII** GIII **Number of cases** 30 15 20 $\overline{1}4.37 \pm 2.59$ $\overline{x} \pm SD$ 13.49 ± 2.63 17.56 ± 2.24 Minimum 7.5 13.9 6.0 17.0 Maximum 17.0 21.2 Median 14.90 18.05 13.65 22.607 Overall p value* < 0.001 GI # GII[†] > 0.05GI # GIII[†] < 0.001 GII # GIII[†] < 0.001

Table (14): Comparison of BMI (kg/m²) between the study groups

p values > 0.05 is statistically insignificant

p values < 0.05 is statistically significant

p values < 0.01 is statistically highly significant

Regarding the BMI (kg/m²), the mean BMI (kg/m²) of group I was (13.49 \pm 2.63), the mean BMI of group II was (14.37 \pm 2.59), and the mean BMI of group III was (17.56 \pm 12.24). This denoted that there was no significant statistical difference between group I & group II as regard BMI (P> 0.05) But the difference between both groups (I&II) and group II were statistically BMI significant (P<0.001)

Comparing the BMI of the groups revealed that the differences in BMI between 3 groups were statistically highly significant (P < 0.001)

^{*} Kruskal Wallis ANOVA

[†] Mann Whitney test

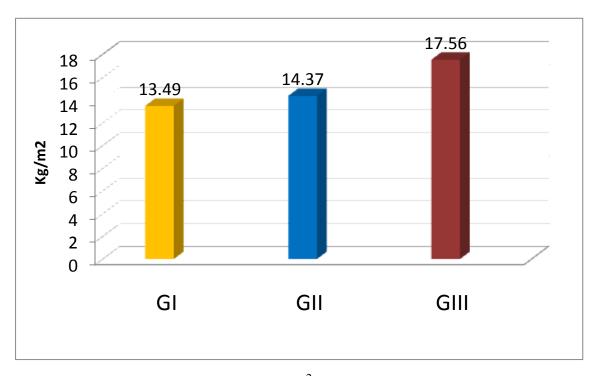


Figure (9): Mean BMI (kg/m²) between the study groups

GI **GII** GIII **Number of cases** 30 15 20 55.90±16.86 29.13±19.81 135.55±4.59 $\overline{x} \pm SD$ 41 Minimum 12 130 112 67 Maximum 146 Median 49.95 20.20 134.00 47.312 Overall p value* < 0.001GI # GII[†] < 0.001

< 0.001

< 0.001

Table (15): Comparison of IGF-1 (ng/ml) between the study groups

GI # GIII[†]

GII # GIII[†]

p values > 0.05 is statistically insignificant

p values < 0.05 is statistically significant

p values < 0.01 is statistically highly significant

As regard Serum IGF-1 (ng/ml), group I had a mean of (55.90 ± 16.86) , group II had a mean of (29.13 ± 19.81) while group III had a mean of (135.55 ± 4.59) The differences among the studied groups were statistically highly significant.

The difference in serum IGF-1 level between group I and group III was statistically highly significant (p<0.001).

Also the difference in serum IGF-1level between the group II and group III was statistically highly significant (p<0.001).

^{*} Kruskal Wallis ANOVA

[†] Mann Whitney test

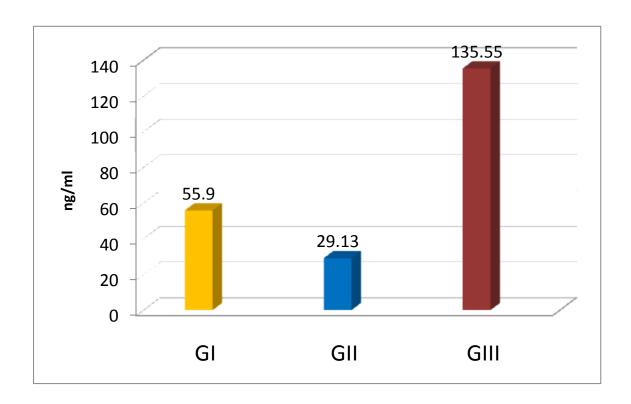


Figure (10): Mean IGF-1 (ng/ml) between the study groups

Table (16): Correlation between IGF-1 (ng/ml) and other studied variables among GI

	r	p value
Age (years)	0.295	>0.05
Height (cm)	0.212	>0.05
Weight (kg)	0.327	>0.05
Head circumference (cm)	0.339	>0.05
Mid-arm circumference (cm)	0.012	>0.05
BMI (kg/m2)	0.328	>0.05

