RESULTS

Our results are presented and illustrated in the following 11 tables and 9 figures.

Table (1): Sex distribution among the study groups.

	Males	Females	Р
Thalassemia (100)	62 (62%)	38 (38%)	
Control (100)	60 (60%)	40 (40%)	0.77 (NS)

Test used is chi-square test. NS = Non-significant.

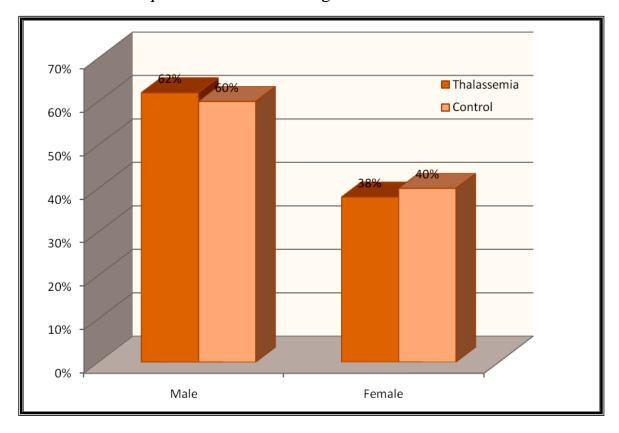


Figure (1): Sex distribution among the study groups.

Table (2): Age distribution among the study groups.

	Thala	ssemia	Control		T	Р
	Mear	ı ± SD	Mean	± SD		
Age (years)	10.37	2.3	10.8	2.9	1.16	0.24 (NS)

Test used is independent sample test. NS = Non-significant.

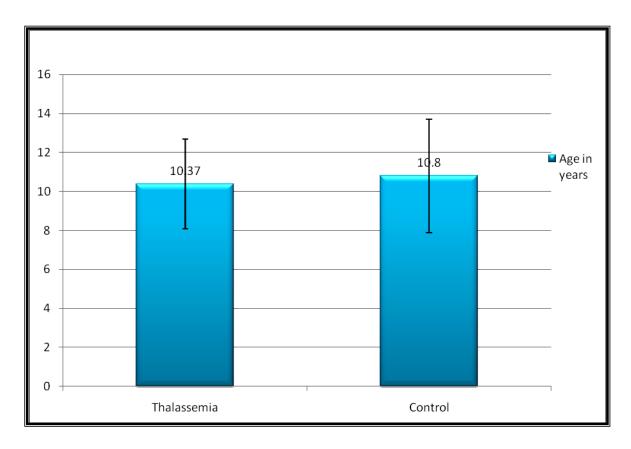


Figure (2): Age distribution among the study groups.

Tables (1) & (2) as well as figures (1) & (2) show that our studied groups (thalassemia and control) are age and sex matched.

Table (3): Frequency of β -thalassemia major clinical data among our patients ($\mathbf{N}^{\underline{\mathbf{0}}} = 100$):

Clinic	eal data	N ^o .	%
Age of diagnosis:	1 st year	30	30%
	2 nd year	53	53%
	After the 2 nd year	17	17%
Pallor		81	81%
Jaundice		73	73%
Growth retardation		52	52%
Splenomegaly (in non-	splenectomised patients)	31(out of 56)	55.3%
Mongoloid features		59	59%
Blood transfusion		100	100%
Iron chelating therapy		100	100%

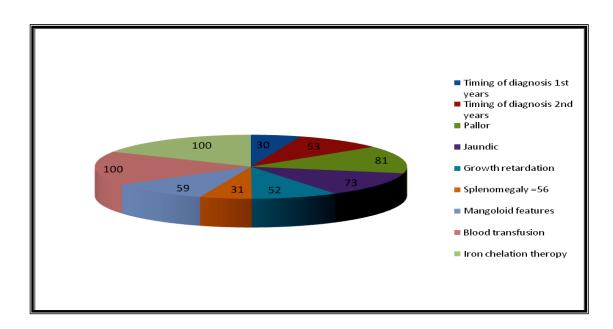


Figure (3): Percentage distribution of the clinical data among our patients.

