RESULIS

The relation between malnutrition and other factors was studied.

Table (1) Weight for age classification of the studied infants according to nutritional status.

Weight/age classification	No	%
Normal Malnutrition - Overweight - Undernutrition	411 589 157 432	41.1 58.9 15.7 43.2
Total	1000	100.00

This table and figure (1) show that 411 infants were noraml as regard weight for age and 589 were malnourished. The percentage of malnutrition was 58.9% among the studied infants, distributed as 15.7% overweight and 43.2% as undernutrition.

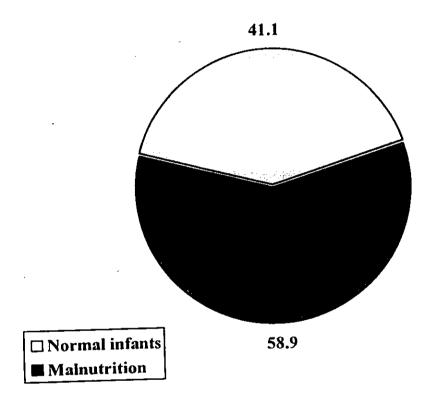


Fig. (1) Pie chart shows distribution of the studied sample according to nutritional status.

Table (2) Distribution of the studied group according to residence and nutritional status

and	uci i ci c					
Nutritional status Residence	Nor No	mal %	Malnutr No	ition %	Tota No	%
Benha	111	42.7	149	57.3	260	26.0
Tokh	96	42.1	132	57.9	228	22.8
Kafer shoker	105	41.2	150	58.8	255	25.5
Sheblunga	99	38.5	158	61.5	257	25.7
}	ł	·	<u> </u>	<u> </u>	}	
Total	411	41.1	589	58.9	1000	100.00
	<u></u>	<u>}</u>]	<u> </u>	<u> </u>	<u> </u>

$$X_{.}^{2} = 1.07$$
P> 0.05

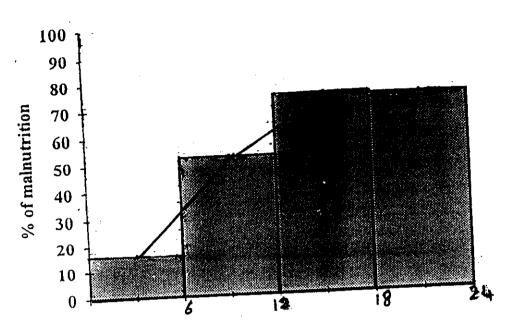

This table shows that malnutrition among infants in Benha is less than Tokh, kafarshokr and Sheblunge . It represents 57.3% , 57.9% 58.8% and 61.5% respectively . The difference is insignificant Statistically (P> 0.05).

Table (3) Distribution of the studied group according to age and nutritional status .

		Malnutr	ition	Tota	
Nor No	*mal	No	%	No	7.
97	84.3	18	1.7	115	11.5
183	47.7	201	52.3	384	38.4
51	25.4	150	74.6	201	20.1
80	26.7	220	73.3	300	30.0
411	41.1	589	58.9	1000	100.00
	97 183 51 80	97 84.3 183 47.7 51 25.4 80 26.7	No % No	No % 97 84.3 18 183 47.7 201 52.3 51 25.4 150 74.6 80 26.7 220 73.3	No % No 97 84.3 18 1.7 115 183 47.7 201 52.3 384 51 25.4 150 74.6 201 80 26.7 220 73.3 300

$$\chi^2 = 142$$
P< 0.05

The above table illustrated by Figure (2) shows that malnutrition is more common in the second year (about 74%) than over 6 months (about 52%). The difference is significant statistically (p<0.05).

Infant age in months Fig. (2) Age and malnutrition

Table (4) Distribution of the studied group according to sex and nutritional status .

Nutritional status	Nor	mal %	Malnut	ition	Tota	%
sex	No		No	%	No	%
Male	253	39.8	383	60.2	636	63.6
Female	158	43.4	206	56.6	364	36.4
Total	411	41.1	589	58.9	1000	100.00

 $x^2 = 1.3$ P> 0.05

This table and Figure (3) show that the male to female ratio is the sample was 1.7. Also, shows, malnutrition was more commune among male: (60.2%) than females (56.6%) but the difference is statistically insignificant (P>0.05).

