# **RESULTS**

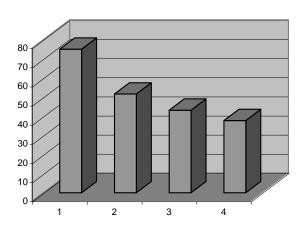
**In this study:** we study the effects of thyroid hormone on testicular function through induction of hypo- and hyperthyroidism in adult male rats, the following was noticed

#### Effect of propyl-thiouracil on serum T4 level

Table (1) shows the serum T4 level in rats receiving propylthiouracil 0.1% for 2 weeks compared with the control group. In which the mean value of serum T4 in the control group is  $75 \pm 7.238$  ng/ml. Mean value in A1 group is  $51.546 \pm 3.281$  ng/ml, it shows significant decrease compared with control group P value < 0.01. It also shows serum T4 level in rats receiving propylthiouracil 0.1% for 4 weeks compared with the control group. In which the mean value of serum T4 in the control group is  $75 \pm 7.238$  ng/ml. Mean value in A2 group is  $43.083 \pm 4.352$  ng/ml, it shows significant decrease compared with control group P value < 0.001. Table (1) shows serum T4 level in rats receiving propylthiouracil 0.1% for 8 weeks compared with the control group. In which the mean value of serum T4 in the control group is  $75 \pm 7.238$  ng/ml. Mean value in A3 group is  $37.666 \pm 13.952$  ng/ml, it shows significant decrease compared with control group P value < 0.01.

On conclution, propylthiouracil 0.1% administration in adult male rats cause significant decrease in serum T4 level (induced hypothyroidism) after 2,4 and 8 weeks and this appears in chart (1).

Table (1): serum T4 level ng/ml in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group


|          | Group   | Control | A1     | A2     | А3     |
|----------|---------|---------|--------|--------|--------|
|          | 1       | 65      | 47.78  | 42.5   | 35     |
|          | 2       | 76      | 53     | 49     | 13     |
| _        | 3       | 69      | 50.5   | 40.5   | 37     |
| level    | 4       | 75      | 55     | 44     | 43     |
| T4       | 5       | 85      | 48     | 36.5   | 55     |
| serum T4 | 6       | 80      | 55     | 46     | 43     |
| Se       | MEAN    | 75      | 51.546 | 43.083 | 37.666 |
|          | S.D     | 7.238   | 3.281  | 4.352  | 13.952 |
|          | P Value |         | <0.01  | <0.001 | <0.01  |

SD: standerd deviation

P :significant difference compared with the control group

A1: rats receiving PTU for 2 wks. A2: rats receiving PTU for 4 wks. A3: rats receiving PTU for 8 wks.

chart 1: T4 level in ng/ml in rats receiving propylthiouracil for 2,4 and 8 weeks compared with the control group



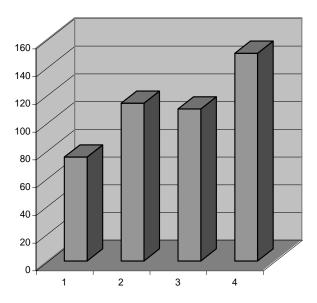
■ MEAN

# Effect of thyroxine injection on serum T4 level

Table (2) shows the serum T4 level in rats receiving thyroxine injection at a dose 100 µg/kg/d for 2 weeks compared with the control group. In which the mean value of serum T4 in the control group is  $75\pm7.238$  ng/ml. Mean value in B1 group is  $113.833\pm13.496$  ng/ml, it shows significant increase compared with control group P value <0.01.It also shows the serum T4 level in rats receiving thyroxine injection at a dose 100 µg/kg/d for 4 weeks compared with the control group. In which the mean value of serum T4 in the control group is  $75\pm7.238$  ng/ml. Mean value in B1 group is  $109.666\pm25.943$ ng/ml, it shows significant increase compared with control group P value <0.05 .In this table the serum T4 level in rats receiving thyroxine injection at a dose 100 µg/kg/d for 8 weeks compared with the control group. In which the mean value of serum T4 in the control group is  $75\pm7.238$  ng/ml. Mean value in B1 group is  $149.833\pm31.663$  ng/ml, it shows significant increase compared with control group P value <0.01 .

On conclution, thyroxine administration in adult male rats at a dose 100  $\mu$ g/kg/d cause significant increase in serum T4 level (induced hyperthyroidism) after 2,4 and 8 weeks , and this appears in chart (2).

Table (2): serum T4 level ng/ml in rats receiving thyroxine for 2, 4, and8 weeks compared with the control group


| G                 | roup    | Control | B1      | B2      | В3      |
|-------------------|---------|---------|---------|---------|---------|
|                   | 1       | 65      | 104     | 89      | 168     |
|                   | 2       | 76      | 127     | 90      | 136     |
| ht                | 3       | 69      | 95      | 128     | 132     |
| Veig              | 4       | 75      | 128     | 99      | 182     |
| ılar \            | 5       | 85      | 108     | 154     | 179     |
| Testicular Weight | 6       | 80      | 121     | 98      | 102     |
| Te                | MEAN    | 75      | 113.833 | 109.666 | 149.833 |
|                   | S.D     | 7.238   | 13.496  | 25.943  | 31.663  |
|                   | P Value |         | <0.01   | <0.05   | <0.01   |

SD: standerd deviation

P :significant difference compared with the control group

B1: rats receiving thyroxine for 2 wks.B2: rats receiving thyroxine for 4 wks.B3: rats receiving thyroxine for 8 wks.

chart 2: T4 level in ng/ml in rats receiving thyroxine for 2,4 and 8weeks compared with the control group