As regard group I, the correlation between serum level of IGF-I and(age, height, weight, head circumference, mid-arm circumference.BMI)were non significant

Table (17): Correlation between IGF-1 (ng/ml) and other studied variables among GII

	r	p value
Age (years)	0.734	< 0.05
Height (cm)	0.596	< 0.05
Weight (kg)	0.627	< 0.05
Head circumference (cm)	0.535	< 0.05
Mid-arm circumference (cm)	0.481	>0.05
BMI (kg/m2)	0.344	>0.05

As regard group II correlation between serum level of IGF-1 and(age, height, weight, head circumference) revealed a statistically significant positive correlation while (mid-arm circumference, BMI)showed a non significant correlation.

Table (18): Correlation between IGF-1 (ng/ml) and other studied variables among group I and group II

	r	p value
Age (years)	0.310	< 0.05
Height (cm)	0.430	< 0.05
Weight (kg)	0.466	< 0.05
Head circumference (cm)	0.420	< 0.05
Mid-arm circumference (cm)	0.197	>0.05
BMI (kg/m2)	0.172	>0.05

Correlation between IGF-1 and other studied variables(age, height, weight, head circumference) among total patients(G I and G II) revealed a statistically significant positive correlation while (Mid-arm circumference, BMI) showed a non significant correlation.

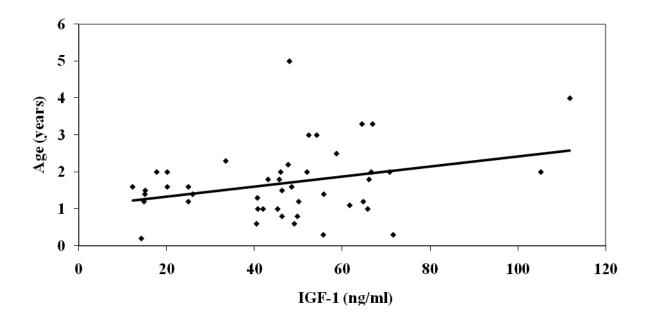


Figure (11): Correlation between IGF-1 (ng/ml) and age (years) among (GI & GII)

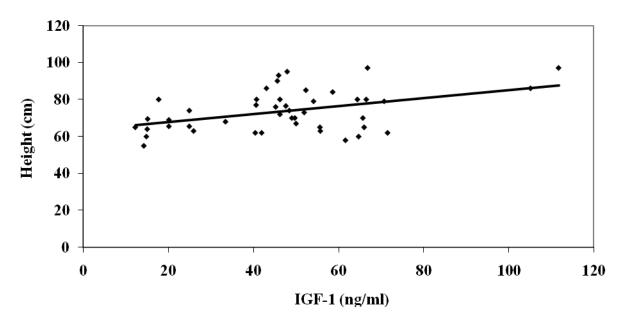


Figure (12): Correlation between IGF-1 (ng/ml) and height (cm) among total patients (GI & GII)

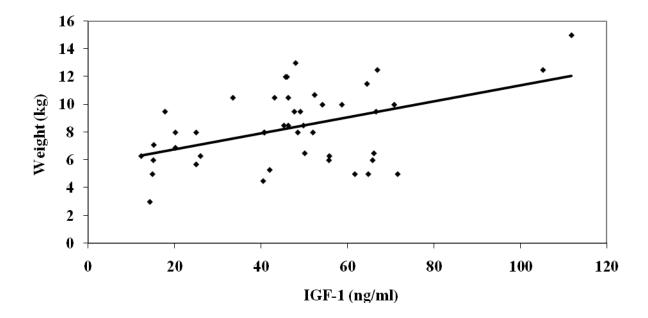


Figure (13): Correlation between IGF-1 (ng/ml) and weight (kg) among total patients (GI & GII)

