RESULTS

Table (1) and fig.(1),(3) Bleeding time (min), clotting time (min), serum creatine kinase isoenzyme (CK-MB) level (U/L), T-wave voltage (m.v) T-ware area (mm²) and infarction size in control group (group I).

It is clear from this table and figure that the bleeding time is ranged between 1.25-1.6 min. with a mean value of 1.5 min ± 0.1 , The clotting time is ranged between 2.5-3.5 min with a mean value of 3.17 min ± 0.4 , The serum CK-MB isoenzyme is ranged between 162-286 U/L with mean value 212.67 U/L ± 36.9 and that T-wave voltage is ranged between 0.18-0.25 m.v with a mean value of 0.22 m.v ± 0.03 and the T-wave area is ranged between 4-7 mm² with mean 5.17 mm² ± 1.17 and no infarction was detected in all rats of this group.

Table (2) and fig.(2,3) Bleeding time (min), clotting time (min), serum CK–MB level (U/L), T-wave voltage (m.v), T-wave area (mm²) and infarction size (%LV) in rats injected with isoprenaline in a dose of 75mg/kgm (group II).

It is clear from table (2) and figures (2), (3) that the bleeding time is ranged between 1.25-1.6 min. with mean value 1.5 min \pm 0.1, The clotting time is ranged between 3-4 min with mean value 3.33 min \pm 0.41 and CK-MB level 2 hours after injection of isoprenaline is ranged between 1200-1500 U/L with a mean value of 1334 U/L \pm 144.8.

It is also clear that T-wave voltage after 5 minutes from injection of isoprenaline is ranged between 0.25 - 0.45 m.v with a mean value of

 $0.35 \text{ m.v} \pm 0.07$, after 15 minutes from injection, it is ranged between 0.25 - 0.48 m.v with a mean value of 0.37 m.v \pm 0.08, 30 minutes from isoprenaline injection, it is ranged between 0.35 - 0.48 m.v. with mean value 0.38 m.v \pm 0.05, after 60 minutes, it is ranged between 0.38 - 0.45 m.v with mean value 0.41 m.v \pm 0.02 while after 120 minutes from injection, T-wave voltage is ranged between 0.3 - 0.7 m.v with mean value 0.44 m.v \pm 0.1. Also it is clear that T-wave area after 5 minutes from injection of isoprenaline is ranged between 8 –14 mm² with a mean value of 10.33 mm² \pm 2.34, 15 minutes from injection, it is ranged between 9 –16 mm² with mean value 11.5 mm² \pm 2.8, 30 minutes from isoprenaline injection, it is ranged between 10 –16 mm² with mean value $12 \pm 2.13 \text{ mm}^2$. 60 minutes from isoprenaline injection, it ranged between $11-13.5 \text{ mm}^2$ with mean with mean value $12.17 \pm 1.03 \text{ mm}^2$ while Twave area 120 minutes from isoprenaline injection is ranged between 9 – 15.5 mm² with a mean value of 12 mm² \pm 2.29. The infarction size in this group of rats after 2 hours from injection of isoprenaline ranged between 20 - 36 %LV with mean value 28 % \pm 5.2.

Table (3) and fig.(4) Effect of isoprenaline injection in a dose of 75mg/kgm on bleeding time, clotting time and serum CK-MB level in comparison with control group.

It is clear that injection of isoprenaline caused significant increase in CK-MB level as it was changed from 212 U/L \pm 36.9 in control group to 1334 U/L \pm 144.8 after injection of isoprenaline (P < 0.001) while there was no significant change in bleeding time or clotting time.

Table (4) and fig.(4) Effect of isoprenaline injection in a dose of 75mg/kgm on T-wave voltage and T-wave area 5, 15, 30, 60 and 120 minutes after injection in comparison with control group.

From table (4) and fig.(4), It is clear that T-wave voltage shows a significant increase after 5 minutes when compared with the control group as it was changed from 0.22 m.v \pm 0.03 in the control group to 0.35 m.v \pm 0.07 m.v after isoprenaline injection (P < 0.001). This significant increase in T-wave voltage continued after 15, 30, 60 and 120 minutes from injection of isoprenaline with mean values 0.37 m.v \pm 0.08., 0.38 m.v \pm 0.05 (P <0.001), 0.41 m.v \pm 0.02 (P <0.001) and 0.44 m.v \pm 0.1 (P <0.05) respectively as compared with corresponding values in the control group. Also T-wave area shows a significant increase after 5 minutes when compared with the control group as it was changed from $5.17 \text{ mm}^2 \pm 1.17 \text{ to } 10.33 \text{ mm}^2 \pm 2.34 \text{ after isoprenaline injection (P}$ < 0.001). This significant increase in T-wave area continued after 15, 30, 60 and 120 minutes from injection of isoprenaline with mean values 11.5 $\text{mm}^2 \pm 2.88 \text{ (P} < 0.001), 12 \text{ mm}^2 \pm 2.13 \text{ (P} < 0.001), 12.17 \text{ mm}^2 \pm 1.03 \text{ (P}$ <0.001) and 12 mm² \pm 2.29 (P <0.001) respectively as compared with the control group.