Table (3) and figure (3) show that the commonest clinical manifestation of β -thalassemia major was pallor (81%) followed by, jaundice (73%), mongoloid features (59%) splenomegaly (55.3% of 56 non-splenectomised patients) and growth retardation (52%). The disease was diagnosed during the first year of life in 30% of our patients, during the second year of life in 53% of them and later in life in the remaining 17%. All our patients have received blood transfusion and iron chelating agents.

Table (4): Incidence of encapsulated bacterial carriers among β -thalassemia major and control subjects:

	Thalassemia	Control	Р
Strept. pneumoniae	18%	32%	0.045 (S)
β-hemolytic Streptococci	15%	29%	0.017 (S)
Neisseria meningitidis	0	6%	0.04 (S)

Test used is chi-square test. S = significant

- ➤ NB: All our splenectomised patients received anti-pneumococcal, anti-Haemopilus influenza and anti- Neisseria meningitidis vaccines.
- ➤ NB: H. influenza b carriage was not detected in any of our patients or control children.

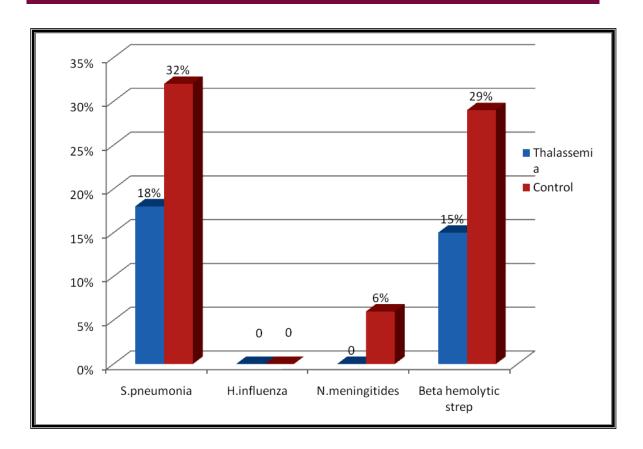


Figure (4): Incidence of encapsulated bacterial carriers among β -thalassemia major and control subjects.

Table (4) and figure (4) show that the incidences of encapsulated bacterial carriers among β -thalassemia major patients are significantly lower than those among the control subjects.

Table (5a): Incidence of Streptococcal pneumonia carriers in β -thalassemia major subgroups and the control group:

	β-Thalassemia major $(n^{0} = 100)$			Control $(n^{\circ} = 100)$
	Splenectomised and vaccinated $(n^0 = 44)$		Non- splenectomised $(n^{0} = 56)$	
	With regular antibiotic $(n^{\circ} = 28)$	With irregular or no antibiotic $(n^{0} = 16)$		
Strept. pn.	3 (10.7%)	7 (44%)	8 (14.3%)	32 (32%)

Table (5b): Comparison between the incidences of Strept. pneumoniae carriers in β -thalassemia major subgroups and the control group:

	Splenectomised	Non-	Control
	with irregular or	splenectomised	
	no antibiotic		
Splenectomised	P = 0.011 (S)	P = 0.64 (NS)	P = 0.025 (S)
with regular			
antibiotic			
Splenectomised		P = 0.01 (S)	P = 0.35 (NS)
with irregular or			
no antibiotic			
Non-			P = 0.01 (S)
splenectomised			

Test used is chi-square test. S = Significant. NS = Non-significant.

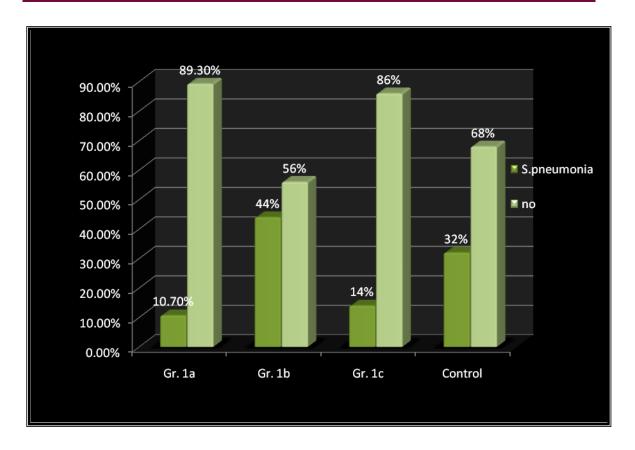


Figure (5): Incidence of Streptococcal pneumonia carriers in β -thalassemia major subgroups and the control group.