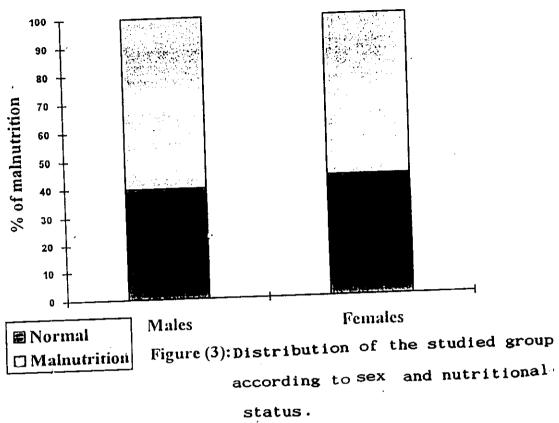


Table (5) Distribution of the studied group according to order of birth and malnutrition .

Offer	allu mar					
Nutritional status order of birth	Nor No	mal %	Malnut No	ition %	Tota No	% %
The first baby The second baby	100 160	62.9 54.8	59 132	37.1 45.2	159 292	15.9 29.2
The third baby The fourth baby and more	80 71	30.0	187 211	70.0	267 282	26.7
Total	411	41.1	589	58.9	1000	100.00

 $X^2 = 97$ $P \leftarrow 0.05$

This tabe and Figure(4) show that the first infant is the least child suffering from malnurtition (37.1%) and with higher birth order the risk of exposure increased. About three fourths (74.8) of the fourth order and more was exposed to malnutrition. The difference is satistically significant (P<0.05)

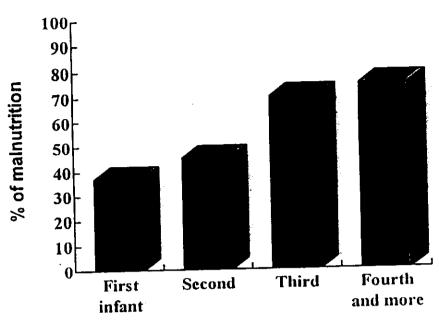


Fig.(4) Order of birth and malnutrition

Table (6) Distribution of the studied group according to mother's age and nutritional status.

y	Nor	Normal		Malnutition		al
Nutritional status mother's age (years)	No	78	No	% (No	₹
16 -	42	20.8	160	79.2	202	20.2
20 -	99	33.2	199	66.8	298	29.8
24 -	71	41.3	101	58.7	172	17.2
28 -	51	58.0	37	42.0	88	8.8
32 -	81	61.8	50	38.2	131	13.1
36 - 40	67	61.5	42	38.5	109	10.9
Total	411	41.1	589	58.9	1000	100.00

 $X^2 = 94.3$

P < 0.05

R = -0.15253

This table shows the distribution of the studied group according to mother's age and nutritional status, where the most frequant malnourished infants were more belonging to mothers aged between 16-20 years. The mean age of the studied mothers was 26.26 with \pm 16.5 S.D. Also, malnutrition steadly declined with increasing mother's age. Non of the investigated mothers were above 40 years old. The difference is statistically significant. Also, there is nagative correlation (R=-0.15253) between mother's age and nutritional status of the infants.

Table (7) Distribution of the studied group according to the * socioeconomic status and nutritional status.

SOCIOECONOMIC Status and industrial									
Nutritional status socioeconomic status	Normal No %		Malnutition No %		Tot: No	al %			
Lower class	184	20.2	468	77.8	652	65.2			
Middle class	150	58.8	105	41.2	255	25.5			
Upper class	77	82.8	16	17.2	93	9.3			
Total	411	41.1	589	58.9	1000	100.00			

$$\chi^2 = 144.6$$

P < 0.05

* The socioeconimic status was classified into three classes according to the socioeconimic index . (Shoulah, 1988).

This table illustrates that 65.2% of the sample was of lower socioeconimic class infants and malnutrition was more common in that class (71.8%) than the middle (41.2%) and upper (17.2%) ones.

The difference is statistically significant (P<0.05).

Table (8)Distribution of the studied group according to level of mother' education and the nutritional status.