Table (5) and fig.(5A, 5B) Effect of methionine intake at a dose of 0.5gm/kgm/day for one week on bleeding time (min), clotting time (min), serum CK-MB level (U/L), T-wave voltage (m.v), T-ware area (mm²) and infarction size (%LV) in rats injected with isoprennaline (group III).

Bleeding time in this group of rats is ranged between 0.5-1.5 min with mean value 1.08 min \pm 0.49. The clotting time is ranged between 2-4 min with mean value 2.37 min \pm 1.09. CK-MB level, 2 hours from

injection of isoprenaline, is ranged between 1578 - 1908 U/L with a mean value of 1732.3 U/L \pm 123.9.

T-wave voltage after 5 minutes from isoprenaline injection in this group of rats is ranged between 0.32 - 0.48 m.v. with mean value of 0.4m.v \pm 0.06, 15 minutes from injection, it is ranged between 0.35 - 0.65 m.v. with mean value 0.46 m.v \pm 0.11, 30 minutes from isoprenaline injection, it is ranged between 0.38 m.v \pm 0.88, 60 minutes from isoprenaline injection, T-wave voltage ranged between 0.38 – 1.25 with mean value 0.69 ± 0.32 m.v while 120 minutes from isoprenaline injection it is ranged between 0.42 - 1.2 m.v with mean value 0.68 m.v \pm 0.28. It is also clear that T-wave area 5 minutes after injection of isoprenaline in this group of rats ranged between $10 - 15 \text{ mm}^2$ with mean value of 12.5 mm $^2 \pm 1.76$ mm 2 . 15 minutes from injection of isoprenaline, it ranged between $11 - 22 \text{ mm}^2$ with mean value $14.67 \text{ mm}^2 \pm 3.98.30$ minutes from isoprenaline injection, it ranged between $11 - 22 \text{ mm}^2$ with mean value 18.33 mm² \pm 7.63. 60 minutes from isoprenaline injection, T-wave area ranged between $12 - 38 \text{ mm}^2$ with mean value $22 \text{ mm}^2 \pm$ 10.18 while 120 minutes from injection of isoprenaline it ranged between $13 - 37 \text{ mm}^2$ with mean value 21.17 mm² ± 8.7. The infarction size in this group of rats after 2 hours from injection of isoprenaline ranged between 36 - 45.5 %LV with mean value 40.33 % ± 3.4 .

Table (6) and fig.(6) Effect of methionine intake at a dose of 0.5gm/kgm/day for one week on bleeding time, clotting time and serum CK-MB level in isoprenline injected rats in comparison with isoprenaline injected group.

From this table, it is clear that there is a significant decrease in bleeding time (min) in isoprenaline injected rats receiving methionine at a dose of 0.5gm/kgm/day for one week when compared with isoprenaline

injected rats as it was changed from 1.5 min \pm 0.1 in isoprenaline injected group to 1.08 min \pm 0.49 in isoprenaline injected rats receiving methionine (P <0.05). As regard the clotting time, also there is a significant decrease in isoprenaline injected rats receiving methionine when compared with isoprenaline injected rats as it was changed from 3.33 min \pm 0.41 in isoprenaline injected group to 2.37 min \pm 1.09 in isoprenaline injected rats receiving methionine (P <0.05). As regard the CK-MB (U/L), it is clear that there is a significant increase in isoprenaline injected rats receiving methionine when compared with isoprenaline injected rats as it was changed from 1334 U/L \pm 144.8 in isoprenaline injected group to 1732.3 U/L \pm 123.9 in isoprenaline injected rats receiving methionine (P <0.001).

Table (7) and fig.(7) Effect of methionine intake at a dose of 0.5gm/kgm/day for one week on T-wave voltage, T-wave area and infarction size in isoprenaline injected rats in comparison with isoprenaline injected group.