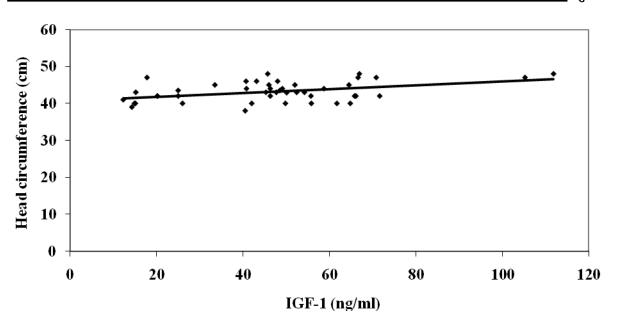


Figure (14): Correlation between IGF-1 (ng/ml) and head circumference (cm) among total patients (GI & GII)

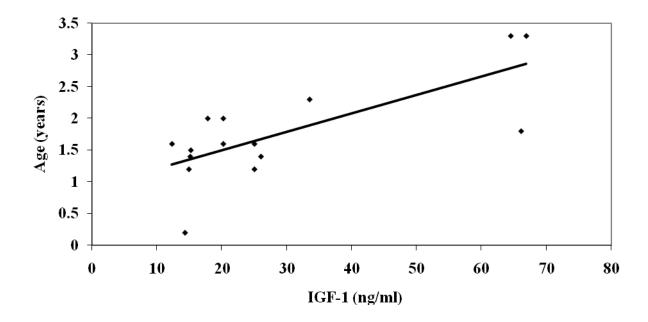


Figure (15): Correlation between IGF-1 (ng/ml) and age (years) among GII.

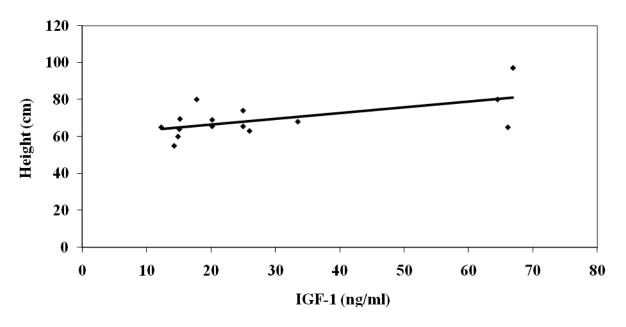


Figure (16): Correlation between IGF-1 (ng/ml) and height (cm) among GII.

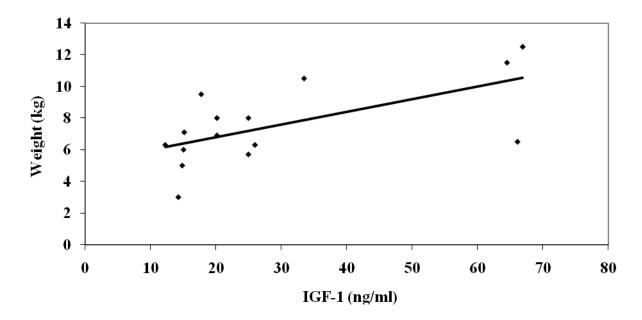


Figure (17): Correlation between IGF-1 (ng/ml) and weight (kg) among GII.

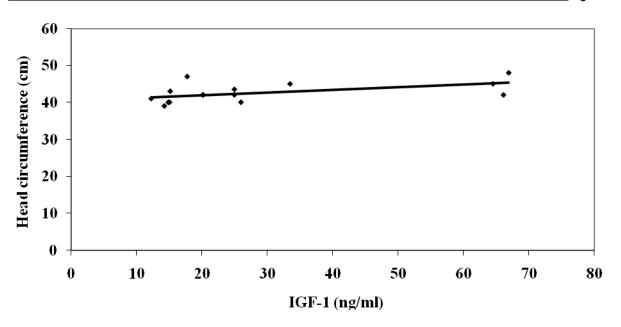


Figure (18): Correlation between IGF-1 (ng/ml) and head circumference (cm) among GII.

Table (19): Clinical and laboratory data of group (I).