Nutritional status Mothers education	Nor No	-mal %	Malnut No	rition %	Tot No	al %
Illitrate Read & Write Basic education Secondary or technical	167 48 30 129	29.5 48.0 51.7 61.1	421 52 28 82	70.5 52.0 48.3 38.9	597 100 58 211	59.7 10.0 5.8 21.1
University	28	82.4	6	16.6	34	3.4
Total	411	41.1	589	58.9	1000	100.0

 $x^2 = 96.9$ P<0.05 R = -0.18261

This table and Figure (5) show that malnutrition was more common among infants of illitrate mother's (70.5%) than those of hightly educated ones (17.6%). The difference is statistically significant (P<0.05) . Also , there is negative correlation (R=-0.18261) between the level of mother's education and nutritional status of the infant .

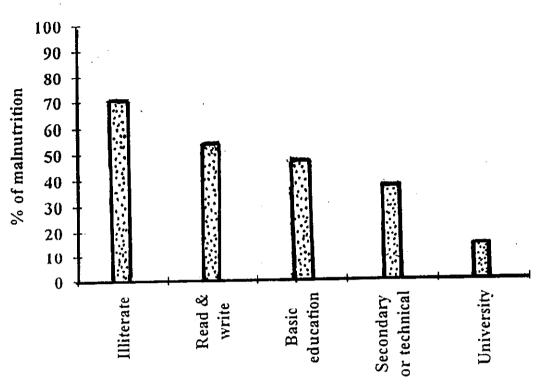


Fig. (5) Education of mother and malnutrition

Table (9) Distribution of the studied group according to type of feeding and the nutrition status .

Nutritional status	Normal		Malnutrition %		Total	
Mothers education	No %				No %	
Breast	179	34.8	335	65.2	514	51.4
Artificial	81	40.9	117	59.1	198	19.8
Mixed feeding	151	52.4	137	47.6	288	28.8
Total	411	41.1	589	58.9	1000	100.0

 $x^2 = 23.6$ P < 0.05

This table shows that malnutrion is more common among breast fed infants (65.2%) than bottle fed ones (59.1%) and the mixed fed ones (47.6%) . The difference is statistically significant (P < 0.05)

Table (10) Distribution of the studied group according to colostrun feeding and the nutritional status

Nutritional status Colostrum feeding	Normal No %		Malnutrition No %		Tot No	.al %
Yes	348	75.2	115	24.8	463	46.3
No	63:	11.7	474	88.3	537	53.7
Total	411	41.1	589	58.9	1000	100.0

 $X^2 = 161$ P < 0.05

This table shows that malnutrion is more common among infants who did not fed on colostrum in the first few days of life (88.3%) while the percent of who fed was 24.8% . The difference is statistically significant (P < 0.05).

Table (11): Distribution of malnutrition Cases according to causes of cessation of breast feeding .

Causes of cessation	No.	%
Maternal Causes as - another pregnancy - scanty of breast milk - working mothers - More than one cause - Maternal disease Infant Causes as: - refusal of breast, illness, congenital anomalies (harelip	165 117 110 75 60	34.0 24.1 22.6 15.4 12.3

This table shows that a following pregnancy is the commonest cause (34.0%) for cessation of breast feeding followed by other maternal causes, while the least related to infant (7.0%).

Table (12) Distribution of the studied group according to duration of milk feeding and then utritional status .

Nutritional status Duration in months	Normal No %						Tot No	al %
< 8 8 - 16 - 24	62 226 123	31.2 35.8 72.4	137 405 47	68.8 64.2 27.6	199 631 170	19.9 63.1 17.0		
Total	411	41.1	589	58.9	1000	100.0		

 $X^2 = 83.9$ P < 0.05

This table shows that malnutrition as less , common among infants who fed milk 16-24 months (27.6%) than among those who fed it for less than 16 months (64.2%-68.8%) . The difference is statistically signficant (P<0.05) .

Table (13)Distribution of the studied group according to the sufficiency of milk and nutritional status .

Nutritional status Duration in months	Normal No %		7 (N 7 7 1 N		Tot No	al %
Sufficient	288	49.1	298	50.9	586	58.6
Insufficient	123	29.7	291	70.3	414	41.4
Total	411	41.1	589	58.9	1000	100.0

 $X^2 = 37.9$ P < 0.05

This table shows that malnutrition was less, common when the quantity of breast milk for each meal was sufficient and statisfying the infantneeds (50.9%) and more common when it was insufficient (70.3%) the difference is statistically (P < 0.05) significant.

Table (14)Distribution of the studied group according to types of food given at night and nutritional status .