From this, it is clear that methionine intake leads to significant increase in T-wave voltage (m.v) after 30, 60, 120 min of injection of isoprenaline when compared with isoprenaline injected group as it was changed from with 0.38 m.v \pm 0.05, 0.41 m.v \pm 0.02, 0.44 m.v \pm 0.1 in isoprenaline injected group to 0.58 m.v \pm 0.19, 0.69 m.v \pm 0.32, 0.68 m.v \pm 0.28 respectively (P <0.05). As regard T-wave area (mm²), there is a significant increase in isoprenaline injected group receiving methionine when compared with isoprenaline injected group after 30, 60, 120 min of injection as it was changed from with 12 mm² \pm 2.13, 12.17 mm² \pm 1.03, 12 mm² \pm 2.29 to 18.33 mm² \pm 7.63, 22 mm² \pm 10.18, 21.17 mm² \pm 8.7 respectively (P <0.05). As regard the infarction size, there is a significant

increase in isoprenaline injected rats receiving methionine when compared with isoprenaline injected rats as it was changed from 28 % \pm 5.2 to 40.33 % \pm 3.4 (P <0.001).

Table (8) and fig.(8A, 8B) Effect of folic acid intake at a dose of 2mg/kgm/day for one week on bleeding time (min), clotting time (min), serum CK-MB level (U/L), T-wave voltage (m.v), T-wave area (mm²) and infarction size (%LV) in rats injected with isoprennaline (group IVa).

From this table and figures, it is clear that the bleeding time is ranged between 2.5-3.5 min. with mean value 2.92 min \pm 0.38. The clotting time is ranged between 4-6 min with mean value 4.92 min \pm 0.74 and CK-MB level is ranged between 800-1180 U/L with mean value 927.5 U/L \pm 135.2.

Also it is clear that T-wave voltage 5 minutes after injection of isoprenaline is ranged between 0.20-0.4 m.v with mean value 0.27 m.v \pm 0.07, After 15 minutes from injection it is ranged between 0.22-0.4 m.v with mean value 0.29 m.v \pm 0.06, after 30 minutes it ranged between 0.22-0.38 m.v. with mean value 0.31 m.v \pm 0.06, 60 minutes from injection, it is ranged between 0.3-0.42 m.v with a mean value of 0.37 m.v \pm 0.04, while after 120 minutes from injection, it is ranged between 0.3-0.42 m.v with mean value 0.34 m.v \pm 0.06. It is also clear that T-wave area in this group of rats 5 minutes after injection of isoprenaline ranged between 5-12 mm² with mean value 7.83 ± 2.93 mm², after 15 minutes from isoprenaline injection, it is ranged between 8-13 mm² with mean value 9.33 mm² \pm 2.5, 30 minutes from injection, it is ranged between 7-12 mm² with mean value 9.5 ± 1.87 mm², 60 minutes from isoprenaline injection, T-wave area ranged between 10-12 mm² with

mean value $11 \text{ mm}^2 \pm 0.09$ while $120 \text{ minutes from injection, it is ranged between } 8 - 11 \text{ mm}^2$ with mean value $9.83 \pm 1.04 \text{ mm}^2$. The infarction size 2 hours from injection of isoprenaline is ranged between 15 - 26.5 %LV with mean value $22.5 \% \pm 4.1$.

Table (9) and fig.(9A, 9B) Effect of folic acid intake at a dose of 5mg/kgm/day for one week on bleeding time (min), clotting time (min), serum CK-MB level (U/L), T-wave voltage (m.v), T-wave area (mm²) and infarction size (%LV) in rats injected with isoprenaline (group IVb).

The bleeding time in this group of rats is ranged between 2.5-3.5 min. with mean value 3.08 min ± 0.49 , the clotting time is ranged between 4.5-6 min. with mean value 5.08 ± 0.58 min. and CK-MB level after 2 hours from isoprenaline injection ranged between 416-798 U/L with mean value 570 U/L ± 137.5 .

Also it is clear that T-wave voltage 5 minutes after injection of isoprenaline in this group of rats ranged between 0.15 - 0.28 m.v with mean value 0.23 m.v ± 0.04 , After 15 minutes from injection, it is ranged between 0.18 - 0.32 m.v. with mean value 0.25 m.v ± 0.05 , 30 minutes from injection, it is ranged between 0.18 - 0.4 m.v. with mean value of 0.28 m.v ± 0.08 , 60 minutes after isoprenaline injection, it is ranged between 0.15 m.v - 0.32 with mean value 0.25 ± 0.08 while 120 minutes from isoprenaline injection, T-wave voltage ranged between 0.15 - 0.35 m.v with a mean value of 0.25 m.v ± 0.08 . T-wave area 5 minutes after injection of isoprenaline ranged between 4 - 7 mm² with mean value 5.83 mm² ± 1.17 , 15 minutes from injection, it is ranged between 5 - 8 mm² with mean value 6.58 ± 1.02 mm², 30 minutes from isoprenaline injection,