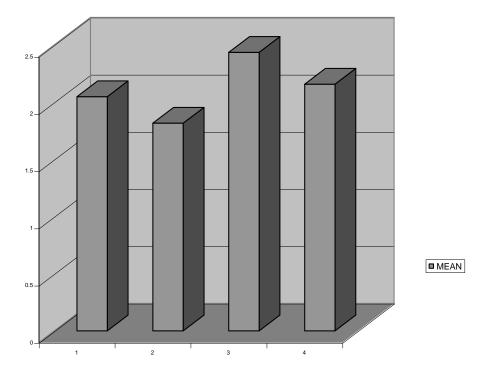
■ MEAN

# **Effect of hypothyroidism on testicular weight:**

Table (3): show the changes the total testicular weight in rats receiving propyl-thiouracil (PTU) for 2,4,and 8weeks compared with the control group. From this table the control group shows mean value  $2.04777 \pm 0.6019$  gm. Rats receiving (PTU) for 2 weeks (A1) shows mean value of testicular weight  $1.8162 \pm 0.1648$  gm. This group shows no significant difference compared with the control group . The second group (A2) which received (PTU) for 4weeks shows mean value of testicular weight  $2.435 \pm 0.5737$  gm. with no significant difference compared with the control group. The third group (A3) which received (PTU) for 8 weeks shows mean value of testicular weight  $2.1568 \pm 0.3349$  gm. This group shows no significant difference compared with the control .

This table shows that there was no significant difference in testicular weight of the adult male rats in groups A1, A2 and A3 compared with the control group. This comparison appear in chart(3),from which **We concluded that** there was no significant difference of the testicular weight after propylthiouracil administration in the periods 2,4 and 8 weeks compared with the control group in adult male rats.

Table (3): testicular weight in grams in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group


|                   | Group    | Control | A1     | A2     | А3     |
|-------------------|----------|---------|--------|--------|--------|
|                   | 1        | 2.36    | 1.65   | 2.52   | 2.01   |
|                   | 2        | 2.65    | 1.72   | 2.7    | 2.11   |
|                   | 3        | 1.83    | 1.79   | 3.38   | 2.77   |
|                   | 4        | 2.62    | 1.8    | 2.3    | 2.25   |
| ght               | 5        | 1.71    | 2.13   | 1.87   | 2.01   |
| Testicular Weight | 6        | 1.12    | 1.8    | 1.85   | 1.8    |
| ticula            | MEAN     | 2.0477  | 1.8162 | 2.435  | 2.1568 |
| Tes               | S.D      | 0.6019  | 0.1648 | 0.5737 | 0.3349 |
|                   | P0 Value |         | Ns     | Ns     | Ns     |
|                   | P1 Value |         |        | Ns     |        |
|                   | P2 Value |         |        |        | Ns     |
|                   | P3 Value |         |        |        | Ns     |

P1: Significant difference between A1 and A2

P2: Significant difference between A1 and A3

P3: Significant difference between A2 and A3

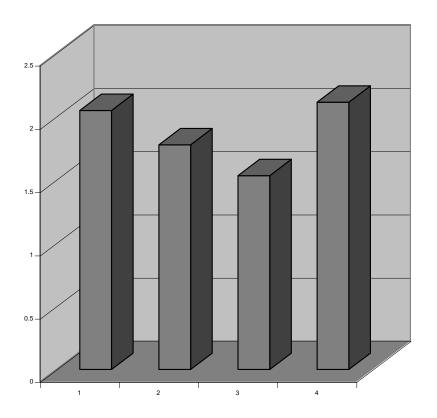
chart (3): testicular weight in grams in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group



### Effect of hyperthyroidism on testicular weight

Table (4): shows changes in testicular weight after Thyroxine treatment at a dose 100 µg/kg/d. for 2,4 and 8 weeks compared with the control group. The mean value of testicular weight in control group is  $2.0477\pm0.6019$  gm. In group (B1) that received Thyroxine for 2 weeks the mean value of testicular weight is  $1.7757\pm0.2024$ . There was no significant decrease of testicular weight in B1 compared with the control. Group (B2) which received Thyroxine for 4 weeks shows mean value of testicular weight  $1.5318\pm0.3967$  gm, and shows no significant decrease in testicular weight compared with the control group . The mean value in (B3) which received Thyroxine for 8 weeks is  $2.1127\pm0.2429$  gm. It shows no significant decrease compared with the control. Chart (4) shows changes in testicular weight in hyperthyroid group of rats compared with the control group. **On conclusion** there was no significant effect of hyperthyroidism induced by thyroxine injection for 2,4, and 8 weeks on the testicular weight of the adult male rats, as shown in chart (4).

<u>Table (4): Testicular weight in grams in rats receiving thyroxine for 2, 4, and 8 weeks compared with the control group</u>


| Gr                | oup      | Control | B1     | B2     | В3     |
|-------------------|----------|---------|--------|--------|--------|
|                   | 1        | 2.36    | 1.93   | 1.07   | 1.9    |
|                   | 2        | 2.65    | 2.02   | 1.42   | 2.28   |
|                   | 3        | 1.83    | 1.46   | 1.36   | 2.31   |
|                   | 4        | 2.62    | 1.64   | 2.21   | 1.75   |
| ight              | 5        | 1.71    | 1.78   | 1.38   | 2.34   |
| Testicular Weight | 6        | 1.12    | 1.84   | 1.75   | 2.1    |
| ular              | MEAN     | 2.0477  | 1.7757 | 1.5318 | 2.1127 |
| estic             | S.D      | 0.6019  | 0.2024 | 0.3967 | 0.2429 |
| <b>–</b>          | P0 Value |         | Ns     | Ns     | Ns     |
|                   | P1 Value |         |        | Ns     |        |
|                   | P2 Value |         |        |        | Ns     |
|                   | P3 Value |         |        |        | Ns     |

P1: Significant difference between B1 and B2.