	1		able (19): CIII				1	
no.	Sex	Age(years)	Ht/ cm	Wt/kg	HC/cm	MAC/cm	BMI	IGF1/(ng/ml)
1	F	1.5	80	10.5	44	15	13.1	46.3
2	M	2	80	9.5	47	11	14.8	66.6
3	M	0.8	70	8.5	40	15	12.1	49.8
4	M	0.8	72	8.5	42	13	12.1	46.3
5	F	2.5	84	10	44	12	12.5	58.7
6	M	1.1	58	5	40	10.5	16.2	61.7
7	F	3	85	10.7	43	13	14.3	52.4
8	M	0.6	70	9.5	44	10	13.5	49.1
9	M	1	70	6	42	11	8.5	65.8
10	F	4	97	15	48	12	16.6	112
11	M	0.3	62	5	42	11	8.3	71.6
12	M	0.3	65	6	42	12	10	55.7
13	F	1.2	60	5	40	10.5	13.1	64.8
14	F	1.8	90	12	48	17	13.3	45.7
15	F	1.3	77	8	46	12	11.4	40.7
16	F	1.8	86	10.5	46	14	13.1	43.1
17	M	0.6	62	4.5	38	8	7.5	40.5
18	F	2.2	76.5	9.5	43	11.5	16.2	47.7
19	M	3	79	10	43	12	16	54.2
20	F	1.4	63	6.3	40	10	16.4	55.8
21	F	2	73	8	45	11	16.5	52
22	M	2	93	12	45	13	13.3	46
23	F	5	95	13	46	10	14.4	48
24	M	2	79	10	47	13.5	16.9	70.8
25	M	1	76	8.5	43	11.5	14.7	45.3
26	M	2	86	12.5	47	13	17	105
27	F	1	80	8	44	13	10	40.8
28	M	1.6	74	8	44	12	14.6	48.5
29	M	1	62	5.3	40	10	13.8	42
30	F	1.2	67	6.5	43	11	14.5	50.1

M= male F= female

Table (20): Clinical and laboratory data of group (II).

no.	Sex	Age(years)	Ht/ cm	Wt/kg	HC/cm	MAC/cm	BMI	IGF1/(ng/ml)
1	M	1.6	65	6.3	41	10	14.9	12.3
2	F	1.4	64	6	40	11	14.6	15.1
3	M	1.6	65.5	6.9	42	10.5	16.1	20.2
4	M	1.5	69.5	7.1	43	11.5	14.7	15.2
5	M	2.3	68	10.5	45	13	15.8	33.5
6	M	1.2	65.5	5.7	42	10.2	13.3	25
7	M	3.3	80	11.5	45	13	15.2	64.5
8	F	2	69	8	42	12	12.2	20.2
9	F	1.2	60	5	40	10.5	15.1	14.9
10	F	1.4	63	6.3	40	10	16.4	26
11	M	3.3	97	12.5	48	12.5	17	66.9
12	M	1.6	74	8	44	12	14.6	25
13	M	0.2	55	3	39	10	6	14.3
14	F	1.8	65	6.5	42	11	14.9	66.1
15	M	2	80	9.5	47	12.5	14.8	17.8

M= male F= female

Table (21): Clinical and laboratory data of group (III).

no.	Sex	Age(years)	Ht/ cm	Wt/kg	HC/cm	MAC/cm	BMI	IGF1/(ng/ml)
1	M	0.7	94	13	48	14.5	16.2	132
2	F	0.8	88	12	47	12	18.7	140
3	F	2.5	87	12	47	12.5	18.7	134
4	M	1.6	90	11.5	45	12	14.3	133
5	M	0.5	87	13.5	48	11.5	18	132
6	F	0.7	86	14	47	12	19	145
7	M	1.5	88	13	45	12	18	133
8	M	1	78	10	44	11	20.4	146
9	M	1.8	89	15	46	12.5	18.9	136
10	M	1.2	80	12	45	12	18.7	140
11	M	0.5	95	17	50	12.5	21.2	130
12	M	3.2	95	19	50	13	21.1	132
13	M	2.7	90	12	46	12	15	130
14	M	3	96	15	49	13	15.8	136
15	F	0.9	88	14	48	12	18.1	135
16	F	2.1	86	13	48	11	14.1	132
17	M	0.6	96.5	14.5	50	14.5	15.9	136
18	F	3	93	12	51	14	13.9	134
19	M	0.2	97.5	14.5	52	14.5	16.5	141
20	F	1.8	89	15	46	12.5	18.7	134

M= male

F= female