it is ranged between $6-10 \text{ mm}^2$ with mean value $7.5 \text{ mm}^2 \pm 1.6$, T-wave area ranged after 60 minutes from isoprenaline injection is ranged between $4-8 \text{ mm}^2$ with mean value $5.83 \text{ mm}^2 \pm 1.5$ while after 120 minutes, it is ranged between $4-8 \text{ mm}^2$ with a mean value of $5.83 \text{ mm}^2 \pm 1.47$. The infarction size after 2 hours from injection of isoprenaline ranged between 12-20 %LV with mean value $16.83 \text{ \%} \pm 2.98$.

Table (10) and fig.(10) Effect of two different doses of folic acid intake 2mg, 5mg/kgm/day for one week on bleeding time, clotting time and serum CK-MB level in isoprenaline injected rats.

Table (10) and figure (10) show that there is a significant increase in bleeding time (min) and clotting time (min) in isoprenaline injected rats which were pretreated with folic acid 2mg/kgm/day for one week as the bleeding time was changed from 1.5 min \pm 0.1 in isoprenaline injected group to 2.92 min \pm 0.38 in isoprenaline injected group pretreated with folic acid (P <0.001). Clotting time was changed from 3.33 min. \pm 0.41 in isoprenaline injected group to 4.92 min \pm 0.74 in isoprenaline injected group pretreated with folic acid (P <0.001). As regard CK-MB (U/L), there is a significant decrease CK-MB level (U/L) in isoprenaline injected group pretreated with folic acid as it was changed from 1334 U/L \pm 144.8 in isoprenaline injected group to 927.5 U/L \pm 135.2 in isoprenaline injected group pretreated with folic acid (p <0.001).

On increasing the dose of folic acid from 2mg/kgm/day to 5mg/kgm/day for one week before isoprenaline injection, there is a significant increase in bleeding time (min) and clotting time (min) in isoprenaline injected rats pretreated with folic acid 5mg/kgm/day as the bleeding time was changed from 1.5 min \pm 0.1 in isoprenaline injected

group to 3.08 min \pm 0.49 in isoprenaline injected group pretreated with folic acid (P <0.001). Clotting time was changed from 3.33 min. \pm 0.41 in isoprenaline injected group to 5.08 min \pm 0.58 in isoprenaline injected group pretreated with folic acid 5mg/kgm/day (P <0.001). As regard CK-MB (U/L), there is a significant decrease in its level in isoprenaline injected rats pretreated with folic acid when compared with isoprenaline injected rats as it was changed from 1334 U/L \pm 144.8 in to 570 U/L \pm 137.5 (p <0.001).

By comparing the effect of the two doses of folic acid (2mg, 5mg/kgm/day) for one week before isoprenaline injection, there is no significant change in both bleeding time and clotting time but there is a significant decrease in CK-MB in rats receiving folic acid at a dose of 5mg/kgm/day for one week with that of 2mg/kgm/day for one week as it was changed from 927.5 U/L \pm 135.2 in isoprenaline injected rats pretreated with folic acid 2mg/kgm/day for one week to 570 U/L \pm 137.5 in isoprenaline injected rats pretreated with folic acid 5mg/kgm/day for one week (P <0.001).

Table (11) and fig.(11) Effect of two different doses of folic acid intake 2mg, 5mg/kgm/day for one week on T-wave voltage in isoprenaline injected rats.

As shown in table (11) and figure (11), It is clear that there is a significant decrease in T-wave voltage (m.v) in isoprenaline injected group pretreated with folic acid 2mg/kgm/day for one week after 30, 60, 120 minutes after injection when compared with isoprenaline injected group as T-wave voltage was changed from 0.38 m.v \pm 0.05, 0.41 m.v \pm 0.02, 0.44 m.v \pm 0.1 in isoprenaline injected group to 0.31 m.v \pm 0.06,

 $0.37 \text{ m.v} \pm 0.04$, $0.34 \text{ m.v} \pm 0.06$ respectively in isoprenaline injected group pretreated with folic acid 2mg/kgm/day (P < 0.05).