P2: Significant difference between B1 and B3.

P3: Significant difference between B2 and B3.

chart 4: testicular weight in rats receiving thyrxine for 2, 4, and8 weeks compared with the control group

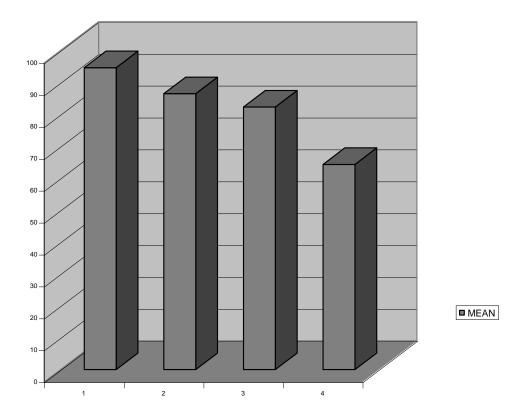


■ MEAN

# **Effect of hypothyroidism on sperm count:**

Table (5) shows sperm count in (million/ml) control and rats receiving (PTU) 0.1% for 2, 4 and 8 weeks. The mean of the control group is 94.6667  $\pm$ 13.5892 million / ml. A1 shows mean value of sperm count  $86.5 \pm 5.4681$ million / ml. It shows no significant decrease compared with the control group and no significant difference compared with A2 but shows significant difference compared with A3 P < 0.05 . A2 mean value is  $82.3333 \pm 16.5731$  million/ml. It is significantly lower than the control group P < 0.05. A2 shows significant difference compared with the control group p< 0.05 and no significant decrease compared with A1 but shows significant difference compared with A3 P < 0.05. The mean value of sperm count in A3 is  $64.3333 \pm 8.641$  million / ml. This group shows significant decrease compared with the control group P < 0.05. A3 shows significant decrease compared with A1 P < 0.05 and significant decrease compared with A2 p< 0.05. These changes appear in chart (5). From the above we concluded that sperm count shows significant decrease in adult male rats after induction of hypothyroidism by propyl-thiouracil 0.1% for 2,4 and 8weeks compared with the control. This decrease starts after 4 wks and become more in group A3 (after 8 wks) as it shows significant decrease compared with both A1 and A2 groups. So that the effect of hypothyroidism on sperm count of the adult male rats increases with time. On conclusion there was significant decrease of sperm count after administration of propylthiouracil for 2,4, and 8 weeks of the adult male rats, as shown in chart(5). This effect increase with the time of administration

Table (5): sperm count in millions in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group


| Gı          | roup     | Control | A1     | A2      | А3      |
|-------------|----------|---------|--------|---------|---------|
|             | 1        | 110     | 85     | 105     | 75      |
|             | 2        | 107     | 90     | 100     | 60      |
|             | 3        | 75      | 95     | 70      | 50      |
|             | 4        | 84      | 82     | 64      | 70      |
| ŧ           | 5        | 92      | 80     | 80      | 65      |
| Con         | 6        | 100     | 87     | 75      | 66      |
| Sperm Count | MEAN     | 94.6667 | 86.5   | 82.3333 | 64.3333 |
| Š           | S.D      | 13.5892 | 5.4681 | 16.5731 | 8.641   |
|             | P0 Value |         | NS     | <0.05   | <0.05   |
|             | P1 Value |         |        | NS      |         |
|             | P2 Value |         |        |         | <0.05   |
|             | P3 Value |         |        |         | <0.05   |

P1: Significant difference between A1 and A2

P2: Significant difference between A1 and A3

P3: Significant difference between A2 and A3

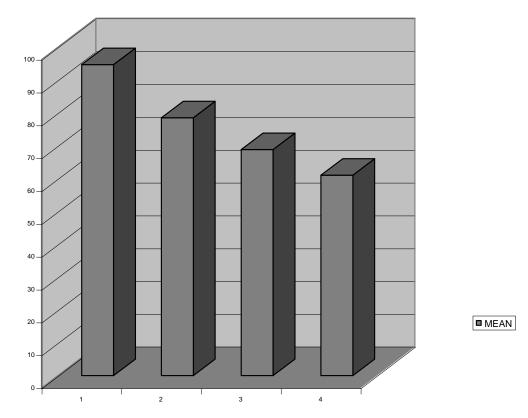
chart 5: sperm count in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group



### Effect of hyperthyroidism on sperm count

Table (6) shows sperm count in (million/ml) rats receiving thyroxine injection at a dose 100 µg/kg/d. for 2,4 and 8 weeks compared with the control group. The mean value of sperm count in the control group is  $94.667 \pm$ 13.5892 million / ml. The mean value of B1 is  $78.5 \pm 18.4905$  million / ml, it shows no significant difference compared with the control group. B2 shows mean value of sperm count  $68.8333 \pm 17.2907$  million / ml, it is significantly lower than the control group p < 0.05, and it shows significant decrease compared with B1 P<0.05. B3 mean value of sperm count is  $61 \pm 7.4833$  million / ml. it shows significant decrease compared with the control p < 0.05 and no significant decrease compared with B1 and B2 .So thyroxine at dose 100µg/kg/d. lowers sperm count in adult male rats compared with the control from 2 to8 weeks and become more effective at 4 weeks. This effect appears in chart (6). On conclusion there was significant decrease of sperm count after thyroxine administration for 2,4, and 8 weeks of the adult male rats, and this effect was maximum at 4weeks of administration.