Nutritional status	No	rmal %	Malnu	trition	To	tal
Food given at night	No		No	%	No	%
Lactagogues * Milk Nothing	153	31.4	334	68.6	487	48.7
	220	78.9	59	21.1	279	27.9
	38	16.2	196	83.8	,234	23.4
Total	411	41.1	589	58.9	1000	100.0

 $X^2 = 242.9$ P < 0.05

Lactagogues are sugar soups and herbal remedies

This table shows that malnutrition was less common among babies who were fed milk by night (21.1%) than those nothing (83.8%) those who fed lacagogues were in between (68.6%) . The difference is the statistically significat (P < 0.05) .

Table (15): Distribution of the studied group according to mother's belief toward types of food affecting flow of breas mill

Type of food	No.	%
Food increasing milk:		
- Good (Protein) diet	323	32.3
	305	30.5
- Helba	202	20.2
- Halawa tehnia	170	17.0
Do not knowmore than one	158	15.8
Food decreasing milk:		
- Molokhia	397	39.7
	393	39.3
- Do not know	148	14.8
- Contraceptive pills	62	6.2
- Fish		

This table shows that mothers believed good diet e.g, cheesmilk products (32.3%), Helba (30.5%), Halawa tehnia (20.2%) Would increase milk flow, while, Molokhia (39.7%), pills (14.8%) and Fis (6.2%) would decrease it.

Table (16) Distribution of the studied group according to time of begining weaning and nutritional status .

Nutritional status * time of weaning	Noi No	rmal %	Malnu No	trition %	To No	tal %
Early weaning(<4ms)** Acceptable weaning	80 258	85.1 63.5	14	14.9 36.5	94 406	9.4
(4-6 ms) Delayed weaning (>6ms)	73	14.6	427	85.4	500	50.0
Total	411	41.1	589	58.9	1000	100.0

 $X^2 = 304.7$ P < 0.05

- * The classification is according to WHO (1986).
- ** As all those below 4 months sometimes fed on syrups or juices.

This table illustrates that malnutrition was more common with delayed weaning time (85.4%) than with early weaning (14.9%). Acceptable weaning (4-6 ms) accompanying malnutrition among 36.5% of the studied infants .

The difference is statistically sign if icant (P < 0.05)

Table (17) Distribution of the studied group according to the supplementary foods of weaning and nutritional status.

Nutritional status supplementary food	Nor No	mal %	Malnut No	rition %	To No	tal %
Mainly carbohydrate	204	32.4	427	67.6	631	63.1
Mainaly proteins	207	56.1	162	43.9	369	36.9
Total	411	41.1	589	58.9	1000	100.0

 $\chi^2 = 105.2$ P < 0.05

This table shows that malnutirtion was more common when the infants were given more carbohydrates during weaning (63.1%) versus (63.9%) when given more protein .The difference is statistically significant .

Table (18) Relationship between mother's care of infant food and nutritional status (according to WHO, 1986).

Nutritional status infant food	No No	rmal %	Malnu No	itrition %	To:	tal %
* Specially prepared food	330	54,0	281	46.0	611	61.1
Family food in a separate plate	65	21.0	244	79.0	309	30.9
Family food in communal dish	16	20.0	64	80.0	80	8.0
TOtal	411	41.1	589	58.9	1000	100.0

 $\chi^2 = 113.13$ P < 0.05

This group includes , also infants who have not been weanned .

This table shows that malnutrition was more common when
the infants shared family in a communal dish (80.0%) than
among those fed family foods in a separate plate (79.0%).

The least frequency was among infants fed especially prepared food (46.0%) . The difference is statistically significat (P < 0.05)

Table (19) Relationship between history of diarrhea and nutritional status among the studied group.

Nutritional status History of diarrhea	No No	rmal %	Malnu No	trition %	To No	tal %
History of recurrent* diarrhea No history or history of unrecurrent	113 298	38.3 49.7	287 302	71.1	400 600	40.0 60.0
TOtal	411	41.1	589	58.9	1000	100.0

 $\chi^2 = 46.92$

* Recurrent diarrhea means more than twice per month (WHO, 1984).

This table illustrates that malnutrition is more common among infants with history of recurrent diarrhea (71.3%) than those without history (50.3%). This difference is statistically significant (P < 0.05)

Table (20) Relationship between maternal beliefs toward the cause of the disease and nutritional status of the studied group.