On increasing the dose of folic acid from to 5mg/kgm/day for one week before isoprenaline injection, there is a significant decrease in T-wave voltage (m.v) in isoprenaline injected group pretreated with folic acid 5mg/kgm/day for one week 5, 15, 30, 60, 120 minutes after isoprenaline injection when compared with isoprenaline injected group as it was changed from 0.35 m.v \pm 0.07, 0.37 m.v \pm 0.08, 0.38 m.v \pm 0.05, 0.41 m.v \pm 0.02, 0.44 m.v \pm 0.1 in isoprenaline injected group to 0.23 m.v \pm 0.04, 0.25 m.v \pm 0.05, 0.28 m.v \pm 0.08, 0.25 m.v \pm 0.07, 0.25 m.v \pm 0.08, respectively in isoprenaline injected group pretreated with folic acid (P <0.01, 0.01, 0.01, 0.001, 0.001, 0.001) respectively.

By comparing the effect of the two doses of folic acid (2mg, 5mg/kgm/day) for one week before isoprenaline injection, there is significant decrease in T-wave voltage in isoprenaline injected rats receiving folic acid intake 5mg/kgm/day for one week after 60, 120 min. of injection when compared with isoprenaline injected rats receiving folic acid intake 2mg/kgm/day as it was changed from 0.37 m.v \pm 0.04, 0.34 m.v \pm 0.06 to 25 \pm 0.07 m.v. 0.25 \pm 0.08 m.v respectively P <(0.01, 0.05).

Table (12) and fig.(12) Effect of two different doses of folic acid intake 2mg, 5mg/kgm/day for one week on T-wave area and infarction size in isoprenaline injected rats.

From this table and figure, as regard T-wave area (mm²), it is clear that in isoprenaline injected rats pretreated with folic acid 2mg/kgm/day for one week, there is a significant decrease in T-wave area 30, 60 and 120 minutes after isoprenaline injection when compared with isoprenaline

injected group as T-wave area was changed from $12 \text{ mm}^2 \pm 2.13$, $12.17 \text{ mm}^2 \pm 1.03$, $12 \text{ mm}^2 \pm 2.29$ in isoprenaline injected group to $9.5 \text{ mm}^2 \pm 1.87$, $11 \text{ mm}^2 \pm 0.09$, 9.83 ± 1.04 respectively in isoprenline injected group pretreated with folic acid 2 mg/kgm/day (P < 0.05). As regard the infarction size, it is clear that there is a significant reduction in the infarction size in isoprenaline injected rats pretreated with folic acid when compared with isorenaline injected rats as it was changed from $28\% \pm 5.2$ in isoprenaline injected group to $22.5\% \pm 4.1$ in isoprenline injected group pretreated with folic acid (P < 0.05).

On increasing the dose of folic acid from 2mg/kgm/day to 5mg/kgm/day for one week before isoprenaline injection, there is a significant decrease in T-wave area after 5, 15, 30, 60 120 min of isoprenaline injection as it was changed from 10.33 mm 2 ± 2.34, 11.5 mm 2 ± 2.8, 12 mm 2 ±2.13, 12.17 mm 2 ±1.03, 12 mm 2 ± 2.29 in isoprenaline injected group to 5.83 mm 2 ±1.17, 6.58 mm 2 ± 1.02, 7.5 mm 2 ±1.6, 5.83 mm 2 ±1.5, 5.83 mm 2 ±1.4 respectively in isoprenaline injected rats pretreated with folic acid 5mg/kgm/day for one week (P <0.001). As regard the infarction size, there is a significant decrease in the infarction size in isoprenaline injected rats pretreated with folic acid 5mg/kgm/day for one week as it was changed from 28 % ± 5.2 in isoprenaline injected group to 16.83 % ± 2.98 in isoprenline injected group pretreated with folic acid 5mg/kgm/day (P <0.001).

By comparing the effect of the two doses of folic acid (2mg, 5mg/kgm/day) for one week before isoprenaline injection, there is a significant decrease after 15, 30, 60 and 120 min of injection in isoprenaline injected rats receiving folic acid 5mg/kgm/day for one week when compared with the corresponding values in isoprenaline injected

rats receiving folic acid at a dose of 2mg/kgm/day for one week as they are changed from 9.33 mm² \pm 2.5, 9.50 mm² \pm 1.87, 11mm² \pm 0.09, 9.83 mm² \pm 1.04 to 6.58 mm2 \pm 1.02, 7.5 mm² \pm 1.60 , 5.83 mm² \pm 1.50, 5.83 mm² \pm 1.47 respectively P <(0.05, 0.05, 0.001, 0.001). Also as regard the infarction size, there is a significant decrease in isoprenaline injected rats receiving folic acid 5mg/kgm/day for one week when compared with isoprenaline injected rats receiving folic acid 2mg/kgm/day for one week as it is changed from 22.5 % \pm 4.1 to 16.83 % \pm 2.98 (P <0.05).