<u>Table (6): sperm count in millions/ ml in rats receiving thyroxine for 2, 4, and8 weeks compared with the control group</u>


| (           | Group    | Control | B1      | B2      | В3     |
|-------------|----------|---------|---------|---------|--------|
|             | 1        | 110     | 87      | 80      | 60     |
|             | 2        | 107     | 108     | 86      | 65     |
|             | 3        | 75      | 85      | 87      | 50     |
|             | 4        | 84      | 59      | 57      | 70     |
| t t         | 5        | 92      | 62      | 50      | 55     |
| Sperm Count | 6        | 100     | 70      | 53      | 66     |
| perm        | MEAN     | 94.6667 | 78.5    | 68.8333 | 61     |
| S           | S.D      | 13.5892 | 18.4905 | 17.2907 | 7.4833 |
|             | P0 Value | _       | NS      | <0.05   | <0.05  |
|             | P1 Value |         |         | <0.05   |        |
|             | P2 Value |         |         |         | NS     |
|             | P3 Value | _       | _       |         | NS     |

P1: Significant difference between B1 and B2

P2: Significant difference between B1 and B3

P3: Significant difference between B2 and B3

chart 6: sperm count inrats receiving thyroxine for 2, 4, and8 weeks compared with the control group

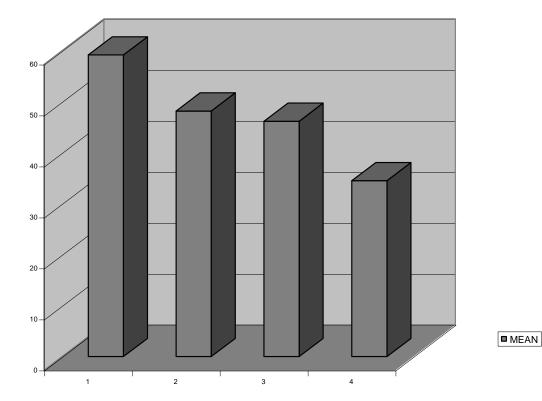


# **Effect of hypothyroidism on sperm motility:**

Sperm motility percent in rats receiving (PTU) 0.01% for 2,4, and 8 weeks compared with the control group are shown in Table (7). The mean value of sperm motility in the control group is  $59.1667 \pm 5.8452$ %. A1 mean value is  $48.1667 \pm 9.3684$ % and it shows no significant difference compared with the control group. The mean value in A2 is  $46.1667 \pm 9.261$ % and shows significant decrease compared with the control p < 0.05. A2 shows no significant decrease compared with A1 . The mean value in A3 is  $34.5 \pm 7.7136$ % it is significantly lower than the control p < 0.05 and shows significant decrease compared with A1 p < 0.05 and with A2 p < 0.05. So that hypothyroidism causes decrease in sperm motility when induced for 4 and 8 weeks of adult male rats. This effect become more at 8 weeks .There is no significant effect of hypothyroidism on sperm motility at 2 weeks. these results can be shown in chart (7).

We concluded that there was no significant effect of hypothyroidism on sperm motility after 2weeks, but there was significant decrease in sperm motility after propyltiouracil administration for 4 and 8 weeks in adult male rats and this effect become more at 8 weeks.

Table (7): sperm motility in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group


|                | Group    | Control | <b>A</b> 1 | A2      | А3     |
|----------------|----------|---------|------------|---------|--------|
|                | 1        | 50      | 54         | 53      | 45     |
|                | 2        | 65      | 43         | 62      | 30     |
|                | 3        | 55      | 55         | 40      | 30     |
|                | 4        | 60      | 60         | 42      | 42     |
| >              | 5        | 60      | 37         | 40      | 35     |
| Sperm Motility | 6        | 65      | 40         | 40      | 25     |
| perm           | MEAN     | 59.1667 | 48.1667    | 46.1667 | 34.5   |
| S              | S.D      | 5.8452  | 9.3684     | 9.261   | 7.7136 |
|                | P0 Value |         | NS         | <0.05   | <0.05  |
|                | P1 Value |         |            | NS      |        |
|                | P2 Value |         |            |         | <0.05  |
|                | P3 Value | _       | _          | _       | <0.05  |

P1: Significant difference between A1 and A2

P2: Significant difference between A1 and A3

P3: Significant difference between A2 and A3

chart 7: sperm motility in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group

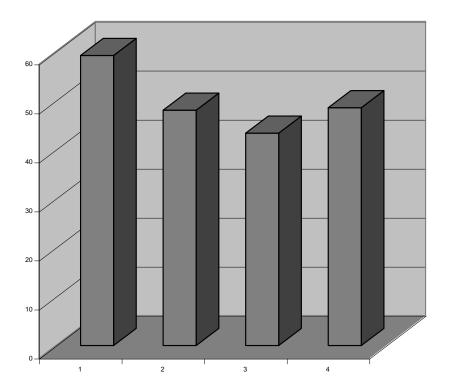


# **Effect of hyperthyroidism on sperm motility:**

Sperm motility percent in rats receiving thyroxine at a dose 100  $\mu$ g/kg/d. for 2,4, and 8 weeks compared with the control group are shown in Table (8). The mean value of sperm motility in the control group is 59.1667  $\pm$  5.8452 %. B1 mean value is 48  $\pm$  6.1644 % and it shows significant decrease compared with the control group P< 0.05. The mean value in B2 is 43.3333  $\pm$  5.0465 % and shows significant decrease compared with the control p < 0.05. but shows no significant difference compared with B1. The mean value in B3 is 48.5  $\pm$  4.8477 % it is significantly lower than the control p < 0.05 and shows no significant difference compared with B1 and B2 . Chart (8) shows the effect of hyperthyroidism on the percent sperm motility of adult male rats.

From the above **we concluded that** increased thyroxine level in adult male rat causes decrease in sperm motility when induced for 2, 4 and 8 weeks. This effect is not significantly changed by the time of thyroxine administration.