No No	ormal %	Malni No	itrition %	To No	tal %
302	63.05	177	36.95	479	47.9
109	20.9	412	79.1	521	52.1
		500	59.0	1000	100.0
	No 302	302 63.05 109 20.9	No %	No % No % 302 63.05 177 36.95 109 20.9 412 79.1	No %

 $X^2 = 153.8$ P < 0.05

This table shows that mainutrition was less common among infants of mothers who attributed the cause of disease to an agent (36.95%) than among whose mothers attributed it to false belifes as evil eye, spirit or magic (79.1%) . The difference is statistically significant (P<0.05) .

Table (21) Relationship between the onset of medical treatment of diseased infants and nutritional status.

Nutritional status onset of medical treatment	Noi No	rmal %	Malnu No	trition %	Tot No	tal %
Early (at first day of disease)	240	47.2	269	52.8	509	50.9
Late (later on)	171	34.8	320	65.2	491	49.1
TOtal	411	41.1	589	58.9	1000	100.0

 $X^2 = 15.7$

This table shows that malnutrition was more common when the mothers go to physician for treatment of ill infants in late stages (65.2%) than when they go in early stage (52.8%) at the first 24 hours. The difference is statistically significant (P<0.05).

Table (22) Relationship between the adopted type of treatment during the disease and nutrition status of the studied group.

Nutritional status	Nor	mal %	Malnu	trition	Tot	al
type of treatment	No		No	%	No	%
Medical treatment Traditional treatment*	345	60.0	230	40.0	575	57.5
	66´	15.5	359	84.5	425	42.5
TOtal	411	41.1	589	58.9	1000	100.0

 $X^2 = 183.8$ P < 0.05 * WHO (1979)

This table illustrates that malnutrition was less common among infants whose mothers adopted medical treatment (40%) than among those practicing traditional treatment (84.5%) . The difference is statistically significant

(P< 0.05) .

Table (23) Relationship between pattren of feeding during diarrhea and nutritional status of the studied group.

Nutritional status pattern of feeding	Noi No	rmal %	Malnu No	trition %	To: No	tal %
Stop feeding Rice weter and starch The usual feeding Milk only Milk and ORS	12 52 20 78 249	11.8 17.32 28.2 50.0 67.1	90 248 51 78 122	88.2 82.7 71.8 50.0 32.9	102 300 71 156 371	10.2 30.0 7.1 15.6 37.1
TOtal	411	41.1	589	58.9	1000	100.0

 $X^2 = 220.2$ P < 0.05

This table shows that malnutrition was more, common when the infants were deprived from feeding during diarrhea (88.2%) and less common when they were given milk and oral rehydration solution (ORS) (32.9%).

The difference is statistically significat (P<0.05)

Table (25) Distribution of the studied group according to maternal hygiene and nutritional status of the studied group.

Nutritional status maternal hygiene	Nor No	rmal %	Malnu No	trition %	Tot No	al %
Unhygienic practice Partial hygienic Fullhygienic practice	31 178 202	11.9 35.0 87.4	230 330 29	88.1 65.0 12.6	261 508 231	26.1 50.8 23.1
T0tal	411	41.1	589	58.9	1000	100.0

 $\chi^2 = 304.7$ P < 0.05

This table clearly shows that malnutrition was more common among infants whose mothers did not follow hygienic measures during food preparation (88.1%) while the percent of those who followed hygienic measures amounted to 12.6%.

The difference is statistically significant (P<0.05).

Table (26) Distribution of the studied group according to the source of nutritional education and nutritional status of their infants.

Nutritional status sourc of nutritional education	Normal No %		Malnutrition No %		Total No %	
Adequate maternal knowledge	111	64.9	60	35.1	171	17.1
Inadequate maternal knowledge	300	36.2	529	63.2	829	82.9
TOtal	411	41.1	589	58.9	1000	100.0

 $\chi^2 = 63.5$ P < 0.05

This table clearly shows that malnutrition was more common among infants whose mothers received inadequate nutritional knowledge (63.8) than those whose mothers received adequate knowledge (35,1%).

The difference is statistically significant (P<0.05)

Table (27): Classification of the studied group according to signs of malnutrition .

Signs of malnutriton	No.	%
No Signs	411	41.1
PEM	299	29.9
Anaemia	111	11.1
Multiple deficiency	186	18.6
Rickets	22	2.2
overweight	157	15.7
Total	1186	118.6

^{*} Total exceeds 100% because there were 186 cases had multiple deficiencies .