Table (6a): Incidence of β -hemolytic streptococcal carriers in β -thalassemia major subgroups and the control group:

	Thalassemia (nº = 100)			Control $(n^{\underline{o}} = 100)$
	Splenectomised $(n^{0} = 44)$		Non-splenectomised ($n^{0} = 56$)	
	With regular antibiotic (nº = 28)	With irregular or no antibiotic (nº = 16)		
β-hemolytic strept.	1 (3.5%)	6 (37.5%)	8 (14.3%)	29 (29%)

Test used is chi-square test.

Table (6b): Comparison between the incidences of β -hemolytic streptococcal carriers in β -thalassemia major subgroups and the control group:

	Splenectomised	Non-	Control
	with irregular or	splenectomised	
	no antibiotic		
Splenectomised	P = 0.003 (S)	P = 0.13 (NS)	P = 0.004 (S)
with regular			
antibiotic			
Splenectomised		P = 0.03 (S)	P = 0.49 (NS)
with irregular or			
no antibiotic			
Non-			P = 0.038 (S)
splenectomised			

Test used is chi-square test. S = Significant. NS = Non-significant.

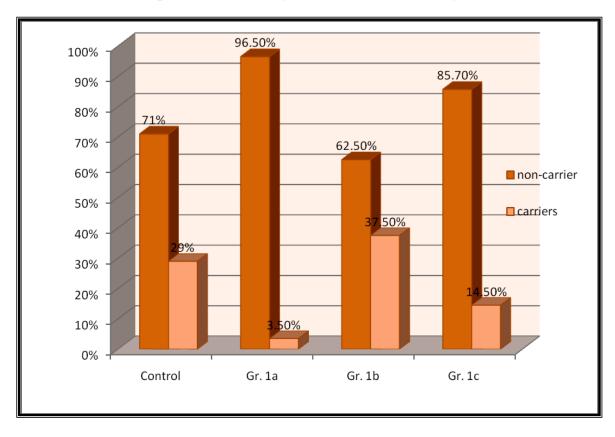


Figure (6): Incidence of β -hemolytic streptococcal carriers in β -thalassemia major subgroups and the control group.

From tables (5a), (5b), (6a) & (6b) as well as figures (5) & (6) we can see that among our patients, the incidences of both streptococcal pneumoniae & β -hemolytic streptococcal carriers are significantly highest in those splenectomised but receiving irregular or no antibiotic prophylaxis. The incidences of the non-splenectomised and those splenectomised and receiving regular antibiotic prophylaxis are significantly lower than that of the controls.

Table (7): Incidence of Neisseria Meningitidis carriers in β -thalassemia major subgroups and the control group:

	β-	β-Thalassemia major $(n^{0} = 100)$			P
	Splenector		Non-	,	
	vacci		splenectomised		
	(n <u>º</u> =	44)	$(n^{\circ} = 56)$		
	With	With no or			
	regular	irregular			
	antibiotic	antibiotic			
	(n=28)	(n=16)			
Neisseria					
Meningitidis	0	0	0	6 (6%)	0.04(S)

Test used is chi square test. S = Significant.

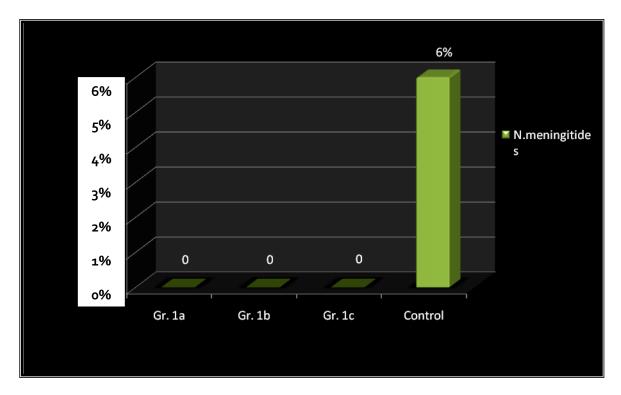


Figure (7): Incidence of Neisseria meningitides carriers in β -thalassemia major subgroups and the control group.