<u>Table (8): sperm motility in rats receiving thyrxine for 2, 4, and8</u> weeks compared with the control group


| G              | Group    | Control | B1     | B2      | В3     |
|----------------|----------|---------|--------|---------|--------|
|                | 1        | 50      | 50     | 40      | 47     |
|                | 2        | 65      | 45     | 45      | 56     |
|                | 3        | 55      | 52     | 48      | 43     |
|                | 4        | 60      | 40     | 44      | 44     |
| ,<br>,         | 5        | 60      | 44     | 48      | 51     |
| Sperm Motility | 6        | 65      | 57     | 35      | 50     |
| perm           | MEAN     | 59.1667 | 48     | 43.3333 | 48.5   |
| S              | S.D      | 5.4852  | 6.1644 | 5.0465  | 4.8477 |
|                | P0 Value |         | <0.05  | <0.05   | <0.05  |
|                | P1 Value | _       | _      | NS      |        |
|                | P2 Value | _       | _      | —       | NS     |
|                | P3 Value | _       | _      |         | NS     |

P1: Significant difference between B1 and B2

P2: Significant difference between B1 and B3

P3: Significant difference between B2 and B3

Chart 8: sperm motility in rats receiving thyroxine for 2, 4, and 8 weeks compared with the control group

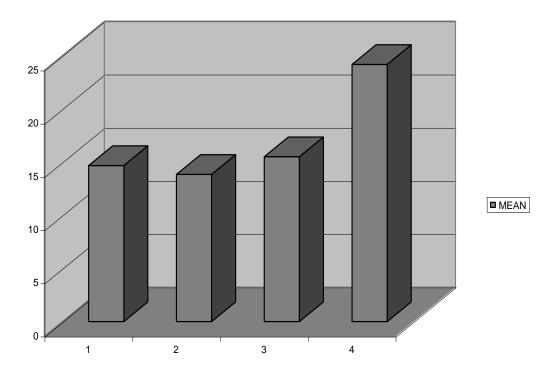


■ MEAN

# **Effect of hypothyroidism on sperm abnormalities:**

Table (9) shows sperm abnormalities percent in rats receiving (PTU) 0.1% for 2,4 and 8 weeks compared with the control group. The mean value of the control group is  $14.6667 \pm 4.9666$  %. (A1) mean value is  $13.8333 \pm 3.6009$ %. it shows no significant difference compared with the control group. The mean value in (A2) is  $15.5 \pm 2.3452\%$ , it shows no significant difference compared with the control group and no significant difference compared with (A1)group. The mean value of sperm abnormalities in (A3) is 24.1667  $\pm$  2.4833 %. It is significantly higher than the control group P < 0.05, with significant increase compared with (A1) p < 0.05 and with (A2) p < 0.05. Chart (9) shows that hypothyroidim increase the ratio of sperm abnormalities when induced for 8 weeks compared with the control group. On conclusion there was significant difference of abnormalities after propylthiouracil sperm administration for 2,4 weeks but there was significant increase in sperm abnormalities after 8 weeks in the adult male rats.

Table (9): sperm abnormalities in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group


|                     | Group    | Control | A1      | A2     | А3      |
|---------------------|----------|---------|---------|--------|---------|
|                     | 1        | 23      | 18      | 14     | 24      |
|                     | 2        | 18      | 18      | 14     | 20      |
|                     | 3        | 14      | 14      | 20     | 23      |
|                     | 4        | 12      | 13      | 16     | 26      |
| alities             | 5        | 11      | 10      | 15     | 27      |
| Sperm Abnormalities | 6        | 10      | 10      | 14     | 25      |
| n Abı               | MEAN     | 14.6667 | 13.8333 | 15.5   | 24.1667 |
| Sperr               | S.D      | 4.9666  | 3.6009  | 2.3452 | 2.4833  |
|                     | P0 Value |         | NS      | NS     | <0.05   |
|                     | P1 Value |         |         | NS     |         |
|                     | P2 Value |         |         |        | <0.05   |
|                     | P3 Value |         |         |        | <0.05   |

P1: Significant difference between A1 and A2

P2: Significant difference between A1 and A3

P3: Significant difference between A2 and A3

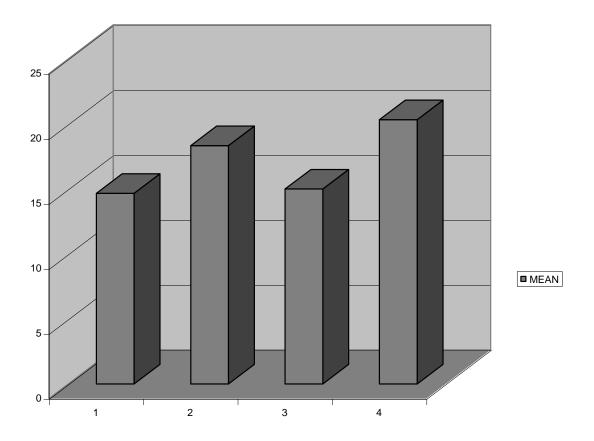
Chart 9: sperm abnormalities in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group



# **Effect of hyperthyroidism on sperm abnormalities:**

shows sperm abnormalities percent in rats receiving Table (10) thyroxine injection at a dose 100 µg/kg/d. for 2,4 and 8 weeks compared with the control group. The mean value of the control group is  $14.6667 \pm 4.9666$  %. (B1) mean value is  $18.3333 \pm 3.4448$  %. It shows no significant difference compared with the control group. The mean value in (B2) is  $15 \pm 3.249$  %, it shows no significant difference compared with the control group and no significant difference compared with (B1) group. The mean value of sperm abnormalities in (B3) is  $20.3333 \pm 5.2409$  %. It is significantly higher than the control group P < 0.05. It shows no significant difference compared with (B1) group and (B2) groups. Chart (10) shows that hyperthyroidim increase the ratio of sperm abnormalities when induced for 8 weeks compared with the control group. Examples of these sperm abnormalities are shown in figure (11) in which there is budding and swelling of the acrosome, separation of the acrosome from the sperm head. Figure (12) shows normal acrosome with reflexed (bent) tail of sperm. Figure (13) shows damaged acrosome. Figure (14) shows acrosome entirely lost and abnormal midpiece of spermatozoa. On conclusion there was no significant difference of sperm abnormalities after thyroxine administration for 2,4weeks but there was significant increase in sperm abnormalities after 8 weeks in the adult male rats.