This table shows that PEM is the commonest clinical form of malnutrition (29.9%) among the studied group while rickets is the least common (2.2%).

Table (28): Classification of anaemic infants according to Tallquvist technique and WHO classification (1986).

	No.	. %
No anaemia	703	70.3
Border line anaemia	199	19.9
Frank anaemia	98	9.8
Total	1000	100.0

This table shows that 70.3% of the studied infants were inanaemic. The rest 29.7% were anaemic, 19.9% border line anaemia and 9.8% frank anaemia.

Table (29) Simple regression analysis of the sociobiological factors and nutritional status.

		ictors and				
Independent Vriables	Mean X	Standard deviation ± SD	Correlation Co-efficient R	regression Coefficient B	Computed T	Probab- ility P
			0.010/1	0.0210	5.844	0.00000
Age of the infant	12.975	6.2372	0.21941	0.0210		
Type of feeding	1.8080	0.8888	0.8779	0.0997	3.0997	0.00011
Mother's age	26.255	6.5088	-0.15253	-0.0111	-3.123	0.00184
Mothers education	1.960	1.3244	-0.18261	-0.0722	-4.136	0.00004
 Socioecono- nic status	20.116	2.4053	-0.23960	-0.0111	-5.922	0.00000
	<u> </u>	<u> </u>	1	<u> </u>	<u></u>	

This table shows that the separate effect of each individual factor, papy age , type of feeding, mother's age, mother's education and the socioeconomic status, had asignificant effect on the nutrition status and the simple regression coefficient, (B) of these variables were significant (P<0.05) .

Table (30) Stepwise multiple regression analysis of nutritional stauts as dependent variable and the sociobiological factors as independent variable

Independent	Mean	Standard	Partial reg	Computed coeff.	Probability
Vriables	$\bar{\mathbf{x}}$	deviation ±SD	Coefficient B	t	P
Age of infant	12.975	6.2372	0.0210	5.844	0.00000
Mother's age	26.255	6.5088	-0.0111	-3.123	0.00184
Socioecono- mic stauts.	20.255	12.4053	-0.0111	-5.922	0.00000
 Mother's education	1.9606	1.3244	-0.0722	-4.136	0.00004
Type of feeding	1.8080	0.8888	0.0997	3.894	0.00011
ł				<u> </u>	<u></u>

This table shows that the collective effect of the five sociobiological (independent) variables on the nutritional status gave the higher coefficient of determination ($R^2 = 0.1317$).

Table (31) Simple regession analysis of factors related to knowledge attitude and practice of feeding and history of recurrent diarrhea and nutr. stat.

e and practio	e or re			_	G	Probab-
Independent Vriables	Mean X	Standard deviation ±SD	Correlation Co-efficient R	Partial reg Coefficient B	coeff.	ility P
				0.125953	4.856	0.0000
Type of feeding	1.774	0.867	-0.2291	0.125955	4.850	0.000
Food give at night	2.045	0.715	-0.3663	-0.32156	-1.0135	0.0000
Food given during dia.	3.076	1.073	-0.4619	0.37313	1.815	0.0099
Source ofn- ut.knowledg	2.292 e	0.741	-0.4642	0.42081	1.413	0.1580
History of recurrent diarrhea	1.601	0.490	0.4840	-0.174115	-3.839	0.0001

This table shows that the separate effect of each individual variable on the nutritional statuts where the type of food given at night, food given during diarrhea, history of recurrent diarrhea and type of feeding had significant effect on nutritional status (P<0.05), while source of nutritional knowledge had insignificant effect (P>0.05) as determined by the simple regreression coefficient (B).

Table (32) Stepwise multiple regression analysis of type of feeding , type of food, given at night and history of recurrent dirrhea as independent variables and nutritional status as dependent .

Independent Vriables	Mean X	Standard deviation ±SD	Partial reg Coefficient B	Computed coeff.	Probability P
Type of feeding	1.774	0.867	0.12795	4.8565	0.0000
Type of food given	2.045	0.715	-0.32432	-10.1348	0.0000
at night History of recurrent diarrhea	1.601	0.490	-0.17516	-3.8394	0.0001

This table shows that the combination which gave the higher coefficient of determination (R^2) were type of feeding, type of food given at night and History of recurrent diarrhea. The coefficient of determination (R^2) was 0.1254.