Table (13) and fig.(13A, 13B) Effect of folic acid intake at a dose of 2mg/kgm/day with methionine 0.5gm/kgm/day for one week on bleeding time (min), clotting time (min), serum CK-MB (U/L), T-wave voltage (m.v.),T-wave area (mm²) and infarction size (%LV) in rats injected with isoprenaline (groupVa).

Bleeding time in this group of rats is ranged between 2-3.5 min with mean value 2.75 min \pm 0.52 The clotting time ranged between 4-5.5 min. with mean value 4.75 min \pm 0.69 The serum CK-MB level in this group of rats after 2 hours from injection of isoprenaline ranged between 1150-1532 U/L with mean value 1290 U/L \pm 168.4. Also it is clear that T-wave voltage in this group of rats 5 minutes after injection of isoprenaline ranged between 0.28-0.38 m.v with mean value 0.31 m.v \pm 0.04. After 15 minutes from injection of isoprenaline, it ranged between 0.3-0.4 m.v with mean value 0.33 m.v \pm 0.04. 30 minutes from injection of isoprenaline, it ranged between 0.3-0.35 m.v with mean value 0.33 m.v \pm 0.02. 60 minutes from injection of isoprenaline, T-wave voltage ranged between 0.28-0.42 m.v with mean value 0.33 m.v \pm 0.05 while 120 minutes from injection of isoprenaline, it ranged between 0.28-0.55 m.v with mean value 0.38 ± 0.12 m.v. It is also clear that T-wave area in

5 minutes after injection of isoprenaline ranged between $6-11 \text{ mm}^2$ with mean value $7.5 \text{ mm}^2 \pm 1.87$. 15 minutes from injection of isoprenaline, it ranged between $7-12 \text{ mm}^2$ with mean value $9.17 \text{ mm}^2 \pm 1.94$. After 30 minutes from isoprenaline injection, it ranged between $7-12 \text{ mm}^2$ with mean value $9.33 \text{ mm}^2 \pm 1.97$. 60 minutes from isoprenaline injection, T-wave area ranged between $7-10 \text{ mm}^2$ with mean value $8.75 \text{ mm}^2 \pm 1.40$. 120 minutes from isoprenaline injection, it ranged between $6-14 \text{ mm}^2$ with mean value $9.33 \pm 3.07 \text{ mm}^2$. The infarction size in this group of rats after 2 hours from injection of isoprenaline ranged between 18.5-24.5 % LV with mean value $21.25 \% \pm 2.16$.

Table (14) and fig.(14A, 14B) Effect of folic acid intake at a dose of 5mg/kgm/day with methionine 0.5gm/kgm/day for one week on bleeding time (min), clotting time (min), serum CK-MB (U/L), T-wave voltage (m.v.),T-wave area (mm²) and infarction size (%LV) in rats injected with isoprenaline (group Vb).

Bleeding time in this group of rats is ranged between 3-4 min. with mean value 3.5 min \pm 0.45. The clotting time is ranged between 5-6 min. with mean value 5.5 min \pm 0.45. The serum CK-MB level after 2 hours from isoprenaline injection is ranged between 442-822 U/L with mean value 654.5 U/L \pm 147.7.

It is clear also that T-wave voltage in this group of rats 5 minutes after isoprenaline injection ranged between 0.22-0.3 m.v. with mean value of 0.27 m.v \pm 0.03. 15 minutes from isoprenaline injection, it ranged between 0.25-0.32 m.v with mean value of 0.28 m.v \pm 0.03. After 30 minutes from isoprenaline injection, it ranged between 0.25-0.32 m.v with mean value 0.29 m.v \pm 0.02. 60 minutes from isoprenaline injection, T-wave voltage ranged between 0.25-0.32 m.v. with mean

value 0.28 ± 0.03 m.v. while 120 minutes from isoprenaline injection it ranged between 0.22 - 0.35 m.v with mean value 0.26 m.v ± 0.05 . It is also clear that T-wave area 5 minutes after isoprenaline injection ranged between 5 - 8 mm² with mean value 6.5 mm² ± 1.05 . After 15 minutes from isoprenaline injection, it ranged between 6 - 10 mm² with mean value 7.83 mm² ± 1.5 . 30 minutes from isoprenaline injection, it ranged between 7 - 10 mm² with mean value 8.33 mm² ± 1.37 . 60 minutes from isoprenaline injection, T-wave area ranged between 6 - 9 mm² with mean value 7.83 mm² ± 1.17 while 120 minutes from injection, it ranged between 5 - 9 mm² with mean value 7 ± 1.55 mm². The infarction size in this group of rats after 2 hours from isoprenaline injection ranged between 13-20 %LV with mean value 16.92 % ± 2.33 .