Table (10): sperm abnormalities in rats receiving thyroxine for 2, 4, and8 weeks compared with the control group


|                     | Group    | Control | B1      | B2     | В3      |
|---------------------|----------|---------|---------|--------|---------|
|                     | 1        | 23      | 12      | 15     | 25      |
|                     | 2        | 18      | 18      | 14     | 17      |
|                     | 3        | 14      | 18      | 15     | 28      |
|                     | 4        | 12      | 20      | 10     | 20      |
| lities              | 5        | 11      | 20      | 20     | 18      |
| Sperm Abnormalities | 6        | 10      | 22      | 16     | 14      |
| m Abr               | MEAN     | 14.6667 | 18.3333 | 15     | 20.3333 |
| Speri               | S.D      | 4.9666  | 3.4448  | 3.2249 | 5.2409  |
|                     | P0 Value |         | NS      | NS     | <0.05   |
|                     | P1 Value |         |         | NS     |         |
|                     | P2 Value |         |         |        | NS      |
|                     | P3 Value |         |         |        | NS      |

P1: Significant difference between B1 and B2

P2: Significant difference between B1 and B3

P3: Significant difference between B2 and B3

Chart 10: sperm abnormality in rats receiving thyroxine for 2, 4, and8 weeks compared with the control group



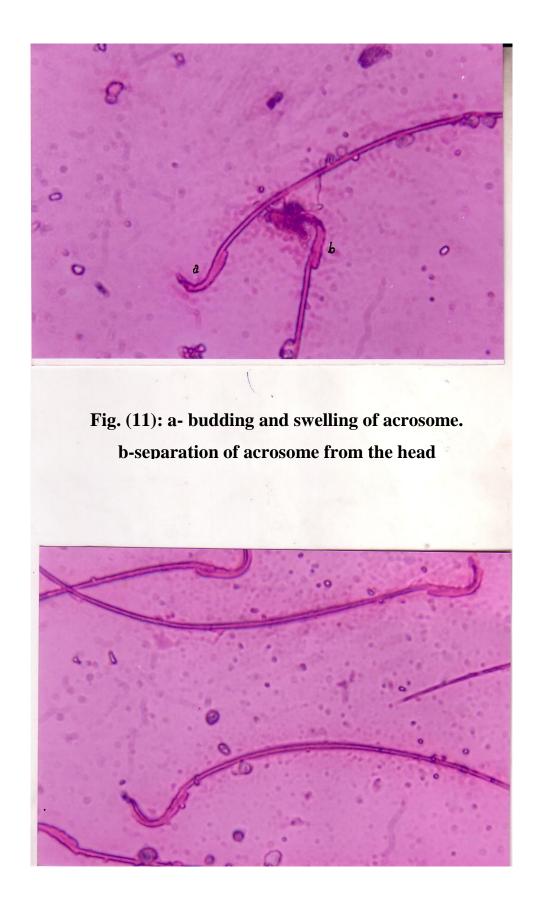



Fig. (12): separation of acrosome from head of spermatozoa.

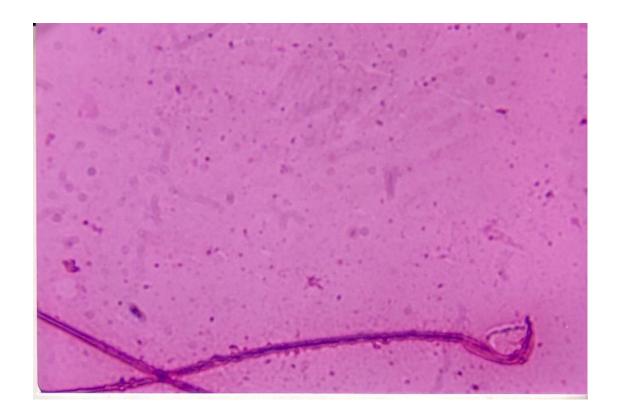



Fig (13): damaged acrosome.

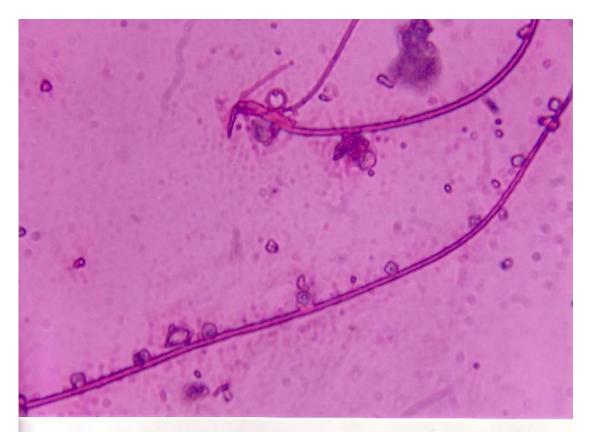



Fig. (14):acrosome entirely lost and abnormal midpiece of sperm

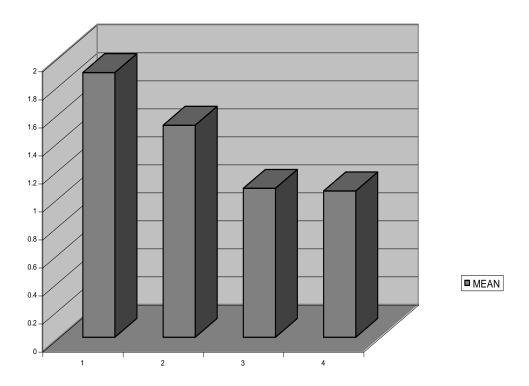


Fig. (15): normal acrosome with reflexed (bent) tail of sperm.

