Results

Table (1): Distribution of the studied group as regard sex.

	-	+ ve		- ve		Total		
G-6-PD	No	%	No	%	No	%	Z	P
Sex								
males	8	100.0	60	65.2	68	68.0	1.14	> 0.05
females	0	0.0	32	34.8	32	32.0	2.02	< 0.05
total	8	100.0	92	100.0	100	100.0	-	-

This table shows that majority of the studied cases are males about 68% and female about 32% also all +ve cases are males.

Chart (1) Distribution of the studied group according to G6PD and sex

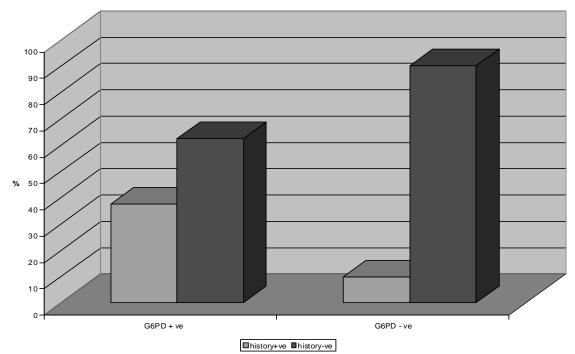

Figure (1): Distribution of the studied group according to G-6-PD and sex.

Table (2): Distribution of the studied group as regard history of G-6-PD deficiency.

	+	- ve	-	ve	T	otal		
G-6-PD	No	%	No	%	No	%	Z	P
History								
+ ve	3	37.5	9	9.8	12	12.0	2.17	< 0.05
- ve	5	62.5	83	90.2	88	88.0	0.8	> 0.05
Total	8	100.0	92	100.0	100	100.0	-	-

This table shows that 12% of all studied cases had history of G-6-PD deficiency in the family and only 37.5% of +ve cases had history of G-6-PD deficiency in the family.

Chart (2) Distribution of the studied group according to G6PD and history.

Figure (2): Distribution of the studied group according to G-6-PD and history.

Table (3): Distribution of the studied group as regard past history of maternal diseases.

	_	+ ve		· ve	T	otal		
G-6-PD	No	%	No	%	No	%	Z	P
Maternal diseases								
non	4	50.0	59	64.1	63	63.0	0.48	> 0.05
Antinatal hg.	0	0.0	1	1.1	1	1.0	0.29	> 0.05
Hypertension	1	12.5	8	8.7	9	9.0	0.34	> 0.05
Placenta previa	0	0.0	3	3.3	3	3.0	0.52	> 0.05
PROM	1	12.5	5	5.4	6	6.0	0.78	> 0.05
UTI	2	25.0	13	14.1	15	15.0	0.76	> 0.05
Vag. Discharge.	0	0.0	2	2.2	2	2.0	0.42	> 0.05
PROM+UTI+ Vag. Discharge.	0	0.0	1	1.1	1	1.0	0.29	> 0.05
Total	8	100.0	92	100.0	100	100.0	-	

This table shows that about 63% of studied cases had no relevant history of maternal disease, 15% had history of mother UTI, 9% had history of mother hypertension and 6% had history of PROM.

Table (4): Distribution of the studied group as regard neonatal blood group.

	-	+ ve	-	· ve	T	otal		
G-6-PD	No	%	No	%	No	%	Z	P
Blood								
group								
A + ve	5	62.5	39	42.4	44	44.0	0.82	> 0.05
AB + ve	3	37.5	8	8.7	11	11.0	2.36	> 0.05
B +ve	0	0.0	26	28.3	26	26.0	1.75	> 0.05
O +ve	0	0.0	19	20.6	19	19.0	1.43	> 0.05
Total	8	100.0	92	100.0	100	100.0	-	-

This table shows that 44% of the studied cases had blood group A+ve while only 11% had blood group AB+ve.

Table (5): Distribution of the studied group as regard maternal blood group.