Table (7) and figure (7) reveal that no Neisseria meningitides carrier states were detected among our patients although it was found in 6% of the controls. The difference was statistically significant.

Table (8): Sex distribution among our thalassemic patients:

Group	Males	Females	P
Total thalassemic patients	62 (62%)	38 (38%)	0.77 (NS)
Splenectomized patients	24 (54.5%)	20 (45.5%)	0.17 (NS)
Carriers of Strept. pn. in splenectomized patients	6 (60%)	4 (40%)	0.94 (NS)
Carriers of β-hemol. Strept. in splenectomized patients	4 (57%)	3 (43%)	0.78 (NS)
Carriers of Strept. pn. in splenectomized patients on regular antibiotic intake	1 (33.3%)	2 (66.7%)	0.32 (NS)
Carriers of β-hemol. Strept. in splenectomized patients on regular antibiotic intake	1 (100%)	0 (0%)	0.42 (NS)
Carriers of Strept. pn. in splenectomized patients on irregular or no antibiotic intake	5 (71.4%)	2 (28.6%)	0.56 (NS)
Carriers of β-hemol. Strept. in splenectomized patients on irregular or no antibiotic intake	2 (33.3%)	4 (66.7%)	0.56 (NS)
Non-splenectomized patients	38 (67.8%)	18 (32.2%)	0.17 (NS)
Carriers of Strept. pn. in non-splenectomized patients	6 (75%)	2 (25%)	0.4 (NS)
Carriers of β-hemol. Strept. in non-splenectomized patients	6 (75%)	2 (25%)	0.4 (NS)

Test used is chi-square test. NS = Non-significant.

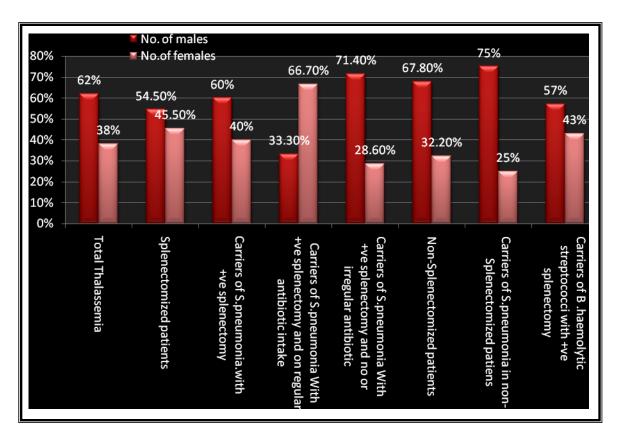


Figure (8): Sex distribution among our thalassemic patients.

Table (8) and figure (8) show that β -thalassemia major does not differentiate between male and female children.

Table (9): Sex distribution among the control carriers:

Group	Males	Females	P
Carriers of Strept. pn.	13%	19%	0.006 (S)
Carriers of β-hemol. Strept.	12%	17%	0.003 (S)
Carriers of Neisseria meningitides	2%	4%	0.16 (NS)

Test used is chi-square test. S = Significant. NS = Non-significant.

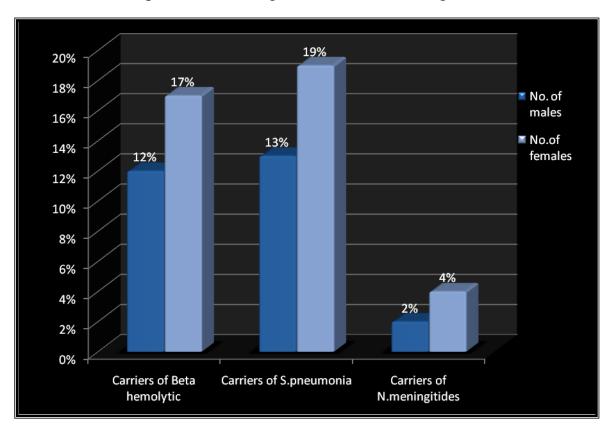


Figure (9): Sex distribution among the control carriers.

Table (9) and figure (9) show that both Pneumococcal and β -hemolytic Streptococcal carriages have statistically significant female predilection. NB: H. influenza b carriage was not detected in any of our patients or control children.