# Effect of hypothyroidism on serum testosterone (ng/ml):

Table (11) &chart (11) shows the serum testosterone level in rats receiving (PTU) 0.1 % for 2,4 and 8 weeks compared with the control group. In which the mean value of serum testosterone in the control group is  $1.8898 \pm 1.0745$  ng/ml. (A<sub>1</sub>) mean value is  $1.514 \pm 1.6179$  ng/ml, it shows no significant difference compared with control group. (A<sub>2</sub>) mean value is  $1.0633 \pm 1.0682$  ng/ml. it shows no significant difference compared with control and no significant difference compared with (A1). (A<sub>3</sub>) mean value is  $1.045 \pm 0.6091$ . It shows significant decrease of serum testosterone level compared with the control group p < 0.05, with no significant difference compared with (A1) and (A2). Chart : (11) shows the decrease in the serum testosterone after (PTU) administration for 8 weeks. From the above **we concluded that** hypothyroidism causes no significant decrease in serum testosterone level when induced for 2 and 4 weeks, but it begins to cause significant decrease after 8 weeks.

Table (11): serum testosterone level in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group


|                   | Group    | Control | A1     | A2     | А3     |
|-------------------|----------|---------|--------|--------|--------|
|                   | 1        | 1.56    | 1.02   | 3.03   | 1.24   |
|                   | 2        | 1.16    | 0.89   | 1.15   | 0.02   |
|                   | 3        | 0.68    | 2.28   | 1.25   | 0.63   |
|                   | 4        | 2.47    | 0.22   | 0.42   | 1.52   |
| Serum Testoserone | 5        | 1.76    | 4.44   | 0.03   | 1.24   |
| stose             | 6        | 3.71    | 0.24   | 0.5    | 0.62   |
| n Te              | MEAN     | 1.8898  | 1.514  | 1.0633 | 1.045  |
| Serur             | S.D      | 1.0745  | 1.6179 | 1.0682 | 0.6091 |
|                   | P0 Value |         | NS     | NS     | <0.05  |
|                   | P1 Value |         |        | NS     | _      |
|                   | P2 Value |         |        | _      | NS     |
|                   | P3 Value |         |        |        | NS     |

P1: Significant difference between A1 and A2

P2: Significant difference between A1 and A3

P3: Significant difference between A2 and A3

Chart 11 : serum testosterone in rats receiving propylthiouracil 0.1% for 2, 4, and8 weeks compared with the control group

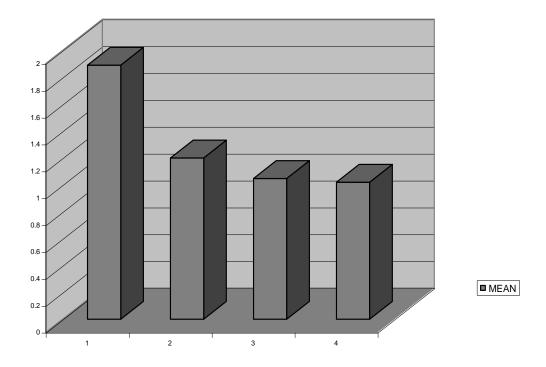


### **Effect of hyperthyroidism on serum testosterone (ng/ml):**

Table (12) shows the serum testosterone level in rats receiving thyroxine injection at a dose 100 µg/kg/d. for 2,4 and 8 weeks compared with the control. In which the mean value of serum testosterone in the control group is 1.8898  $\pm$  1.0745 ng/ml. (B<sub>1</sub>) mean value is 1.1987  $\pm$  1.451 ng/ml, it shows no significant difference compared with control group. (B<sub>2</sub>) mean value is 1.0467  $\pm$  1.2471 ng/ml. It shows no significant difference compared with control group and no significant difference compared with (B1). (B<sub>3</sub>) mean value is 1.0191  $\pm$  0.843 ng/ml. It shows significant decrease of serum testosterone level compared with the control group p < 0.05, with no significant difference compared with (B1) and (B2). Chart: (12) shows that the significant decrease in the serum testosterone after thyroxine administration occurs after 8 weeks. From the above we concluded that hyperthyroidism causes no significant decrease in serum testosterone level when induced for 2 and 4 weeks, but it begins to cause significant decrease after 8 weeks.

**On conclution** the results of our study shows that both hypo- and hyperthyroidism have an effect on the testicular function of adult male rats. As following

Table (12): serum testoserone level in rats receiving thyroxine for 2, 4, and 8 weeks compared with the control group


|                         | Group    | Control | B1     | B2     | В3     |
|-------------------------|----------|---------|--------|--------|--------|
|                         | 1        | 1.24    | 0.62   | 0.24   | 0.19   |
|                         | 2        | 0.02    | 0.14   | 0.38   | 1.35   |
|                         | 3        | 0.63    | 3.57   | 1.75   | 0.29   |
| evel                    | 4        | 1.52    | 0.19   | 3.3    | 0.94   |
| Serum Testoserone level | 5        | 1.24    | 0.24   | 0.37   | 0.84   |
| oser                    | 6        | 1.62    | 2.43   | 0.24   | 2.5    |
| Test                    | MEAN     | 1.8898  | 1.1987 | 1.0467 | 1.0191 |
| erum                    | S.D      | 1.0745  | 1.451  | 1.2471 | 0.843  |
| Š                       | P0 Value |         | NS     | NS     | <0.05  |
|                         | P1 Value | _       |        | NS     |        |
|                         | P2 Value | _       |        | _      | NS     |
|                         | P3 Value | _       |        | _      | NS     |