Table (15) and fig.(15) Effect of two different doses of folic acid (2mg, 5mg/kgm/day) with methionine 0.5gm/kgm/day for one week on bleeding time, clotting time and serum CK-MB level in isoprenaline injected rats.

From this table, there is a significant increase in bleeding time (min) in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day for one week when compared with isoprenaline injected rats receiving methionine only as it was changed from 1.08 min \pm 0.49 in isoprenaline injected rats receiving methionine to 2.75 min \pm 0.52 in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day (P < 0.001). As regard the clotting time (min), there is also a significant increase in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day when compared with isoprenaline injected rats receiving methionine injected rats receiving methionine only as it was changed from 2.37 min \pm 1.09 in isoprenaline injected rats receiving methionine to 4.75 min \pm 0.69 in

isoprenaline injected rats receiving folic acid with methionine (P < 0.001). As regard CK-MB (U/L), there is a significant decrease in isoprenaline injected rats receiving methionine with folic acid when compared with isoprenaline injected rats receiving methionine only as it was changed from 1732.3 U/L \pm 123.9 isoprenaline injected rats receiving methionine to 1290 U/L \pm 168.4 in isoprenaline injected rats receiving methionine with folic acid (P < 0.001).

Also it is clear that when we increase the dose of folic acid intake from 2mg/kgm/day to 5mg/kgm/day for one week before isoprenaline injection, there is a significant increase in bleeding time (min) in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day for one week as it was changed from 1.08 min \pm 0.49 in isoprenaline injected rats receiving methionine to 3.5 min \pm 0.45 in injected rats receiving isoprenaline methionine and 5mg/kgm/day for one week (P < 0.001). As regard the clotting time (min), there is also a significant increase in isoprenaline injected rats receiving methionine and folic acid as it was changed from 2.37 min \pm 1.09 in isoprenaline injected rats receiving methionine to 5.5 min \pm 0.45 in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day for one week (P < 0.001). As regard CK-MB (U/L), there is a significant decrease in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day for one week when compared with isoprenaline injected rats receiving methionine only as it was changed from 1732.3 U/L±123.9 in isoprenaline injected rats receiving methionine to 654.5 U/L \pm 147.7 in isoprenaline injected rats receiving methionine and folic acid 5 mg/kgm/day for one week (P < 0.001).

When we compare the effect of the two doses of folic acid, it is clear that isoprenaline injection after methionine intake with folic acid 5mg/kgm/day for 7 days shows a significant increase in bleeding time when compared with isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day, as it was changed from 2.75 min \pm 0.52 in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day to 3.5 min \pm 0.45 in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day (P < 0.05). As regard the clotting time, also there is a significant increase in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day when compared with isoprenaline injected rats receiving methionine and folic acid in a dose of 2mg/kgm/day, as it was changed from 4.75 min \pm 0.69 in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day to 5.5 min \pm 0.45 in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day (P < 0.05). As regard CK-MB (U/L), there is a significant decrease in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day when compared with isoprenaline injected rats receiving methionine and folic acid in a dose of 2mg/kgm/day as it was changed from 1290 U/L ± 168.40 in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day to 654.5 U/L± 147.70 in isoprenaline injected rats receiving methionine and folic acid in a dose of 5 mg/kgm/day (P < 0.05).

Table (16) and fig.(16) Effect of two different doses of folic acid (2mg, 5mg/kgm/day) with methionine 0.5gm/kgm/day for one week on T-wave voltage in rats injected with isoprenaline.

Folic acid intake in a dose of 2mg/kgm/day for one week with methionine in isoprenaline injected rats leads to a significant decrease in T-wave voltage (m.v) when compared with isoprenaline injected rats receiving methionine after 5, 15, 30, 60, 120 min, as it was changed from 0.40 m.v \pm 0.06, 0.46 m.v \pm 0.11, 0.58 m.v \pm 0.19, 0.69 m.v \pm 0.32, 0.68 m.v \pm 0.28 in isoprenaline injected rats receiving methionine to 0.31 m.v \pm 0.04, 0.33 m.v \pm 0.04, 0.33 m.v \pm 0.05, 0.38 m.v \pm 0.12 in isoprenaline injected rats receiving methionine with folic acid 2mg/kgm/day P < (0.01, 0.05, 0.01, 0.05, 0.05) respectively.