	-	+ ve	-	· ve	T	otal		
G-6-PD	No	%	No	%	No	%	Z	P
Blood								
group								
A + ve	4	50.0	35	38.1	39	39.0	0.52	> 0.05
AB + ve	2	25.0	18	19.6	20	20.0	0.33	> 0.05
B +ve	0	0.0	6	6.5	6	6.0	0.75	> 0.05
O +ve	1	12.5	28	30.4	29	29.0	0.43	> 0.05
A - ve	1	12.5	1	1.1	2	2.0	2.19	> 0.05
O -ve	0	0.0	4	4.3	4	4.0	0.6	> 0.05
Total	8	100.0	92	100.0	100	100.0	_	-

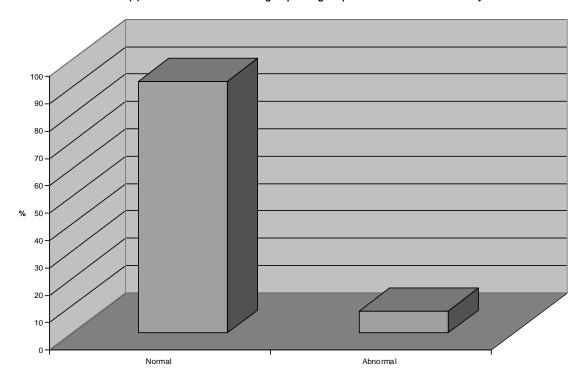

This table shows that 39% of the studied cases mother had blood group A+ve while only 2% had mother blood group A-ve.

Table (6): Distribution of the studied group as regard prevalence of G-6-PD deficiency.

G-6-PD	No.	%
Normal	92	92%
Deficient	8	8%

This table shows that prevalence of G-6-PD deficiency among studied group was 8%.

Chart (3) Distribution of the studied group as regard prevalence of G6PD deficiency

Figure (3): Distribution of the studied group according to prevalence of G-6-PD deficiency.

Table (7): Means (X-) \pm standard deviations (SD) of duration of Phototherapy of studied cases.

Duration of Photo.	X- ± SD	t	P
G-6-PD			
+ve	82.5 ± 8.3	8.78	< 0.001
- ve	54.7 ± 11.4		

This table shows that there is statistically high significant correlation could be detected between G-6-PD level versus duration of phototherapy by using Spearman correlation test.

Chart (4) means of duration of Phototherapy of studied cases

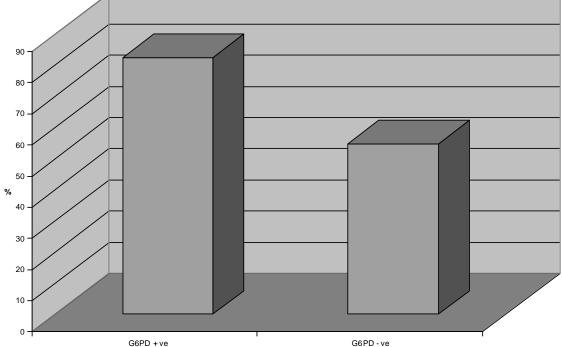


Figure (4): Means of duration of phototherapy.

Table (8): Means (X-) \pm standard deviations (SD) of direct part of total bilirubin.

Direct part	X- ± SD	t	P
G-6-PD			
+ve	1.03 ± 0.48	1.36	> 0.05
- ve	0.79 ± 0.48		

This table shows that there is no statistically significant correlation could be detected between G-6-PD levels versus direct part of total bilirubin by using Spearman correlation test.

Table (9): Distribution of the studied group regard mode of delivery.

		+ ve	-	· ve	T	otal		
G-6-PD M.O.delivery	No	o %	No	%	No	%	Z	P
N.V.D	3	37.5	54	58.7	57	57.0	0.76	> 0.05
C.S	5	62.5	38	41.3	43	43.0	0.88	> 0.05
Total	8	100.0	92	100.0	100	100.0	1	-

This table shows that majority of the studied cases are delivered by normal vaginal delivery about 57% while 43% by cesarean section.