P1: Significant difference between B1 and B2

P2: Significant difference between B1 and B3

P3: Significant difference between B2 and B3

Chart 12 : serum testosterone in rats receiving thyroxine for 2, 4, and8 weeks compared with the control group



# From table (13), We found that Induced hypothyroidism causes

- 1) no significant changes in the testicular weight after 2,4,8 weeks compared with the control group.
- 2)significant decrease in sperm count after 2,4,8 weeks compared with the control group and this effect increase with time.
- 3) significant decrease in sperm motility after 4,8 weeks compared with the control group and become more at 8 weeks.
- 4) significant increase in sperm abnormalities after 8 weeks in the adult male rats compared with the control group.
- 5) significant decrease in serum testosterone level after 8 weeks compared with the control group.

<u>Table (13): Effect of hypothyroidism on testicular function Including Testicular Weight,</u>
<u>Sperm Count,Sperm Motility,Sperm Abnormality and Serum testosterone level in adult male</u>
<u>rats after 2, 4 and 8 weeks compared with the control</u>

| Group                 |         | CONTROL | A1      | A2      | А3      |
|-----------------------|---------|---------|---------|---------|---------|
| serum T4              | Mean    | 75      | 51.546  | 43.083  | 37.666  |
|                       | SD      | 7.238   | 3.281   | 4.352   | 13.952  |
|                       | P value |         | <0.01   | <0.001  | <0.01   |
| Testicular<br>Weight  | Mean    | 2.0477  | 1.8162  | 2.435   | 2.1568  |
|                       | SD      | 0.6019  | 0.1648  | 0.5737  | 0.3349  |
|                       | P value |         | Ns      | Ns      | Ns      |
| Sperm Count           | Mean    | 94.6667 | 86.5    | 82.3333 | 64.3333 |
|                       | SD      | 13.5892 | 5.4681  | 16.5731 | 8.641   |
|                       | P value |         | NS      | <0.05   | <0.05   |
| Sperm Motility        | Mean    | 59.1667 | 48.1667 | 46.1667 | 34.5    |
|                       | SD      | 5.8452  | 9.3684  | 9.261   | 7.7136  |
|                       | P value |         | NS      | <0.05   | <0.05   |
| Sperm<br>abnormality  | Mean    | 14.6667 | 13.8333 | 15.5    | 24.1667 |
|                       | SD      | 4.9666  | 3.6009  | 2.3452  | 2.4833  |
|                       | P value | _       | NS      | NS      | <0.05   |
| Serum<br>testosterone | Mean    | 1.8898  | 1.514   | 1.0633  | 1.045   |
|                       | SD      | 1.0745  | 1.6179  | 1.0682  | 0.6091  |
|                       | P value | _       | NS      | NS      | <0.05   |

In **table** (14) we found that Induced hyperthyroidism causes

- 1) no significant changes in the testicular weight after 2,4,8 weeks compared with the control group.
- 2)significant decrease in sperm count after 2,4,8 weeks compared with the control group and this effect was maximum at 4weeks of administration.
- 3) significant decrease in sperm motility after 2,4,8 weeks compared with the control group and not affected by the time.
- 4) significant increase in sperm abnormalities after 8 weeks in the adult male rats compared with the control group.
- 5) significant decrease in serum testosterone level after 8 weeks compared with the control group.

SD: standerd deviation P

**RESULTS** 

<u>Table (14): Effect of hypothyroidism on testicular function Including Testicular Weight, Sperm Count, Sperm Motility, Sperm Abnormality and Serum testosterone level in adult male rats after 2, 4 and 8 weeks compared with the control</u>

| Group                 |         | CONTROL | B1      | B2      | В3      |
|-----------------------|---------|---------|---------|---------|---------|
| serum T4              | Mean    | 75      | 113.833 | 109.666 | 149.833 |
|                       | SD      | 7.238   | 13.496  | 25.943  | 31.663  |
|                       | P value | _       | <0.01   | <0.05   | <0.01   |
| Testicular<br>Weight  | Mean    | 2.0477  | 1.7757  | 1.5318  | 2.1127  |
|                       | SD      | 0.6019  | 0.2024  | 0.3967  | 0.2429  |
|                       | P value |         | Ns      | Ns      | Ns      |
| Sperm Count           | Mean    | 94.6667 | 78.5    | 68.8333 | 61      |
|                       | SD      | 13.5892 | 18.4905 | 17.2907 | 7.4833  |
|                       | P value |         | NS      | <0.05   | <0.05   |
| Sperm Motility        | Mean    | 59.1667 | 48      | 43.3333 | 48.5    |
|                       | SD      | 5.4852  | 6.1644  | 5.0465  | 4.8477  |
|                       | P value | _       | <0.05   | <0.05   | <0.05   |
| Sperm<br>Abnormality  | Mean    | 14.6667 | 18.3333 | 15      | 20.3333 |
|                       | SD      | 4.9666  | 3.4448  | 3.2249  | 5.2409  |
|                       | P value | _       | NS      | NS      | <0.05   |
| Serum<br>testosterone | Mean    | 1.8898  | 1.1987  | 1.0467  | 1.0191  |
|                       | SD      | 1.0745  | 1.451   | 1.2471  | 0.843   |
|                       | P value | _       | NS      | NS      | <0.05   |