From this table, it is also clear that T-wave voltage (m.v) shows a significant decrease in rats pretreated with methionine and folic acid in a dose of 5mg/kgm/day for 7 days before isoprenaline injection after 5, 15, 30, 60, 120 min, as it was changed from 0.40 m.v \pm 0.06, 0.46 m.v \pm 0.11, 0.58 m.v \pm 0.19, 0.69 m.v \pm 0.32, 0.68 m.v \pm 0.28 in isoprenaline injected rats receiving methionine only to 0.27 m.v \pm 0.03, 0.28 m.v \pm 0.03, 0.29 m.v \pm 0.02, 0.28 m.v \pm 0.03, 0.26 m.v \pm 0.05 respectively P <(0.001, 0.01, 0.01, 0.01, 0.01) respectively.

By comparing the effect of the two doses of folic acid (2mg, 5mg/kgm/day) for one week with methionine intake 0.5gm/kgm/day for one week before isoprenaline injection, there is a there is a significant decrease in T-wave voltage in isoprenaline injected rats that received methionine and folic acid at a dose of 5mg/kgm/day when compared with isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day after 15, 30, 60, 120 min as it was changed from 0.33 m.v \pm 0.04, 0.33 m.v \pm 0.02, 0.33 m.v \pm 0.05, 0.38 m.v \pm 0.12 in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day to 0.28 m.v \pm 0.03, 0.29 m.v \pm 0.02, 0.28 m.v \pm 0.03, 0.26 m.v \pm 0.05 respectively (P <0.05).

Table (17) and fig.(17) Effect two different doses of folic acid (2mg, 5mg/kgm/day) with methionine 0.5gm/kgm/day for one week on T-wave area and infarction size in rats injected with isoprenaline.

From this, it is clear that in isoprenaline injected rats receiving methionine with folic acid 2mg/kgm/day for one week there is significant decrease in T-wave area after 5, 15, 30, 60, 120 min when compared with isoprenaline injected rats receiving methionine only, as it was changed from 12.5 mm² \pm 1.76, 14.67 mm² \pm 3.98, 18.33 mm² \pm 7.63, 22 mm² \pm 10.18, 21.17 mm $^2 \pm 8.7$ in isoprenaline injected rats receiving methionine only to 7.5 mm² \pm 1.87, 9.17 mm² \pm 1.94, 9.33 mm² \pm 1.97, 8.75 mm² \pm 1.4, 9.33 mm² \pm 3.07 in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day for one week P < (0.001, 0.01, 0.05, 0.01, 0.01). As regard the infarction size, there is also a significant decrease in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day for one week when compared with isoprenaline injected rats receiving methionine only, as it was changed from 40.33 % \pm 3.40 in isoprenaline injected rats receiving methionine to 21.25 % \pm 2.16 in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day for one week (P < 0.001).

On increasing the dose of folic acid from 2mg/kgm/day to 5mg/kgm/day with methionine intake 0.5gm/kgm/day for one week before isoprenaline injection, as regard T-wave area (mm²), there is a significant decrease in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day for one week when compared with isoprenaline injected rats receiving methionine only, as it was changed from 12.50 mm² \pm 1.76, 14.67 mm² \pm 3.98, 18.33 mm² \pm 7.63, 22 mm² \pm 10.18, 21.17 mm² \pm 8.7 after 5, 15, 30, 60, 120 min in isoprenaline injected rats receiving methionine only to 6.5 mm² \pm 1.05, 7.83 mm² \pm 1.50, 8.33 mm²

 \pm 1.37, 7.83 mm² \pm 1.17, 7 mm² \pm 1.55 in isoprenaline injected rats receiving methionine and folic acid at dose of 5mg/kgm/day for 7 days, P < (0.001, 0.01, 0.01, 0.01, 0.01) respectively. As regard the infarction size, there is a significant decrease in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day for 7 days when compared with isoprenaline injected rats receiving methionine only, as it was changed from 40.33 % \pm 3.40 to 16.92 % \pm 2.33 in isoprenaline injected rats receiving methionine and folic acid 5mg/kgm/day for 7 days (P < 0.001).

By comparing the effect of the two doses of folic acid 2mg, 5mg/kgm/day with methionine 0.5gm/kgm/day for one week before isoprenaline injection, as regard T-wave area (mm²), there was no significant change between the two groups. As regard the infarction size, there is also a significant decrease in rats injected with isoprenaline after methionine and folic acid at a dose of 5mg/kgm/day when compared with isoprenaline injected rats and receiving methionine and folic acid in a dose of 2mg/kgm/day as it was changed from 21.25 % \pm 2.16 in isoprenaline injected rats receiving methionine and folic acid 2mg/kgm/day to 16.92 % \pm 2.33 in isoprenaline injected rats and receiving methionine and folic acid 5mg/kgm/day (P < 0.05).