Table (10): Means (X-) ± standard deviations (SD) of TsB.

TsB	X- ± SD	t	P
G-6-PD			
+ve	19.5 ± 3.3	2.74	< 0.01
- ve	16.1 ± 4.1		

This table shows that there is statistically high significant correlation could be detected between G-6-PD level versus total bilirubin by using Spearman correlation test.



Figure (5): Means of TsB of studied cases.

Table (11): Means (X-) \pm standard deviations (SD) of Retics.

Retics.	X- ± SD	t	P
G-6-PD			
+ve	4.6 ± 3.1	1.59	> 0.05
- ve	2.8 ± 2.6		

This table shows that there is no statistically significant correlation could be detected between G-6-PD levels versus retics. by using Spearman correlation test.

Table (12): Means (X-) \pm standard deviations (SD) of Length.

Length	X- ± SD	t	P
G-6-PD			
+ve	50.4 ± 2	1.49	> 0.05
- ve	49.3 ± 2		

This table shows that there is no statistically significant correlation could be detected between G-6-PD levels versus length by using Spearman correlation test.

Table (13): Means (X-) \pm standard deviations (SD) of H.C.

H.C	X- ± SD	t	P
G-6-PD			
+ve	34.8 ± 1.3	0.43	> 0.05
- ve	34.6± 0.9		

This table shows that there is no statistically significant correlation could be detected between G-6-PD levels versus head circumference by using Spearman correlation test.

Table (14): Means (X-) \pm standard deviations (SD) of Temperature.

Temp.	X- ± SD	t	P
G-6-PD			
+ve	37.0 ± 0.0	1.6	> 0.05
- ve	36.9 ± 0.6		

This table shows that there is no statistically significant correlation could be detected between G-6-PD levels versus temperature by using Spearman correlation test.

Table (15): Means (X-) \pm standard deviations (SD) of respiratory rate.

R.R.	X- ± SD	t	P
G-6-PD			
+ve	38.9 ± 6.8	0.48	> 0.05
- ve	40.1 ± 6.9		

This table shows that there is no statistically significant correlation could be detected between G-6-PD levels versus respiratory rate by using Spearman correlation test.

Table (16): Means (X-) ± standard deviations (SD) of heart rate.

H.R.	X- ± SD	t	P
G-6-PD			
+ve	131.1± 8.8	0.79	> 0.05
- ve	133.7 ± 10.2		

This table shows that there is no statistically significant correlation could be detected between G-6-PD levels versus heart rate by using Spearman correlation test.

Table (17): Means (X-) \pm standard deviations (SD) of Birth weight.

Birth Wt.	X- ± SD	t	P
G-6-PD			
+ve	3 ± 0.4	0.65	> 0.05
- ve	2.9 ± 0.6		

This table shows that there is no statistically significant correlation could be detected between G-6-PD levels versus birth weight by using Spearman correlation test.

Table (18): Means (X-) ± standard deviations (SD) of CBC.

G-6-PD	+ve	-ve	t	P
СВС				
WBCs	64.1±32.7	51.1±14.9	1.11	> 0.05
Staph. /Seg.	0.09±1.8	0.12±0.37	0.05	> 0.05
НВ	13.01±2.5	15.4±0.37	1.55	> 0.05
НСТ	37.7±7.5	44.1±33.6	1.46	> 0.05
Platelets	245.8±78.2	278.4±132.2	1.6	> 0.05

This table shows that there is no statistically significant correlation could be detected between G-6-PD levels versus different variables of CBC by using Spearman correlation test.

Table (19): Means (X-) ± standard deviations (SD) of G.A.

G.A	X- ± SD	t	P
G-6-PD			
+ve	39.2 ± 0.9	5.18	< 0.001
- ve	37.2± 2.1		

This table shows that there is statistically high significant correlation could be detected between G-6-PD levels versus gestational age by using Spearman correlation test.

Chart (6) means of G.A. of studied cases

Figure (6): Means of G.A. of studied cases.